
A Many-valued Logic for Lexicographic Preference Representation

Angelos Charalambidis , George Papadimitriou , Panos Rondogiannis , Antonis Troumpoukis
Department of Informatics and Telecommunications,

National and Kapodistrian University of Athens
{a.charalambidis,gspapajim,prondo,antru}@di.uoa.gr

Abstract
We introduce lexicographic logic, an extension of proposi-
tional logic that can represent a variety of preferences, most
notably lexicographic ones. The proposed logic supports a
simple new connective whose semantics can be defined in
terms of finite lists of truth values. We demonstrate that, de-
spite the well-known theoretical limitations that pose barriers
to the quantitative representation of lexicographic preferences,
there exists a subset of the rational numbers over which the
proposed new connective can be naturally defined. Lexico-
graphic logic can be used to define in a simple way some
well-known preferential operators, like “A and if possible B”,
and “A or failing that B”. We argue that the new logic is an
effective formalism for ranking query results according to the
satisfaction level of user preferences.

1 Introduction
Many formalisms have been developed for representing
preferences, both in artificial intelligence (Domshlak et al.
2011) as-well-as in databases (Stefanidis, Koutrika, and
Pitoura 2011). Of particular interest are the logical ap-
proaches in which the specification of preferences is per-
formed using operators that implicitly manipulate the under-
lying preference values (Brewka, Benferhat, and Berre 2004;
Brewka, Niemelä, and Truszczynski 2008; Agarwal and
Wadge 2005; Lang 2009; Dubois and Prade 2013; Rondogian-
nis and Troumpoukis 2015; Charalambidis, Rondogiannis,
and Troumpoukis 2018). Such formalisms are usually declar-
ative, concise, and easy to understand.

In this paper, we develop lexicographic logic, a simple
extension of classical propositional logic that can express a
variety of preferences, most notably lexicographic ones. The
proposed logic adds only one formation rule to the syntax
of propositional logic: if φ1 and φ2 are formulas, then so is
(φ1�φ2). The formula (φ1�φ2) can be read “φ1 has a lex-
icographic priority over φ2”. The semantics of “�” can be
defined in terms of finite lists of truth values of a three-valued
logic. Actually, we demonstrate that such lists have a natural
mapping to rational numbers in the interval [−1, 1], and the
meaning of “�” can also be understood as a function that
maps pairs of rational numbers to rational numbers. Apart
from its simplicity, an advantage of lexicographic logic is
that it can be used to represent concisely other well-known
preferential operators. The main contributions of the paper
are the following:

• We define a novel, non-classical, propositional logic for
expressing preferences. The primary connective of this
logic expresses lexicographic priority, which is known
to be non-trivial to specify from a quantitative point of
view (Fishburn 1999). We demonstrate that the semantics
of this new connective can be specified quantitatively as
a function over rational numbers. The main theorem of
the paper1 (Theorem 2) asserts that “�” ensures strict
monotonicity with respect to lexicographic comparison.

• We present the key properties of lexicographic logic and
investigate its connections with other preferential operators
that have been proposed in the literature. We demonstrate
that some well-known such operators can be succinctly
represented using simple formulas of lexicographic logic.

1.1 Motivation and Intuition
We introduce lexicographic logic as an extension of proposi-
tional logic, with the addition of a new connective “�” for
describing lexicographic preferences. The following example
illustrates the main ideas.

Example 1. Consider the specification of our preferences for
buying a new car. The formula (electric� fast) means
that if we buy a car that is both electric and fast, we will be
completely satisfied; if we buy one that is electric but not fast,
then we will not be entirely satisfied; if we buy a car that is
only fast, then we will be dissatisfied (but not entirely); and
if none of our preferences is satisfied, then this will be our
least preferred state of affairs.

To specify the formal semantics of (φ1 � φ2), we use
a many-valued logic to express the different levels of pref-
erence satisfaction discussed above. In particular, if F, T
denote the classical false and true values, we expect that:

(F � F ) < (F � T ) < (T � F ) < (T � T )

where “<” can be read as “less preferred than”. This suggests
that we probably need a four-valued logic to express these
four truth levels, which we could call “false”, “less false”,
“less true”, and “true”. However, it turns out that four truth
levels are not enough.

1The proofs of the main results have been omitted. An extended
version that contains these proofs can be retrieved from http://arxiv.
org/abs/2012.10940

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track - Short paper

646

http://arxiv.org/abs/2012.10940
http://arxiv.org/abs/2012.10940


To understand the difficulties of defining such a set, we
need to become slightly more formal. Let us denote by V
this (yet unknown) set and let “<” be the (yet undefined)
ordering relation on V. Let u1, u2, v1, v2 ∈ V. We define the
“lexicographically smaller” relation <L on V× V, as:

(u1, u2) <L (v1, v2) iff (u1 < v1)∨((u1 = v1)∧(u2 < v2))

The meaning of “�” should be a function f that respects the
<L ordering, ie., for all u1, u2, v1, v2 ∈ V it must hold:

(u1, u2) <L (v1, v2) iff f(u1, u2) < f(v1, v2)

One could view truth values as real numbers and attempt to
define f as a function f : (X,X)→ X where X is a subset
of R. For example, one could map the truth values F and
T to the real numbers −1 and 1, and try to define “�” as a
function f : ([−1, 1], [−1, 1])→ [−1, 1]. However, there is
a well-known obstacle to such an approach, described by the
following folk theorem (see, (Fishburn 1999, p. 363)).
Theorem 1. There does not exist a function f : (R,R)→ R
such that (u1, u2) <L (v1, v2) iff f(u1, u2) < f(v1, v2).

To understand how we bypass the above problem, we re-
turn to Example 1. Our first idea (which we will subsequently
refine) is to express different levels of preferences using a
truth domain whose elements are lists of classical truth values
F and T . The semantics of the “�” operator can then be
defined as the concatenation of such lists. In our example, if
both electric and fast are true, we assign to the formula
the value [T, T ]; if electric is true and fast is false, we
assign the value [T, F ]; if electric is false and fast is
true, we assign the value [F, T ]; if both atoms are false, we
assign the value [F, F ]. These lists, when viewed as words
compared lexicographically over the alphabet {F, T}, where
F < T , express the four different levels of truth (“false”,
“less false”, “less true”, and “true”) that we desire for this
formula, namely: [F, F ] < [F, T ] < [T, F ] < [T, T ].

In the following, for uniformity reasons, even the classical
truth values F and T will be written in list form, namely
[F ] and [T ]. Notice also that we expect [T, T ] to be equal to
[T ], because this is a situation where all our preferences are
satisfied; similarly, we expect [F, F ] to be equal to [F ].

There is, however, a further refinement of the above
scheme that is required. The basic complication that needs to
be addressed is that the operator “�” should not be associa-
tive. This issue is illustrated by the following example.
Example 2. We claim that the two formulas electric�
(fast�blue) and (electric�fast)�blue should not
be semantically equivalent. To see this, consider a truth as-
signment that assigns to electric the value [T ], to fast the
value [F ], and to blue the value [F ]. Intuitively speaking,
the first formula evaluates to [T ]� [F, F ] while the second
one to [T, F ] � [F ]. Comparing these two values, we see
that in the former one, our primary requirement is fully sat-
isfied (truth value [T ]), while in the latter one, our primary
requirement is only partially satisfied (truth value [T, F ]). In
other words, under this truth assignment, the first formula is
“more satisfied” than the second one.

The above discussion suggests that the meaning of “�”
should not be associative, and therefore it should not be de-
fined as just list-concatenation (which is associative). To

properly define the semantics of “�”, we will use one ex-
tra truth value, namely 0. By prefixing each concatenation
operation with a 0, formulas such as the ones that appear in
the above example will be discriminated. In this way, dif-
ferent lists are created for different parenthesizations of an
expression, and this ensures non-associativity. As we will
demonstrate shortly (see Theorem 2) this simple operation
ensures preservation of the lexicographic property. More
specifically, we demonstrate that for all u1, u2, v1, v2 ∈ V:

(u1, u2) <L (v1, v2) iff (u1 � u2) < (v1 � v2)

Therefore, our definition of “�” bypasses the restriction, by
relying on a carefully selected truth domain.

2 Syntax and Semantics
The syntax of lexicographic logic extends that of proposi-
tional logic with a new formation rule.
Definition 1. Let A be a set of propositional atoms. The set
of well-formed formulas of lexicographic logic is inductively
defined as follows:
• Every element of A is a well-formed formula,
• If φ1 and φ2 are well-formed formulas, then (φ1 ∧ φ2),
(φ1∨φ2), (¬φ1), and (φ1�φ2), are well-formed formulas.
We will omit the outermost parentheses from formulas and

we will assume that “�” associates to the right.
The truth domain of lexicographic logic is denoted by V,

and consists of lists of the truth values F , 0, and T . By
overloading notation, we will use the symbol “�” to also
denote an operation on lists that corresponds to the meaning
of the syntactic element “�”. More formally:
Definition 2. Let u, v be lists of the elements F , T , and 0.
We define:

(u� v) =

{
[F ], if u = v = [F ]
[T ], if u = v = [T ]
[0] ++ u++ v, otherwise

where ++ is the list concatenation operation.
We now define the truth domain of lexicographic logic.

Definition 3. The set V of truth values is the set inductively
defined as follows:
• [F ] ∈ V and [T ] ∈ V.
• If u, v ∈ V, then (u� v) ∈ V.

Notice that due to Definition 2, lists of the form [0, T, T ]
and [0, F, F ] are not allowed (because they are considered
identical to [T ] and [F ] respectively).

Each element of V represents some degree of “true” or
“false”. To understand whether a given element is true or false,
it suffices to look at its sign . We define sign(v) to be the left-
most non-zero element of v ∈ V. Therefore, [0, F, 0, F, T ] is
a false value while [0, T, F ] a true one.

Given an arbitrary element v ∈ V, we denote with v the
list that results from v by inverting each F to T and each
T to F . For example, [0, F, 0, T, F ] = [0, T, 0, F, T ]. It is
easy to establish that v ∈ V for all v ∈ V. As it turns out,
no element of V is a proper prefix of another element. This
property is crucial in establishing the main theorem of the
paper (Theorem 2).

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track - Short paper

647



Lemma 1. Let u, v ∈ V. If u is a prefix of v, then u = v.
By assuming the ordering F < 0 < T , any two elements

of V can be compared lexicographically.
Definition 4. Let u, v ∈ V and assume u = [u1, . . . , uk]
and v = [v1, . . . , vm]. We will write u < v if there exists
1 ≤ r ≤ min{k,m} such that u1 = v1, . . . , ur−1 = vr−1
and ur < vr. We will write u ≤ v if either u = v or u < v.

Due to Lemma 1, for any u, v ∈ V, it will either be u ≤ v
or v ≤ u. It is easy to see that the lexicographic ordering ≤
of Definition 4 is a total ordering on V.

We proceed with the definitions of the truth assignment
and the meaning of a formula.
Definition 5. A truth assignment is a function from the set
A of propositional atoms to the set V of truth values.
Definition 6. Let φ1, φ2, and φ be formulas and let I be a
truth assignment. The meaning of a formula with respect to
I is recursively defined as follows:
• [[p]](I) = I(p), where p ∈ A
• [[(φ1 ∧ φ2)]](I) = min{[[φ1]](I), [[φ2]](I)}
• [[(φ1 ∨ φ2)]](I) = max{[[φ1]](I), [[φ2]](I)}
• [[(¬φ)]](I) = [[φ]](I)

• [[(φ1 � φ2)]](I) = [[φ1]](I)� [[φ2]](I).
where min and max are defined w.r.t. the ≤ ordering.

Given a formula φ and a set of different truth assignments,
we can find the most preferable truth assignments for φ by
calculating the meaning of φ under these assignments, and
comparing the results.
Definition 7. Let φ be a formula and consider truth assign-
ments I1, I2. We will say that I2 is preferable to I1 with
respect to formula φ if [[φ]](I1) < [[φ]](I2).
Example 3. Let φ be the formula electric � (fast �
blue) of Example 2. Consider the truth assignments:

I1 = {(electric, [T ]), (fast, [T ]), (blue, [T ])}
I2 = {(electric, [T ]), (fast, [T ]), (blue, [F ])}
I3 = {(electric, [F ]), (fast, [T ]), (blue, [T ])}

We get that I1(φ) = [T ], I2(φ) = [0, T, 0, T, F ] and
I3(φ) = [0, F, T ]. By lexicographically comparing the corre-
sponding lists, we get that w.r.t. formula φ, the truth assign-
ment I1 is preferable to I2 which is preferable to I3.

A weaker associativity property holds even though in gen-
eral the “�” operator is not associative.
Lemma 2. Let φ1, φ2, φ3 be formulas and I1, I2 truth assign-
ments. Then, [[(φ1�φ2)�φ3]](I1) < [[(φ1�φ2)�φ3]](I2)
iff [[φ1�(φ2�φ3)]](I1) < [[φ1�(φ2�φ3)]](I2).

3 Properties of Lexicographic Logic
One key property that needs to be established is that the
“�” operator indeed implements lexicographic priority. This
means that when we apply “�” on two distinct pairs of ar-
guments, and the first pair is lexicographically smaller than
the second, then the first result is smaller than the second
one (with respect to the ordering of Definition 4). The lexico-
graphic ordering on pairs is defined as follows:

Definition 8. Let u1, u2, v1, v2 ∈ V. We write (u1, u2) <L

(v1, v2) if either u1 < v1, or u1 = v1 and u2 < v2.
Theorem 2. Let u1, u2, v1, v2 ∈ V. Then, (u1, u2) <L

(v1, v2) iff (u1 � u2) < (v1 � v2).
Semantic equivalence of formulas is defined as usual.

Definition 9. The formulas φ1 and φ2 are semantically equiv-
alent (denoted by φ1 ≡ φ2) iff for every truth assignment I ,
[[φ1]](I) = [[φ2]](I).

Lexicographic logic inherits from propositional logic, the
substitutivity of logically equivalent formulas (see, for exam-
ple, (Fitting 1996, pp. 20–21)). This property holds due to
the compositional semantics of lexicographic logic (Defini-
tion 6), and can be established by structural induction.
Lemma 3. Let φ be a formula of lexicographic logic, ψ be a
subformula of φ and ψ′ be a formula such that ψ ≡ ψ′. Then,
φ ≡ φ[ψ ← ψ′], where φ[ψ ← ψ′] is the formula that results
from φ by replacing the subformula ψ with ψ′.

The following are some basic properties of lexicographic
logic that can be easily established.
Lemma 4. For all formulas φ1, φ2, φ3, φ, the following
equivalences hold:
• (φ1 ∨ φ2)� φ3 ≡ (φ1 � φ3) ∨ (φ2 � φ3)

• φ1 � (φ2 ∨ φ3) ≡ (φ1 � φ2) ∨ (φ1 � φ3)

• (φ1 ∧ φ2)� φ3 ≡ (φ1 � φ3) ∧ (φ2 � φ3)

• φ1 � (φ2 ∧ φ3) ≡ (φ1 � φ2) ∧ (φ1 � φ3)

• ¬(φ1 � φ2) ≡ (¬φ1)� (¬φ2)
• ¬(¬φ) ≡ φ

We now demonstrate that the elements of V can be mapped
to rational numbers so as that their ordering is preserved.
Formally, we demonstrate that there exists a function val :
V → Q such that for all u, v ∈ V, if u < v then val(u) <
val(v). The key idea of defining val is that the elements of V
can be considered as numbers in the interval [−1, 1] written
in the balanced ternary number system (Knuth 1998, p. 207).
Balanced ternary is a ternary number system in which the
coefficients are the numbers −1, 0, and 1. (instead of 0, 1,
and 2, as it happens in standard ternary notation).

We consider the elements of V as representing balanced
ternary numbers in the interval [−1, 1]. More specifically,
val(F ) = −1, val(0) = 0, val(T ) = 1, and for every
u = [u1, . . . , un] ∈ V, we derive a rational number in the
interval (−1, 1) by viewing u as a balanced ternary number.
Since we want our numbers to belong in the interval (−1, 1),
we calculate their value using the powers of 1

3 . Formally:

val([u1, . . . , un]) =
∑n

i=1 val(ui) ·
1

3i−1

The following lemma justifies why the numerical represen-
tation of the elements of V is an equivalent alternative.
Lemma 5. For all u, v ∈ V, if u < v, then val(u) < val(v).

The above discussion suggests that the semantics of lexi-
cographic logic can be equivalently expressed using a special
subset of the set Q of rational numbers. In a potential imple-
mentation of a query system based on lexicographic logic,
numerical values that rank query results would convey a
much better intuition than the lists of truth values.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track - Short paper

648



4 Modeling Alternative Operators
In this section, we demonstrate that we can use “�” as a
primitive operator in order to define other interesting con-
nectives that express levels of preference. We focus on two
well-known such operators (Dubois and Prade 2013), namely
“and if possible” and “or at least”. We will denote the former
by “&” and the latter by “×”.

The intuitive meaning of (x& y) is “I want x and if possi-
ble additionally y”. If the first argument of “&” is false, the
result is false (no matter what the second argument is). If both
arguments are true, the result is true. If, however, the first
argument is true and the second is false, then we are partially
satisfied. Similarly, the intuitive meaning of (x × y) is “I
want x, or failing that, y”. We expect that if both arguments
are false, then the result is false. If the first argument is true,
then the result is true. If, however, the first argument is false
and the second is true, then we are still satisfied, but not as
much as in the case where the first argument is true; this is
expressed by the value [T ] � [F ] which is not absolutely
true (but is still true). We can express “&” and “×” as derived
operators using “�”, as:

x& y = x� (x ∧ y)
x × y = (x ∨ y)� x

The above definitions are meaningful even if “&” and “×”
are applied on non-classical elements of V, ie., elements that
are different from [F ] or [T ]. In this case, the intuition of
“&”, for example, is to put a strong emphasis on the value of
its first argument. On the other hand, the intuition of “×” is
to degrade the overall result if x has some false value.

Our definitions satisfies the equivalences between the con-
nectives ‘×‘, ‘�‘, ‘∧‘ and ‘∨‘ observed in (Dubois and Prade
2013) as the following lemma demonstrates.
Lemma 6. For all x, y ∈ V, it holds:
• x× y = x × (x ∨ y) = (x ∨ y)&x

• x& y = x&(x ∧ y) = (x ∧ y)× x.

5 Related Work
There exists a great variety of preference representation for-
malisms that have been developed mainly in the areas of
artificial intelligence (Domshlak et al. 2011), databases (Ste-
fanidis, Koutrika, and Pitoura 2011), and logic programming
(Sakama and Inoue 2000). In general, preference represen-
tation formalisms are classifiedas either “quantitative” or
“qualitative”. In the quantitative approach, numerical values
are used in the syntax of the preference specification language
in order to express degrees of preference. On the other hand,
in the qualitative approach, preferences are expressed by im-
plicitly establishing a preference relation between the objects
under consideration. Lexicographic logic falls somewhere
in between: its syntax is qualitative because preferences are
expressed implicitly through the “�” operator; however, its
semantics is quantitative because, as shown in Section 3,
formulas essentially receive rational number values when
evaluated. In the following we discuss the research works
that we are aware of and are closer to our contribution.
Qualitative Choice Logic (QCL) In (Brewka, Benferhat,
and Berre 2004), propositional logic is extended with the new

connective “×”. Intuitively, A×B is read “if possible A, but
if A is impossible then at least B”. QCL has a similar phi-
losophy as lexicographic logic in the sense that preferences
are represented implicitly using a new operator. However,
there are important differences. QCL is built on the classi-
cal boolean truth domain while lexicographic logic uses a
many-valued one. It has been remarked that the semantics of
QCL lead to certain limitations (Benferhat and Sedki 2007).
Moreover, some intuitive tautologies, such as ¬(¬φ) ≡ φ do
not hold, and the notion of logical equivalence between QCL
formulas is defined in a non-standard way (Brewka, Benfer-
hat, and Berre 2004, page 209). Additionally, the semantics
of QCL can be used to prove that the operator “×” of QCL
is associative, something that does not hold for the operator
“×” we defined in Section 4. It is also worth noting that QCL
is a non-monotonic logic, while lexicographic logic has not
been extended with a non-monotonic consequence relation.
Flexible queries The operators “A and if possible B” and
“A or at least B” have been studied as different forms of
bipolar constraints for flexible querying in (Dubois and Prade
2013). The semantics of these operators has been modeled
using possibilistic logic (Dubois and Prade 2014). It is how-
ever unclear whether a lexicographic priority operator like
“�” can be encoded in that framework and whether arbitrary
nestings of such operators can be supported. Overall, we
believe that lexicographic logic provides a simpler and more
natural means for encoding such operators.
Infinite-valued Logic In (Agarwal and Wadge 2005; Agar-
wal 2005) a propositional query language is developed that
uses two operators to express preferences of the form “A and
optionally B” and “A or alternatively B”. The semantics of
this language is based on the infinite-valued logic introduced
in (Rondogiannis and Wadge 2005) and was later extended
with recursion (Rondogiannis and Troumpoukis 2015). The
infinite-valued approach has a similar philosophy with lexico-
graphic logic: preferences are expressed implicitly using op-
erators in the context of many-valued logics. However, there
is a significant difference: as demonstrated in (Papadimitriou
2017), the infinite valued logic of (Rondogiannis and Wadge
2005) is not sufficient to express lexicographic preferences.
Thus, our present approach is more powerful as it can express
all the preferences of the latter, and additionally it can also
express lexicographic ones.

6 Conclusions and Future Work
We introduced lexicographic logic,a many-valued logic for
preference representation. Lexicographic logic has a simple
semantics based on sequences of the truth values F , 0, and
T , which can be alternatively defined using a subset of the
rational numbers in the interval [−1, 1].

The next step in the development of lexicographic logic,
is the introduction of a deductive calculus. Such an investi-
gation could include an inference procedure, investigation
of completeness issues (with respect to the model-theoretic
semantics), and a corresponding complexity-theoretic study.

Acknowledgments
The authors would like to thank one of the reviewers for
suggesting Lemma 2.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track - Short paper

649



This research is co-financed by Greece and the European
Union European Social Fund- ESF) through the Operational
Programme “Human Resources Development, Education and
Lifelong Learning 2014- 2020” in the context of the project
“Techniques for implementing qualitative preferences in de-
ductive querying systems” (5048151).

References
Agarwal, R., and Wadge, W. W. 2005. The lazy evaluation
of infinitesimal logic expressions. In Arabnia, H. R., ed.,
Proceedings of The 2005 International Conference on Pro-
gramming Languages and Compilers, PLC 2005, Las Vegas,
Nevada, USA, June 27-30, 2005, 3–7. CSREA Press.
Agarwal, R. 2005. A framework for expressing prioritized
constraints using infinitesimal logic. Master’s thesis, Univer-
sity of Victoria, Canada.
Benferhat, S., and Sedki, K. 2007. A revised qualitative
choice logic for handling prioritized preferences. In Mellouli,
K., ed., Symbolic and Quantitative Approaches to Reason-
ing with Uncertainty, 9th European Conference, ECSQARU
2007, Hammamet, Tunisia, October 31 - November 2, 2007,
Proceedings, volume 4724 of Lecture Notes in Computer
Science, 635–647. Springer.
Brewka, G.; Benferhat, S.; and Berre, D. L. 2004. Qualitative
choice logic. Artificial Intelligence 157(1-2):203–237.
Brewka, G.; Niemelä, I.; and Truszczynski, M. 2008. Prefer-
ences and nonmonotonic reasoning. AI Magazine 29(4):69–
78.
Charalambidis, A.; Rondogiannis, P.; and Troumpoukis, A.
2018. Higher-order logic programming: An expressive lan-
guage for representing qualitative preferences. Science of
Computer Programming 155:173–197.
Domshlak, C.; Hüllermeier, E.; Kaci, S.; and Prade, H. 2011.
Preferences in AI: an overview. Artificial Intelligence 175(7-
8):1037–1052.
Dubois, D., and Prade, H. 2013. Modeling “and if possible”
and “or at least”: Different forms of bipolarity in flexible
querying. In Pivert, O., and Zadrozny, S., eds., Flexible
Approaches in Data, Information and Knowledge Manage-
ment, volume 497 of Studies in Computational Intelligence.
Springer. 3–19.
Dubois, D., and Prade, H. 2014. Possibilistic logic - an
overview. In Siekmann, J. H., ed., Computational Logic,
volume 9 of Handbook of the History of Logic. Elsevier. 283–
342.
Fishburn, P. C. 1999. Preference structures and their
numerical representations. Theoretical Computer Science
217(2):359–383.
Fitting, M. 1996. First-Order Logic and Automated Theo-
rem Proving, Second Edition. Graduate Texts in Computer
Science. Springer.
Knuth, D. E. 1998. The art of computer programming,
volume 2. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., 3rd edition.
Lang, J. 2009. Logical representation of preferences. In
Bouyssou, D.; Dubois, D.; Pirlot, M.; and Prade, H., eds.,
Decision-making Process. Wiley. 321–363.

Papadimitriou, G. 2017. A logic query language for lexico-
graphic preferences. Master’s thesis, National and Kapodis-
trian University of Athens, Greece.
Rondogiannis, P., and Troumpoukis, A. 2015. Expressing
preferences in logic programming using an infinite-valued
logic. In Falaschi, M., and Albert, E., eds., Proceedings of
the 17th International Symposium on Principles and Practice
of Declarative Programming, Siena, Italy, July 14-16, 2015,
208–219. ACM.
Rondogiannis, P., and Wadge, W. W. 2005. Minimum model
semantics for logic programs with negation-as-failure. ACM
Trans. Comput. Log. 6(2):441–467.
Sakama, C., and Inoue, K. 2000. Prioritized logic pro-
gramming and its application to commonsense reasoning.
Artificial Intelligence 123(1-2):185–222.
Stefanidis, K.; Koutrika, G.; and Pitoura, E. 2011. A survey
on representation, composition and application of preferences
in database systems. ACM Transactions on Database Systems
36(3):19:1–19:45.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track - Short paper

650


	Introduction
	Motivation and Intuition

	Syntax and Semantics
	Properties of Lexicographic Logic
	Modeling Alternative Operators
	Related Work
	Conclusions and Future Work

