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Abstract

We introduce negation under stable models semantics in
DatalogMTL—a temporal extension of Datalog with metric
operators. As a result, we obtain a rule language which com-
bines the power of answer set programming with the temporal
dimension provided by metric operators. We show that, in this
setting, reasoning becomes undecidable over the rationals and
decidable in EXPSPACE in data complexity over the integers.
We also show that, if we restrict our attention to forward-
propagating programs (where rules propagate information in
a single temporal direction), reasoning over integers becomes
PSPACE-complete in data complexity and hence no harder
than over positive programs; however, reasoning over the ra-
tionals in this fragment remains undecidable.

1 Introduction
DatalogMTL (Brandt et al. 2018) extends positive Datalog
with operators from metric temporal logic (MTL) (Koymans
1990), interpreted over the rational numbers or the inte-
gers. DatalogMTL is a powerful language for temporal rea-
soning, which can capture many other formalisms such as
Datalog1S (Chomicki and Imieliński 1988; 1989) and Tem-
plog (Abadi and Manna 1989), and which has found appli-
cations in areas such as ontology-based data access (Brandt
et al. 2018), stream reasoning (Wałęga, Cuenca Grau, and
Kaminski 2019), and logic programming (Brzoska 1998).

An important limitation of DatalogMTL in practice is
that negation is disallowed in rules—indeed, motivated by
a range of applications, there has recently been growing in-
terest in logics that combine non-monotonic negation with
temporal constructs (Cabalar and Vega 2007; Aguado et al.
2013; Cabalar et al. 2018; 2020; Beck, Dao-Tran, and Eiter
2018; Zaniolo 2012). In the context of DatalogMTL, Tena
Cucala et al. (2021) recently proposed an extension of the
language with stratified negation as failure and showed that
the additional expressive power does not increase complex-
ity of reasoning regardless of whether we consider the ratio-
nal or the integer timeline (Wałęga et al. 2020).

In this paper we take a next step in this direction and con-
sider DatalogMTL equipped with non-stratifiable negation
interpreted under the stable models semantics (Gelfond and
Lifschitz 1988; Brooks et al. 2007; Nogueira et al. 2001).
This extension paves the way for the use of DatalogMTL in
applications where derived information can be retracted in

light of new evidence, minimality of models is required, or
temporal inertia rules need to be formalised. For instance,
consider a dental practice with the policy that patients with
an appointment on a given time t are automatically booked
for a check-up appointment one year later (i.e., at time t+1,
represented by metric operator �1), but this appointment
must be cancelled if the patient makes another appointment
in between—that is, within the interval (t+ 0, t+ 1) repre-
sented by �(0,1). This policy can be written using the rule

�1Appoint(x)← Appoint(x) ∧ not�(0,1)Appoint(x),

which is not stratifiable as it involves recursion via negation.
Our setting is closely related to recent research on com-

bining answer set programming (ASP) with temporal log-
ics. For example, the logic TEL (Cabalar and Vega 2007;
Aguado et al. 2013; Cabalar et al. 2018) combines ASP with
linear temporal logic, and the LARS language combines
ASP with window-based temporal constructs for stream rea-
soning (Beck, Dao-Tran, and Eiter 2018). The logic recently
proposed by Cabalar et al. (2020) is maybe the closest to our
work, as it combines stable models semantics with proposi-
tional MTL interpreted over the natural numbers; this logic,
however, is rather different from DatalogMTL, where the
use of logical connectives and MTL operators is restricted
in the spirit of Datalog to disallow disjunction and “existen-
tial” MTL operators (such as diamond, since, or until oper-
ators) in rule heads. As we show in our paper, considering a
language with such restrictions can lead to favourable com-
putational behaviour.

Our contributions are as follows. In Section 3 we present
our extension DatalogMTL¬ of DatalogMTL with nega-
tion under stable models semantics, which we define, sim-
ilarly to other temporal ASP formalisms, in terms of inter-
pretations for the here-and-there intuitionistic logic (Heyt-
ing 1930; Pearce 1996). The resulting language extends
both DatalogMTL with stratified negation and Datalog with
stable negation. The main reasoning problem we consider
is existence of a stable model for a program and dataset.
We show in Section 4 that, in this setting, reasoning over
the rational timeline is undecidable. The proof uses an
involved reduction from the halting problem and applies
even to propositional forward-propagating programs, where
rules cannot propagate information towards the past, and
data containing only bounded intervals. To regain decid-
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ability, in Section 5, we focus on the integer timeline.
We show in Section 5.1 that discreteness of the timeline
has a crucial influence on the logic’s computational be-
haviour, as reasoning becomes decidable and in EXPSPACE
in data complexity; this is shown by exploiting Büchi au-
tomata and their complements to find candidate stable mod-
els and verify their minimality. Then, in Section 5.2 we show
that, when restricted to forward-propagating (or equivalently
backwards-propagating) programs and bounded datasets,
reasoning becomes PSPACE-complete and so, no harder than
for negation-free DatalogMTL. This is in stark contrast with
the undecidability of the same fragment over the rationals.

2 Preliminaries
A timeline T is either the set Q of rationals or the set Z of
integers. A T-time point is an element of T. A T-interval
% is a subset of T satisfying two properties: first, for all
t1, t2 ∈ % and t ∈ T such that t1 < t < t2, it is the case
that t ∈ %; second, the greatest lower bound %− and the least
upper bound %+ of % both belong to T ∪ {−∞,∞}. The
bounds %− and %+ are called the left and right endpoints of
%, respectively. A T-interval is punctual if it contains exactly
one number, it is positive if it contains no negative numbers,
it is bounded if both its left and right endpoints are in T,
and it is closed if it includes its both endpoints. In these and
similar notions, we often omit the reference to T if it is clear
from the context. We consider binary representations of inte-
gers, and fractional representations of rational numbers with
an integer numerator and a positive integer denominator. We
use standard representations of the form 〈%−, %+〉 for a non-
empty interval %, where the left bracket 〈 is either [ or (, the
right bracket 〉 is either ] or ), and, if numeric, the endpoints
%− and %+ are represented as explained above. Brackets [
and ] indicate that the corresponding endpoints are included
in the interval, whereas ( and ) indicate that they are not in-
cluded; note that, by this convention, [ and ] cannot be used
with endpoints−∞ and∞. We will often abbreviate a punc-
tual interval [t, t] as t. For a given timeline, no two intervals
have the same representation; so, if it is clear from the con-
text, we will abuse notation and identify each interval repre-
sentation with the interval it represents.

Assume a function-free first-order vocabulary and a time-
line T. A relational atom is an expression of the form P (s),
where P is a predicate and s is a tuple of constants and vari-
ables of the same arity as P . A metric atom is an expression
given by the following grammar, where P (s) ranges over
relational atoms and % over positive intervals:

M ::=>|⊥|P (s)|x%M ||%M |�%M |�%M |MS%M |MU%M.

A metric atom is ground if it mentions no variables. A
metric fact is an expression M@%, with M a ground metric
atom and % a non-empty interval; it is relational if so is M .
A dataset is a finite set of relational facts; it is bounded if so
are all intervals it mentions. An interpretation I specifies,
for each ground relational atom P (c) and each time point
t ∈ T, whether P (c) is satisfied at t, in which case we write
I, t |=T P (c). This notion extends to other ground metric
atoms as given in Table 1. Interpretation I is a model of a
metric fact M@%, written I |=T M@%, if I, t |= M for all

I,t |=T> for each t ∈ T
I,t |=T⊥ for no t ∈ T
I,t |=Tx%M iff I,t′ |=TM for some t′ with t− t′ ∈ %
I,t |=T|%M iff I,t′ |=TM for some t′ with t′ − t ∈ %
I,t |=T �%M iff I,t′ |=TM for all t′ with t− t′ ∈ %
I,t |=T �%M iff I,t′ |=TM for all t′ with t′ − t ∈ %
I,t |=TM1S%M2 iff I,t′ |=TM2 for some t′ with t− t′ ∈ %

and I,t′′ |=T M1 for all t′′ ∈ (t′, t)

I,t |=TM1U%M2 iff I,t′ |=TM2 for some t′ with t′ − t ∈ %
and I,t′′ |=T M1 for all t′′ ∈ (t, t′)

Table 1: Semantics of ground metric atoms

t ∈ % ∩ T; it is a model of a setM of metric facts (e.g., a
dataset) if it is a model of all facts in M. Set M entails a
set M′ of metric facts, written M |= M′, if every model
ofM is a model ofM′. Interpretation I contains interpre-
tation I′, written I′ ⊆ I, if for each ground relational atom
P (c) and time point t ∈ T, having I′, t |=T P (c) implies
I, t |=T P (c). Furthermore, I is the least interpretation in a
set X of interpretations, if I ⊆ I′ for every I′ ∈ X .

3 DatalogMTL with Negation
In this section we propose DatalogMTL¬, which extends
DatalogMTL with stratified negation as defined in (Tena Cu-
cala et al. 2021) to support unstratified use of negation in
rules interpreted under stable model semantics.

The syntax of DatalogMTL¬ is the natural extension of
the positive case: rule bodies are conjunctions of atoms
and negated atoms, whereas rule heads are defined as
in DatalogMTL. Forward-propagating DatalogMTL¬ pro-
grams are also defined analogously to the positive case
(Wałęga, Cuenca Grau, and Kaminski 2019), by requiring
that rule bodies and heads do not mention metric operators
referring to the future and to the past, respectively.
Definition 1. A rule r is an expression of the form

M ←M1 ∧ · · · ∧Mk ∧ notMk+1 ∧ · · · ∧ notMm, (1)

where m ≥ k ≥ 0, each Mi is a metric atom, and M is a
metric atom specified by the following grammar, where P (s)
ranges over relational atoms and % over positive intervals:

M ::= > | ⊥ | P (s) | �%M | �%M.

The head of r is the consequent M and the body is the
conjunction in the antecedent, where M1, . . . ,Mk are its
positive body atoms, and Mk+1, . . . ,Mm are its negated
body atoms. Rule r is safe if each variable it mentions oc-
curs in some positive body atom, it is ground if it has no
variables, it is positive if it has no negated body atoms. A
(DatalogMTL¬) program is a finite set of safe rules; it is
ground or positive if all its rules are.

DatalogMTL¬FP is the fragment of DatalogMTL¬ consist-
ing of forward-propagating programs, where operators |,
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�, and U are disallowed in rule bodies, and operator � is
disallowed in the head.

The definition of stable models for Datalog with nega-
tion relies on the reduct construction by Gelfond and Lif-
schitz (1988), which has been adapted to various exten-
sions of ASP (Faber, Leone, and Pfeifer 2004). These reduct
constructions, however, do not have a natural equivalent in
DatalogMTL¬, where interpretations may satisfy a fact at
some, but not all points of the infinite timeline, and it is
thus unclear which rules or atoms should be included in
the reduct. Instead, following the approach of Cabalar and
Vega; Cabalar et al. (2007; 2020), we define stable models
for DatalogMTL¬ analogously to the models of equilibrium
logic (Pearce 1996), which are defined in terms of interpre-
tations for the here-and-there intuitionistic logic (Heyting
1930). The semantics of this logic is based on here-and-there
interpretations, so let us start by generalising such interpre-
tations to the context of DatalogMTL¬.

For the remainder of this section, we fix timeline T which
will be implicit in all our defintions and technical results.

Definition 2. An HT-interpretation is a pair (H,T) of
interpretations such that H ⊆ T. It is an HT-model of a
dataset D if H is a model of D. Furthermore, (H,T) is an
HT-model of a rule r of Form (1) if, for each assignment ν of
constants to variables making r ground and for each t ∈ T,
both of the following conditions hold:

1. if H, t |=T ν(Mi) for all i∈{1, . . . , k} and T, t 6|=T ν(Mj)
for all j ∈ {k + 1, . . . ,m}, then H, t |=T ν(M); and

2. if T, t |=T ν(Mi) for all i∈{1, . . . , k} and T, t 6|=T ν(Mj)
for all j ∈ {k + 1, . . . ,m}, then T, t |=T ν(M).

Finally, (H,T) is an HT-model of a program if it is an HT-
model of all its rules.

An HT-interpretation is therefore a pair (H,T) of standard
interpretations. Interpretation H is contained in T, and deter-
mines whether a dataset is satisfied. Although both interpre-
tations are used to evaluate rules, it is T which evaluates
negative body atoms and thus determines when a rule with
negation can be “triggered”. When this happens, the rule en-
sures that if any of H or T satisfies the positive body atoms,
then it will also satisfy the head.

Observe that if (H,T) is an HT-interpretation then, by
H ⊆ T, all relational facts entailed by H are also entailed
by T. We show next that this property can be generalised to
arbitrary metric facts.

Proposition 3. For every HT-interpretation (H,T), a metric
atom M , and a time point t, if H, t |= M then T, t |= M .

Proof sketch. We proceed by induction on the structure of
M . If M is > or ⊥, the claim holds trivially, and if M is a
relational atom, then the claim holds by H ⊆ T. The induc-
tive step can be shown for each operator by directly applying
their semantics on a case-by-case basis.

Although the converse statement does not always hold,
we can nonetheless prove the following result, which will
underpin our definition of stable models.

Theorem 4. Let (T,T) be an HT-model of a program Π
and a dataset D. Then, the set of interpretations H such that
(H,T) is an HT-model of Π andD has a least interpretation.

Proof sketch. We construct the least interpretation using
transfinite induction. Let H0 be the least model of D. Then,
for each successor ordinal α, we let Hα be the least interpre-
tation such that, for each ground rule of Form (1) obtained
from a rule in Π by assigning constants to variables, and
each t, if Hα−1, t |= Mi for each 1 ≤ i ≤ k and T, t 6|= Mj

for each k + 1 ≤ j ≤ m, then Hα, t |= M . Note that Hα
is well-defined since M cannot mention ⊥ as otherwise the
body of the ground rule would hold in T, and so, (T,T)
would not be an HT-model as we assumed. Next, for each
limit ordinal α, we let Hα be

⋃
β<α Hβ . Using transfinite in-

duction and the fact that (T,T) is an HT-model of Π and D,
we can easily show that Hα ⊆ T for every ordinal α.

Let H = Hω1
, where ω1 is the first uncountable ordinal.

We have H ⊆ T, so (H,T) is an HT-interpretation. Further-
more, by construction, (H,T) is an HT-model of Π and D.
Finally, notice that the construction of H extends H0 only
with those facts which are necessary to make (H,T) an HT-
model of Π andD, and so H is the unique least interpretation
satisfying the property in the theorem.

In what follows, given a program Π, a dataset D, and an
interpretation T such that (T,T) is an HT-model of Π, we
let HT

Π,D denote the least interpretation whose existence is
guaranteed by Theorem 4.

In equilibrium logic, a model of a program is a standard
interpretation satisfying the program and such that there ex-
ists no here-and-there model of the program with the same
second component but a strictly smaller first component.
This ensures that equilibrium logic implements a kind of
minimal model reasoning. We next generalise this notion to
DatalogMTL¬ by building on our previous definition of the
least interpretation HT

Π,D.

Definition 5. An interpretation T is a stable model of a pro-
gram Π and a datasetD if and only if (T,T) is an HT-model
of Π and D, and HT

Π,D = T.

We next show that our semantics for DatalogMTL¬ also
generalises the semantics of (positive) DatalogMTL pro-
grams. If a DatalogMTL program Π and dataset D have a
model, they also admit a least model (Brandt et al. 2017).
This can be equivalently reformulated by stating that if the
set of interpretations I such that (I, I) is an HT-model of Π
and D is not empty, then it has a least interpretation.

Theorem 6. Let Π be a positive program and let D be a
dataset. For every interpretation I, we have that I is a stable
model of Π and D if and only if I is their least model.

Proof sketch. The theorem is a consequence of the fol-
lowing statement. Assume that Π and D admit an HT-
model; then, there exists an interpretation Imin such that
(i) Imin = HT

Π,D, where T is the second component of any
HT-model of Π and D, and (ii) Imin is the least interpre-
tation among interpretations T such that (T,T) is an HT-
model of Π and D. This statement can be shown using the
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construction in the proof of Theorem 4 and the fact that Π
is positive, and the theorem follows easily from it. Indeed,
for the forward direction assume that I is a stable model of
Π and D, so I = HI

Π,D. Then, by Condition (i) we have
HI

Π,D = Imin, and so, I = Imin. Thus, by Condition (ii),
I is the least model of Π and D. For the reverse direction,
observe that by Condition (i), Imin = HImin

Π,D , and so Imin is
a stable model of Π and D.

It follows that, if a positive program and a dataset have
a model, then they have a stable model. Note, however, that
this is not the case for many other temporal logics with stable
models semantics (Cabalar and Demri 2011; Bozzelli and
Pearce 2015), and the reason why this property holds in our
setting is given by Theorem 4.

Finally, we can easily extend our results further and
show that our semantics also generalises that of stratifiable
DatalogMTL¬ programs (Tena Cucala et al. 2021), where
rules do not have cyclic dependencies via negation and can
be organised in a set of strata. Each stratifiable, ⊥-free pro-
gram Π and dataset D have a single least model constructed
by applying to D rules of Π stratum by stratum in a minimal
way. Then, as in the case of positive programs, we can show
that this least model corresponds to the single stable model
of Π andD. Hence, positive and stratifiable programs cannot
have multiple stable models, as is the case in plain Datalog.
Arbitrary DatalogMTL¬ programs, however, can have any
number of stable models. For example, a program with rules
R← notP and P ← notR has infinitely many stable mod-
els, as, for every t ∈ T, an interpretation that satisfies P at t
and R at every other time point is a stable model.

In the rest of the paper we study decidability and com-
plexity of reasoning, which is (in the context of this paper)
the problem of checking if a DatalogMTL¬ program Π and
a dataset D have a stable model. We focus on data complex-
ity—that is, assume that Π is fixed and only D forms the
input—which is relevant to data intensive applications.

4 Undecidability over the Rationals
In this section we focus on the rational timeline, so let us
fix T = Q. In this setting, standard reasoning problems
are PSPACE-complete in data complexity for positive pro-
grams (Wałęga et al. 2019), as well as for programs with
stratified negation (Tena Cucala et al. 2021).

We next show that, in stark contrast, reasoning in
DatalogMTL¬ (under the stable models semantics) is unde-
cidable. Furthermore, undecidability holds even if programs
are considered fixed and forward-propagating, and even if
the input datasets are bounded.

Theorem 7. Reasoning in propositional DatalogMTL¬FP
over Q and bounded datasets is undecidable in data com-
plexity.

Proof sketch. Let M = (Σ,Q, δ, qinit, qhalt) be a determin-
istic Turing machine with Σ the input alphabet, Q the set
of states, δ : Σt × (Q \ {qhalt}) −→ Σt ×Q× {L,R} the
transition function for Σt = Σ ∪ {t} and blank symbol t,
L and R the symbols indicating the head movements, and

2i 2i+ 1 2i+ 2

Sq

ti1

Cs1

ti|w|+i

Cs|w|+i N

tij

H,Csj

. . . . . .

state tape contents

Figure 1: Encoding of the ith configuration

qinit, qhalt ∈ Q the initial and halting states. Without loss of
generality, we assume thatM never tries to move to the left
of the left-most cell of the tape.

We construct a propositional DatalogMTL¬FP program
ΠM and then reduce (in AC0) every input word w to a
dataset Dw with only bounded intervals so thatM halts on
w if and only if ΠM and Dw do not have a stable model.

We represent, for each i ≥ 1, the i-th configuration in
the run ofM on input w within the interval [2i, 2i + 2), as
illustrated in Figure 1, where we assume that in the configu-
ration the state is q, the head is over cell j, and the contents
of the first |w|+i cells of the tape are symbols s1, . . . , s|w|+i
(in this configuration, at most |w| + i cells are non-empty).
The state is encoded within the first half [2i, 2i + 1] of the
interval: a proposition Sq holds at some time point within
[2i, 2i + 1]. The contents of the tape and the head position
are encoded within the second half (2i + 1, 2i + 2) of the
interval; in particular, |w| + i time points ti1 < · · · < ti|w|+i
in (2i + 1, 2i + 2) are used so that, for each j, a proposi-
tion Csj holding at tij means that cell j contains symbol sj ,
and a proposition H at tij means that the head is over cell j.
We also use additional propositions: S holding in intervals
[2i, 2i+ 1] responsible for representing states, N holding at
a single new time point in (2i + 1, 2i + 2) beyond ti|w|+i,
which will allow us to increase the number of time points
encoding cells, N and H simulating negations of N and H ,
respectively, C marking points not used to encode the tape
contents, and L used for encoding left-moving transitions.

The first block of rules in ΠM consists of the following
rules, for each X ∈ {N,H} and s ∈ Σt:

X ← notX, X ← notX, ⊥ ← X ∧X,
⊥ ← X ∧x(0,1)X, X ← S, N ← Cs, H ← C,

⊥ ← S ∧ (C ∧N)S(0,1)Cs.

The first three rules state that, at each time point, either X
or X holds. The fourth rule states that X cannot hold twice
in an open interval of length 1. By the fifth rule, X and S
cannot hold at the same time point. The sixth rule states that
N holds in all time points encoding cells. The second to last
rule states thatH does not hold in time points that do not en-
code cells. The last rule ensures that after time point ti|w|+i
encoding the last relevant cell in the i-th configuration, there
is another time point within (2i+ 1, 2i+ 2) where N holds.
(Note that the last rule uses conjunction within a metric op-
erator, which is not syntactically allowed, but can be easily
simulated by replacing C ∧ N with a fresh proposition P
and adding a rule P ← C ∧N .)
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The second block consists of the following rules, propa-
gating propositions to the interval encoding the consequent
configuration, for every s ∈ Σt:

�2S ← S, �2C ← C ∧N,
�2Ct ← N ∧x(0,∞)Sqinit , �2Cs ← Cs ∧H.

The first rule states that S is always propagated into the fu-
ture from time point t to t + 2. The second rule states that,
if t does not encode a cell and N holds therein, then t + 2
does not encode a cell either. By the third rule, if N holds at
t then t + 2 encodes an empty cell. The last rule states that,
if t encodes a cell with contents s and the head is not on this
cell, then t+ 2 also encodes a cell with contents s.

Next, we encode the left-moving transitions. Proposition
L is used to mark a time point encoding a cell such that the
head was on it in the previous computation step and then
moved to the left. Program ΠM has the following rules for
every s ∈ Σ and q ∈ Q with transition δ(s, q) = (s′, q′, L),
and every s∗ ∈ Σ:

�2 L ∧�1Sq′ ∧�2Cs′ ← H ∧ Cs ∧x(0,2)Sq,

⊥ ← L ∧�(0,1)H, ⊥ ← L ∧x(0,1)(Cs∗ ∧x(0,1)H).

Here, the first rule simulates the transition: L holds as in-
tended, the state is changed from q to q′, and the contents of
a cell under the head changed from s to s′ (conjunction in
the head is used for brevity and can be simulated by several
rules). The last two rules encode the position of the head by
stating that H holds at the first time point encoding a cell to
the left of the time point with L.

Similarly, for each transition δ(s, q) = (s′, q′,R) moving
the head to the right and any s∗ ∈ Σ, program ΠM has the
rules

�1Sq′ ∧�2Cs′ ← H ∧ Cs ∧x(0,2)Sq,

�2H ← Cs∗ ∧ CS(0,1)(H ∧ Cs) ∧x(0,2)Sq,

�2H ← N ∧ CS(0,1)(H ∧ Cs) ∧x(0,2)Sq.

Here, the first rule encodes the change of the state and the
contents of the cell above which the head is. The last two
rules simulate the change of the position of the head.

Finally, ΠM contains the rule ⊥ ← Sqhalt , ensuring that
reaching the halting state yields an inconsistency.

With the construction of ΠM complete, we next reduce
an input word w = s1 . . . s|w| to a dataset Dw. Assum-
ing for brevity that w is non-empty, we let tk = 1 + k

|w|+1

for each k ∈ {1, . . . , |w|} (it is only important here that
1 < t1 < · · · < t|w| < 2) and then Dw contains the facts:

S@[0, 1], Sqinit@1, H@t1, Cs1@t1, . . . , Cs|w|@t|w|,

C@(1, t1), C@(t1, t2), . . . , C@(t|w|, 2),

N@[0, 1], H@[0, 1].

Intuitively,Dw describes the initial configuration ofM onw
within [0, 2); the initial state is encoded in 1 and t1, . . . , t|w|
encode the first |w| cells of M. Moreover, C holds in all
other time points in (1, 2), whereas N and H hold in [0, 1].

We can show that ΠM and Dw have a stable model if and
only ifM does not halt on w. Indeed, if T is a stable model
of ΠM andDw, then the location of the propositions holding
in T in an interval [2i, 2i+ 2) can be treated as an encoding
of configuration i of the run of M on w. Interpretation T
satisfies ⊥ ← Sqhalt , and so we can show that none of these
configurations mentions a halting state—that is, the run does
not halt. IfM does not halt on w, then we can construct a
stable model of ΠM and Dw, where for each i ∈ N the
interval [2i, 2i+2) represents configuration i of the run.

5 Decidability over the Integers
In this section we consider the integer timeline and thus fix
T = Z. In particular, we show that in this case reasoning
is decidable and in EXPSPACE in data complexity; further-
more, complexity drops to PSPACE if we restrict our atten-
tion to forward-propagating programs and datasets mention-
ing only bounded intervals—a setting well-suited for stream
reasoning (Wałęga, Cuenca Grau, and Kaminski 2019;
Ronca et al. 2018); note that in this setting, the additional ex-
pressive power provided by stable models comes at no com-
putational cost since reasoning in the corresponding positive
fragment is already PSPACE-complete (Wałęga et al. 2020;
2019).

In prior work on positive and stratifiable programs, upper
bounds for reasoning have been established by constructing
generalised Büchi automata that accept (words describing)
models of a given program and dataset (Wałęga et al. 2020;
Tena Cucala et al. 2021). Checking existence of a stable
model is more demanding, as we additionally need to en-
sure model minimality as in Definition 5; this requirement is
non-trivial, and we will handle it differently for the cases of
arbitrary and forward-propagating programs.

In the general case (Section 5.1), we construct automata
that allow us to check existence of a model and automata
for checking existence of a smaller model. Then, a word ac-
cepted by the first automata but not by the latter represents
a stable model. This construction is conceptually similar to
that of Cabalar and Demri (2011) for a logic with linear tem-
poral operators, and involves complementing nondetermin-
istic automata which leads to an exponential blowup. Con-
sequently, we obtain an EXPSPACE upper bound and thus an
exponential gap in data complexity with respect to the pos-
itive programs (Wałęga et al. 2020). In the case of forward-
propagating programs (Section 5.2) we propose a different
construction, which exploits the fact that rules propagate in-
formation in a single temporal direction. This allows us to
build automata that guarantee model minimality without the
need of complementation. As a result, we can establish a
tight PSPACE bound in data complexity.

5.1 General Programs
It will be convenient for our presentation to assume that pro-
grams are in a normal form analogous to that by Tena Cucala
et al. (2021) for stratifiable programs. In each normalised
rule the head is a relational atom or ⊥, there is neither nest-
ing of metric operators nor occurrences of x or | in rule
bodies, and the only unbounded interval allowed is [0,∞).
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Proposition 8. Each program Π can be transformed in poly-
nomial time into a program Π′ in normal form such that, for
each dataset D, program Π and dataset D have a stable
model if and only if so do Π′ and D.

For the remainder of this section we assume that Π is
a program in normal form and D is a dataset. We also
use the following notation. Let ground(Π,D) be the set
of all ground rules that can be obtained by replacing vari-
ables in Π with constants from Π and D. Then, at(Π,D)
is the set of all relational atoms in D, all metric atoms in
rules of ground(Π,D), and all metric atoms of the form
�[0,∞)M and �[0,∞)M , with M a relational atom men-
tioned in ground(Π,D).

Next we define the notion of a window—a fragment of an
HT-interpretation over a particular interval; such windows
will serve as states of our automata.
Definition 9. A window is a tuple (%,H, T, b), where % is
a closed (and hence bounded) interval, H and T are sets of
metric facts M@t with M ∈ at(Π,D) and t ∈ % such that
H ⊆ T , and there are interpretations H and T satisfying
– M@t ∈ H if and only if H |= M@t, and
– M@t ∈ T if and only if T |= M@t,
for each M ∈ at(Π,D) and t ∈ %, whereas b ∈ {0, 1}. The
length of the window is the length of %. The window is initial
if H = T and b = 0, or H 6= T and b = 1.

Intuitively, a window (%,H, T, b) is a fragment of an HT-
interpretation (H,T) restricted to %, whereH and T describe
facts holding within % in, respectively, H and T. Windows
will serve as states of automata that recognise word repre-
sentations of specific HT-interpretations, and in this process
the flag b is used to distinguish between stable and non-
stable models; in particular, it is set to 1 if H 6= T in the
current state of the considered run, or if such an equality
holds in some previous window in this run.

By definition, a window can be extended to an HT-inter-
pretation. Moreover, this HT-interpretation can be an HT-
model of Π only if the window locally satisfies Π, which we
define next.
Definition 10. A window (%,H, T, b) locally satisfies Π if,
for each grounding of Form (1) of a rule in Π and each t ∈ %,
– M@t ∈ H whenever Mi@t ∈ H for each i ∈ {1, . . . , k}

and Mj@t /∈ T for each j ∈ {k + 1, . . . ,m}, and
– M@t ∈ T whenever Mi@t ∈ T for each i ∈ {1, . . . , k}

and Mj@t /∈ T for each j ∈ {k + 1, . . . ,m}.
Next, given an initial window W0, we define automata
A←W0

andA→W0
, which will allow us to recognise HT-models

of Π that extendW0. In particular, if A←W0
and A→W0

accept
words w1 and w2 respectively, then we can construct an HT-
model extendingW0, whose part located to the left ofW0 is
described by w1, and the part to the right ofW0 by w2.
Definition 11. LetW0 = (%0, H0, T0, b0) be an initial win-
dow locally satisfying Π. Then, A→W0

= (Q,Σ, δ, q0,F) is
the generalised nondeterministic Büchi automaton with the
following components:
1. the set Q of states is the set of all windows that locally

satisfy Π and have the same length asW0;

2. the alphabet Σ is the set of all σ ⊆ at(Π,D);
3. the transition function δ : Q × Σ → 2Q is such that

(%′, H ′, T ′, b′) ∈ δ
(
(%,H, T, b), σ

)
if

– %′ = [%− + 1, %+ + 1],
– M@t ∈ H ′ if and only if M@t ∈ H , for every
M ∈ at(Π,D) and t ∈ %′ ∩ %,

– T ′ = {M@t′∈T | t′∈%′}∪{M@%++1 |M ∈σ}, and
– b′ = 1 whenever b = 1 or H ′ 6= T ′, otherwise b′ = 0;

4. the initial state q0 isW0;
5. the accepting condition F is the family of sets of states

containing, for each �[0,∞)M ∈ at(Π,D), the sets

{(%,H, T, b) ∈ Q | there is t ∈ % such that
�[0,∞) M@t ∈ H or M@t /∈ H},

{(%,H, T, b) ∈ Q | there is t ∈ % such that
�[0,∞) M@t ∈ T or M@t /∈ T},

and, for each M1U[0,∞)M2 ∈ at(Π,D), the sets

{(%,H, T, b) ∈ Q | there is t ∈ % such that
M1U[0,∞)M2@t /∈ H or M2@t ∈ H},

{(%,H, T, b) ∈ Q | there is t ∈ % such that
M1U[0,∞)M2@t /∈ T or M2@t ∈ T}.

The automaton A←W0
is defined similarly, except that, in the

definition of %′, we set %′ = [%−−1, %+−1], in the definition
of T ′, we replace %+ + 1 with %− − 1, and, in the definition
of F , we use � and S instead of � and U , respectively.

To capture the semantics of metric operators and to en-
sure that the dataset is satisfied, the length of windows in the
automata cannot be too short. In particular, we will use win-
dows of the length of %(Π,D) = [tmin, tmax + tΠ], for tmin

and tmax the smallest and largest numbers mentioned in D
and tΠ the largest number in Π (if D mentions no numbers
then we set tmin = tmax = 0, and if Π mentions no num-
bers then we set tΠ = 1). Then, we can show that Π and
D have an HT-model if and only if there is an initial win-
dow W0 = (%0, H0, T0, b0) locally satisfying Π such that
%0 = %(Π,D), H0 |= D, and there are words w1 and w2 ac-
cepted by A←W0

and A→W0
, respectively.

To check existence of a stable model, however, we need
automata that recognise HT-models (H,T) with H = T and
automata that recognise HT-models (H,T) with H ( T. The
intersection of the former with the complements of the lat-
ter allows us to recognise stable models—that is, essentially,
HT-models (T,T) for which there are no models (H,T) with
H ( T. These automata are defined as follows.
Definition 12. LetW0 = (%0, H0, T0, b0) be an initial win-
dow locally satisfying Π. We define non-deterministic gener-
alised Büchi automata B←W0

, B→W0
and C←W0

, C→W0
as follows:

– assumingH0 = T0 and b0 = 0, B←W0
and B→W0

are defined
as A←W0

and A→W0
, respectively, except that for a window

(%,H, T, b) to be a state we additionally require H = T
(and hence b = 0),

– C←W0
and C→W0

are defined asA←W0
andA→W0

, respectively,
except that we add to the accepting condition F the set
{(%,H, T, b) ∈ Q | b = 1}.
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Intuitively, B←W0
and B→W0

recognise interpretations T
such that (T,T) is an HT-model of Π and D. Furthermore,
interpretations T accepted by A←W0

and C→W0
, or by C←W0

and
A→W0

are such that (H,T) is an HT-model of Π and D, for
some H ( T. Hence, as we show in the next lemma, we can
use these automata to recognise stable models.

Lemma 13. Program Π and dataset D have a stable model
if and only if there is an initial windowW0 = (%0, T0, T0, 0)
locally satisfying Π with %0 = %(Π,D), T0 |= D, and words
w1 and w2 over 2at(Π,D) such that

1. w1 and w2 are accepted by B←W0
and B→W0

, respectively,
2. there is no initial windowW ′0 = (%0, H0, T0, b0) locally

satisfying Π such that H0 |= D, and w1 and w2 are ac-
cepted either by C←W′0 and A→W′0 , respectively, or by A←W′0
and C→W′0 , respectively.

Proof sketch. Assume first that there existW0, w1, and w2

satisfying Conditions 1 and 2. By Condition 1, there is an ac-
cepting runW0,W−1, . . . of B←W0

on w1, and an accepting
runW0,W1, . . . of B→W0

on w2, whereWi = (%i, Ti, Ti, 0).
We argue that the least model T of relational facts in

⋃
i∈Z Ti

is a stable model of Π and D. By construction, (T,T) is
an HT-model of Π and D. Suppose for contradiction that T
is not stable, so there exists H ( T such that (H,T) is an
HT-model of Π and D. To this end, we decompose (H,T)
into windows of the length of %(Π,D)—that is, windows
W ′i = (%′i, H

′
i, T
′
i , b
′
i) locally satisfying Π where, for each

i ∈ Z, (i) %′i = [%−(Π,D) + i, %+
(Π,D) + i], (ii) H ′i is a set of

facts M@t such that M ∈ at(Π,D), t ∈ %′i, and H |= M@t,
(iii) T ′i is a set of facts M@t such that M ∈ at(Π,D),
t ∈ %′i, and T |= M@t, (iv) b′i = 0 if H ′i = T ′i , and oth-
erwise b′i = 1. SoW ′0,W ′−1, . . . is an accepting run ofA←W′0
on w1, andW ′0,W ′1, . . . is an accepting run of A→W′0 on w2.
Moreover, since H ( T, there is i ∈ Z such that H ′i 6= T ′i ,
and so b′i = 1. If i ≤ 0, then b′j = 1 for all j ≤ i, and so
C←W′0 accepts w1; analogously if i ≥ 0, then C→W′0 accepts w2.
Thus, Condition 2 does not hold, leading to a contradiction.

For the other implication, assume that T is a stable model
of Π and D. We show how to construct the required W0,
w1, and w2. For this, we decompose (T,T) into windows
Wi = (%i, Ti, Ti, 0) as above. By construction, %0 = %(Π,D)

and T0 |= D, so W0 satisfies the initial requirements from
the lemma. Next, we construct words w1 = σ−1σ−2 · · · and
w2 = σ1σ2 · · · , where σk is Tk \Tk+1 if k < 0, or Tk \Tk−1

if k > 0. It remains to show that W0, w1, and w2 satisfy
Conditions 1 and 2. For Condition 1, it suffices to observe
that, by construction, W0,W−1, . . . is an accepting run of
B←W0

on w1, and W0,W1, . . . is an accepting run of B→W0

on w2. To show Condition 2, suppose for contradiction that
there exists W ′0 from the lemma such that w1 and w2 are
accepted by C←W′0 and A→W′0 , respectively (the other case is
symmetric). Hence, C←W′0 has an accepting runW ′0,W ′−1, . . .

on w1 and A→W′0 has an accepting run W ′0,W ′1, . . . on w2,
whereW ′i = (%i, Hi, Ti, bi). Then, T is the least model of all
relational facts in

⋃
i∈Z Ti, and we let H be the least model

of relational facts in
⋃
i∈ZHi. We can show that (H,T) is an

HT-model of Π and D. However, the accepting condition of
C←W′0 guarantees that bi = 1, for some i ≤ 0, and soHi ( Ti.
Thus H ( T, so T is not stable, rising a contradiction.

Lemma 13 provides a reduction of existence of a stable
model to checking specific properties of our automata. As
we show next, the latter is feasible in EXPSPACE.
Theorem 14. Reasoning in DatalogMTL¬ over Z is in
EXPSPACE in data complexity.

Proof sketch. It suffices to show that checking existence of
W0, w1, and w2 from Lemma 13 is feasible in EXPSPACE in
the size of (the representation of) D. First, we observe that
the length of %(Π,D) is exponential, and so is the size of win-
dows over %0 = %(Π,D). Thus, it is feasible in EXPSPACE

to guessW0 = (%0, T0, T0, 0) and to verify that it is an ini-
tial window locally satisfying Π and that T0 |= D. Next, we
need to check existence of w1 and w2 as in Lemma 13.
The main obstacle is the size of states in the automata:W0

is exponentially big, and other states of the automata from
Lemma 13 can be arbitrarily large since time points in win-
dows are arbitrary integers. We will show, in two steps, how
to restrict attention to automata with polynomially big states.

In the first step, we show that it suffices to con-
sider windows of length tΠ + 1, where we recall that
tΠ does not depend on D. Indeed, we can show that
for every X ∈ {A,B} and every W = (%,H, T, b) such
that X←W is well-defined, the automata X←W and X←WL

are equivalent, where WL = (%L, HL, TL, bL) is the left-
most window of length tΠ + 1 contained in W (i.e., such
that %L = [%−, %− + tΠ], HL = {M@t ∈ H | t ∈ %L},
TL = {M@t ∈ T | t ∈ %L}, and bL = 1 if and only if
HL 6= TL). We can analogously define the right-most win-
dow WR of length tΠ + 1 contained in W , and show that
X→W and X→WR

are equivalent. Moreover, if H = T , these
equivalences hold also for X = C, but if H 6= T , then C←W
and C→W are equivalent to A←WL

and A→WR
, respectively.

In the second step we observe that, rather than con-
sidering automata with states of unbounded size (each of
length tΠ + 1), we can construct equivalent automata with
states of polynomial size. In particular, for each X←WL

with
X ∈ {A,B, C}, we define an automaton X̃←WL

: its states are
the quotient set of the equivalence relation ∼ between states
of X←Wl

such thatW ∼ W ′ if by increasing all time points
mentioned in W by some integer we obtain W ′, and the
other components of X̃←WL

are defined accordingly. Thus
X←WL

and X̃←WL
are equivalent, but all states of X̃←WL

are of
polynomial size. Similarly we construct X̃→WR

from X→WR
.

Now, to check the conditions from Lemma 13 we char-
acterise each initial window W ′0 = (%0, H0, T0, b0) occur-
ring there by the triple consisting of two initial windows
(W ′0)L, (W ′0)R, and flag b ∈ {0, 1} such that b = 1 if and
only if H0 6= T0. Since (W ′0)L and (W ′0)R are polynomi-
ally big, there are exponentially many such triples. Hence,
we can guess in EXPSPACE the set T of all these triples
and verify that each of them is a valid characterisation. Fur-
thermore, we treat a pair of words w1 = σ−1σ−2 · · · and
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w2 = σ1σ2 · · · as a single word (σ−1, σ1)(σ−2, σ2) · · · and
combine pairs of corresponding automata so that they accept
combined words; in particular, for all X,Y ∈ {A,B, C},
combining X̃←WL

and Ỹ→WR
gives rise to a (polynomially

bigger) automaton X̃←WL
Ỹ→WR

simulating runs of X̃←WL
and

Ỹ→WR
in parallel. Thus, conditions from Lemma 13 re-

duce to checking non-emptiness of the language of an
automaton obtained by intersecting B̃←(W0)L

B̃→(W0)R
with

the complements of all the automata corresponding to
triples from T , where a triple (W ′0)L, (W ′0)R, b corre-
sponds to Ã←(W0)L

Ã→(W0)R
if b = 1, and to two automata

C̃←(W0)L
Ã→(W0)R

and Ã←(W0)L
C̃→(W0)R

otherwise. Since the au-
tomata are nondeterministic, their complements have states
of exponential size and an intersection of exponentially
many such complemented automata gives rise to an au-
tomaton with exponentially big states. Hence, checking non-
emptiness of the final automaton is feasible in EXPSPACE
using a standard on-the-fly approach (Baier and Katoen
2008).

5.2 Forward-Propagating Programs
In this section, we consider reasoning with forward-
propagating—that is DatalogMTL¬FP—programs (see Defi-
nition 1) and bounded datasets. This setting was already con-
sidered for positive programs and shown to be well-suited
for applications such as stream reasoning (Wałęga, Cuenca
Grau, and Kaminski 2019; Ronca et al. 2018).

First, we observe that the normalisation of a
DatalogMTL¬FP program, as defined in Section 5.1, results
also in a DatalogMTL¬FP program; thus, for the remainder
of this section, let Π be an arbitrary fixed DatalogMTL¬FP
program in normal form, let D be a bounded dataset, and
let tΠ, tmin, and tmax be the integers defined for Π and
D as in Section 5.1. We will show that this setting allows
us to simplify the procedure used in Section 5.1 to check
existence of a stable model of Π and D. First, we will
guessW0 over an interval located to the left of all intervals
in D. Then, on the one hand, we will use the fact that Π
is forward-propagating to show that checking existence of
a word w1 accepted by the relevant automata, as stated
in Lemma 13, can be done independently of D. On the
other hand, to check existence of the second word w2 from
Lemma 13 we define a new family of automata F→W0

, which
can be used without resorting to complementation and thus
avoiding the exponential blowup. As a result, we will show
that the procedure is feasible in PSPACE.

The family of automataF→W0
refines automata B→W0

by en-
suring that every state locally satisfies D. Furthermore, we
impose an additional restriction on states of F→W0

to guaran-
tee their minimality.

Definition 15. A window (%,H, T, b) locally satisfies D if
M@t ∈ H for each M ∈ at(Π,D) and t ∈ % such that
D |= M@t. Let W0 = (%0, T0, T0, 0) be an initial win-
dow locally satisfying Π and D. The generalised Büchi
automaton F→W0

is the same as B→W0
in Definition 12 ex-

cept that all its states locally satisfy D, and for each state

of the form (%, T, T, 0) there exists no window (%,H, T, 1)
with H ( T locally satisfying Π and D.

Note that F→W0
is essentially deterministic since δ(W, σ)

contains at most one window for every stateW and σ ∈ Σ.
The following lemma provides a result analogous to

Lemma 13 for the setting considered in this section.
Lemma 16. Program Π and dataset D admit a sta-
ble model if and only if there exists an initial window
W0 = (%0, T0, T0, 0) locally satisfying Π and D, and men-
tioning only constants and predicates from Π, such that
%0 = [tmin − (tΠ + 1), tmin − 1] and there are words w1

and w2 over 2at(Π,D) satisfying the following:

1. w1 and w2 are accepted by B←W0
and F→W0

, respectively,
2. there is no initial windowW ′0 = (%0, H0, T0, b0) locally

satisfying Π and D such that w1 is accepted by C←W′0 ,

3. w1 mentions only constants and predicates from Π.

Proof sketch. Assume first thatW0,w1, andw2 satisfy Con-
ditions 1–3. Hence, B←W0

has an accepting runW0,W−1, . . .
on w2 and F→W0

has an accepting run W0,W1, . . . on w2,
where we let Wi = (%i, Ti, Ti, 0). We will show that the
least model T of relational facts in

⋃
i∈Z Ti is a stable model

of Π and D. By construction, (T,T) is an HT-model of Π
and D. Now, suppose towards a contradiction that T is not
a stable model, so there is an interpretation H ( T such that
(H,T) is an HT-model of Π and D. Then, as in Lemma 13,
we decompose (H,T) into windows W ′i = (%i, Hi, Ti, bi).
Since H ( T, there is i ∈ Z such that Hi 6= Ti. If i ≤ 0,
then bj = 1 for all j ≤ i, and so C←W′0 accepts w1 contradict-
ing Condition 2. On the other hand, if i > 0, the existence of
W ′i implies, by Definition 15, thatWi is not a state of F→W0

,
contradicting the assumption.

For the other implication, let T be a stable model of Π and
D. We decompose (T,T) into windowsWi = (%i, Ti, Ti, 0),
where %0 = [tmin − (tΠ + 1), tmin − 1], and construct
words w1 = σ−1σ−2 · · · and w2 = σ1σ2 · · · , where σk is
Tk \ Tk+1 if k < 0, or Tk \ Tk−1 if k > 0. Using the fact
that T is a stable model of Π and D we can easily show that
Wi locally satisfies D, for each i ∈ Z. Next, we will show
thatW0, w1, and w2 satisfy Conditions 1–3.

To show Condition 1 we observe that, by construction,
B←W0

accepts w1 and B→W0
accepts w2. Now, suppose to-

wards a contradiction that F→W0
does not accept w2. Since

B→W0
accepts w2 and W0,W1, . . . all locally satisfy D,

but F→W0
does not accept w2, there is i > 0 such that

W0, . . . ,Wi−1 is a run of F→W0
on σ1 · · ·σi−1, but Wi is

not a state of F→W0
. Thus, by Definition 15, there is a win-

dow W ′i = (%i, Hi, Ti, 1) locally satisfying D and Π with
Hi ( Ti. We will show thatW0, . . . ,Wi−1,W ′i is a run of
A→W0

on σ1 · · ·σi. Note that the transition function of A→W0

extends the one of F→W0
, so it suffices to show that A→W0

has
a transition from Wi−1 to W ′i on σi, that is all four con-
ditions from Item 3 in Definition 11 hold. All these con-
ditions, except the second one, hold by the form of Wi−1

and W ′i , so it remains to show the second condition, stat-
ing that M@t ∈ Hi if and only if M@t ∈ Ti−1, for each
M ∈ at(Π,D) and t ∈ %i∩%i−1. If this was not the case, we
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could construct Hi−1 ( Ti−1 such that (%i, Hi−1, Ti−1, 1)
is a window locally satisfying Π andD which, in turn, means
that Wi−1 is not a state of F→W0

and raises a contradiction.
Hence, W0, . . . ,Wi−1,W ′i is indeed an accepting run of
A→W0

on σ1 · · ·σi. Since Π is DatalogMTL¬FP, we can com-
plete this run to an accepting run of A→W0

on w2 where all
windows locally satisfy D. By combining this accepting
run with the accepting run of B←W0

on w1, as in the proof
of Lemma 13, we can construct an HT-model (H,T) of Π
and D, with H ( T. This, however, means that T is not a
stable model of Π and D, which raises a contradiction.

Now, suppose towards a contradiction that Condition 2
does not hold, so there is W ′0 = (%0, H0, T0, b0) such that
C←W′0 accepts w1. Then, using the fact that Π is forward-
propagating, we can construct an accepting runW ′0,W ′1, . . .
of A→W′0 on w2, where W ′i = (%i, Hi, Ti, bi). In particular,
givenWi we constructWi+1, where we letHi+1 be the min-
imal set such that (%i+1, Hi+1, Ti+1, bi+1) is a window sat-
isfying Π andD to whichA→W′0 has a transition fromWi. We
can use the fact that Π is DatalogMTL¬FP to show that such a
windows exists for every i ∈ N, and hence A→W′0 has an ac-
cepting run. However, since C←W′0 and A→W′0 have accepting
runs, as in Lemma 13, we can use these runs to construct an
HT-model (H,T) of Π and D with H ( T. Thus, T is not
stable, raising a contradiction.

Finally, to prove Condition 3, we show that if T |= M@t
for some relational atom M and t < tmin, then all constants
and predicates in M occur in Π. Indeed, since T is a stable
model of Π and D, we have T = Hω1

, for the sequence of
interpretations Hα from Theorem 4. Then, we can show by
a transfinite induction on ordinals α, that if Hα |= M@t for
some relational atom M and t < tmin, then all constants
and predicates in M occur in Π. Hence, all Ti, for i ≤ 0,
mention only predicates and constants from Π, and hence so
does w1, as stated in Condition 3.

Next, we use Lemma 16 to establish a tight PSPACE
bound for reasoning in DatalogMTL¬FP.

Theorem 17. Reasoning in DatalogMTL¬FP over Z and
bounded datasets is PSPACE-complete in data complexity.

Proof sketch. For the lower bound we observe that Wałęga
et al. (2020) showed PSPACE-hardness in data complexity of
checking existence of models for a class of programs which
is strictly smaller than the class of positive DatalogMTL¬FP
programs. Their reduction can be modified in a straightfor-
ward way so that the involved dataset is bounded. Then, The-
orem 6 directly implies that the same lower bound holds for
all (i.e., not necessarily positive) DatalogMTL¬FP programs,
as required.

For the upper bound, by Lemma 16, it suffices to show
that checking existence of a window W0 for which there
are words w1 and w2 satisfying Conditions 1–3 stated there
is feasible in PSPACE. First, we observe that W0 is over
%0 = [tmin − (tΠ + 1), tmin − 1], so its length does not de-
pend on D. Hence, W0 is polynomially big (in the size of
representation of D), and so it can be guessed in PSPACE.
Next, we show how to verify existence of appropriate words

w1 and w2. To verify existence of a word w1 accepted by
B←W0

(first part of Condition 1) which is not accepted by any
C←W′0 (Condition 2) we can use the approach from the proof
of Theorem 14. We observe thatW0 mentions only constants
and predicates from Π, and so, the same holds for windows
W ′0 from Condition 2. Moreover, by Condition 3, w1 also
mentions only constants and predicates from Π, and so the
above check can be performed independently of D.

It remains to be shown that checking existence of a
word w2 accepted by F→W0

(second part of Condition 1)
is feasible in PSPACE. To this end, we check existence
of an accepting run W0,W1, . . . of F→W0

in two steps.
First, we guess windows W1, . . . ,Wj one by one, for
j = tmax − tmin + 2(tΠ + 1), and second, we check if F→Wj

has an accepting run. We observe that each of the windows
W1, . . . ,Wj is of polynomial size, and so guessing them one
by one, as well as checking thatF→W0

has transitions between
consecutive windows, is feasible in PSPACE. To check non-
emptiness of the language of F→Wj

, we construct for it an

automaton F̃→Wj
in a similar way as we constructed X̃→Wj

for X→Wj
in the proof of Theorem 14. The difference, how-

ever, is that the set of states of F̃→Wj
is the quotient set of ∼

between only those states of F→Wj
which are over intervals

located entirely to the right of tmax + tΠ. Since such win-
dows are located far enough from all facts in D, all of them
mention the same atoms to locally satisfy D independently
of their positions. Then, we can show that F→Wj

and F̃→Wj
are

equivalent. Hence, it remains to check if the language of the
latter automaton is non-empty, which is feasible in PSPACE
using a standard on-the-fly approach (in particular, to check
if a guessed window is a state, we use the above observation
about local satisfiability of D).

Note that the assumption thatD is bounded has been used
to ensure existence of a time point tmin such that no fact of
D holds to the left of it. Thus, our results can be extended to
show that reasoning is still PSPACE in data complexity for
datasets where intervals are only bounded on the left.

6 Conclusion and Future Work
We have extended DatalogMTL with negation-as-failure un-
der stable model semantics and shown that reasoning in this
language is undecidable over the rationals but EXPSPACE in
data complexity over the integer timeline. We have also
identified an interesting fragment of the language for which
reasoning remains undecidable over the rationals but be-
comes PSPACE-complete in data complexity over the inte-
gers (and thus no harder than in the negation-free case).

We see many avenues for future work. The more immedi-
ate challenge is to provide tight data complexity bounds for
reasoning in the full language over the integers, where we
only know that it is in EXPSPACE and PSPACE-hard for data
complexity. We also plan to consider combined complexity
and identify fragments of the language where reasoning be-
comes decidable over the rationals.
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