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Abstract

Boolean networks (BNs) are one of the standard tools for
modeling gene regulatory networks in biology but their learn-
ing has been limited to small networks due to computational
difficulty. Aiming at unprecedented scalability, we focus on
a subclass of BNs called AND/OR Boolean networks where
Boolean formulas are restricted to a conjunction or a disjunc-
tion of literals. We represent an AND/OR BN with N nodes
by anN×2N binary matrixQ paired with anN dimensional
integer vector θ called a threshold vector, a state of the BN
by an N dimensional binary state vector s and a state transi-
tion by matrix operations on Q, θ and s. Given a list of state
transitions S = [s0 · · · sL], we learn Q and θ in a contin-
uous space by minimizing a cost function J(Q̃,θ,S) w.r.t.
a real number matrix Q̃ and θ while thresholding Q̃ into a
binary matrix Q using θ so that Q represents an AND/OR
BN realizing the target state transitions S. We conducted
experiments with artificial and real data sets to check scal-
ability and accuracy of our learning algorithm. First we ran-
domly generated AND/OR BNs up to N=5,000 nodes and
empirically confirmed O(N2) learning time behavior using
them. We also observed 99.8% bit-by-bit prediction accu-
racy1 with state transition data generated by AND/OR BNs.
For real data, we learned genome-wide AND/OR BNs with
10, 928 nodes for budding yeast from transcription profiling
data sets, each containing 10, 928 mRNAs and 40 transitions
and achieved for instance 84.3% prediction accuracy and suc-
cessfully extracted more than 6,000 small AND/ORs whose
average prediction accuracy reaches much higher 94.9%.

1 Introduction
Boolean networks (BNs) introduced by Kauffman (Kauff-
man 1993) are one of the standard tools for modeling bi-
ological networks and have been primarily used to model
gene regulatory networks. A BN is a finite discrete state
transition system described by a directed graph where nodes
typically represent genes. When there are N nodes, their
state is collectively represented by an N dimensional col-
umn vector [x1 . . . xN ]T called state vector such that xi ∈
{1(true), 0(false)} denotes the state of node i (1 ≤ i ≤ N ).
The state transition is specified by a Boolean function fi as-
sociated with node i like xi(t+1) = fi(xk1

(t), . . . , xkm
(t))

1We use “prediction accuracy” as accuracy for unseen data. In
the case of cross validation, prediction accuracy = 1 - test error.

where {k1, . . . , km} is the set of incoming neighbors of
node i whose state at time t is [xk1(t) . . . xkm(t)]T . In this
paper we only deal with non-probabilistic synchronous BNs
where state transitions occur simultaneously.

Although it is usual to represent Boolean functions by
Boolean formulas, it is also possible to represent them by
matrices and vectors. For example, Cheng and Qi proposed
matricized representation of Boolean functions where truth
values are represented by [1 0]T (true) and [0 1]T (false), and
a Boolean function f(x1, . . . , xN ) by F (x1 ⋉ · · · ⋉ xN )
using a semi-tensor product ⋉2 where F is a 2× 2N binary
matrix and xi ∈ {[1 0]T , [0 1]T } (1 ≤ i ≤ N). Their semi-
tensor product encoding however yields a 2N × 2N matrix
to describe the state transition of a BN (Cheng and Qi 2005;
Cheng and Qi 2010).

Later Kobayashi and Hiraishi gave a similar treatment
of BN expression using Kronecker product and reduced
the matrix size from 2N × 2N to 2N × 2N by treat-
ing Boolean functions individually (Kobayashi and Hiraishi
2014). Nonetheless, their approach still needs to operate
on data of exponential size. Or more generally, as long as
arbitrary Boolean functions are allowed, scalable network
learning seems hardly possible, be it symbolic or numerical.
Such computational difficulty is particularly painful when
we challenge the learning of genome-wide BNs and also ex-
plains why BN learning remains on a relatively small scale
(Akutsu, Miyano, and Kuhara 1999; Lähdesmäki, Shmule-
vich, and Yli-Harja 2003; Li et al. 2004; Martin et al. 2007;
Fogelberg and Palade 2009; Higa, Louzada, and Hashimoto
2010; Inoue, Ribeiro, and Sakama 2014; Xu et al. 2014;
Ouyang et al. 2014; Barman and Kwon 2018; Joo et al. 2018;
Chevalier et al. 2019; Wilson et al. 2019).

In this paper, we propose a novel approach to the learn-
ing of large scale BNs. First we restrict BNs to simplified
ones called AND/OR BNs where there are only two types
of Boolean formula; one is a conjunction and the other a
disjunction of literals. Second we express an AND/OR BN
containing N nodes as a N × 2N binary matrix Q paired
with an N dimensional integer vector θ called threshold
vector. Third we learn Q and θ from state transition data

2Semi-tensor product is a generalization of matrix product
which preserves many properties of matrix production such as the
laws of distribution and association.
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in a vector space instead of searching for Boolean func-
tions in a symbolic space (Inoue, Ribeiro, and Sakama 2014;
Chevalier et al. 2019) or in a discrete space (Lähdesmäki,
Shmulevich, and Yli-Harja 2003; Li et al. 2004; Martin et al.
2007; Higa, Louzada, and Hashimoto 2010; Xu et al. 2014;
Ouyang et al. 2014; Barman and Kwon 2018). We mini-
mize a cost function J(Q̃,θ) w.r.t. a real number matrix
Q̃ and θ while thresholding Q̃ to a binary matrix Q by θ
to obtain Q representing an AND/OR BN that best approx-
imates the target state transitions. Although our approach
is not guaranteed to find an exact BN, we can expect ro-
bustness, computational efficiency and scalability of learn-
ing supported by hardware technology such as many-core
processors and GPUs.

We conducted learning experiments with artificial data
and real data. For artificial data, we empirically observed
O(N2) learning time behavior up to N=5,000 nodes w.r.t.
learning data sampled from randomly generated AND/OR
BNs. We also observed more than 99.5% prediction accu-
racy by 10-fold CV with state transition data generated by
AND/OR BNs consisting of 100 nodes. Concerning real
data, we successfully learned genome-wide AND/OR BNs
for budding yeast (Saccharomyces cerevisiae) with 10, 928
nodes from transcription profiling data for 10, 928 mRNAs
and 40 transitions and achieved for instance 84.3% predic-
tion accuracy and successfully extracted more than 6,000
small AND/ORs whose average prediction accuracy reaches
much higher 94.9%.

Our technical contributions include a formulation of
AND/OR BN learning problem as cost minimization in
vector spaces with a novel cost function, a proposal of a
matricized AND/OR BN learning algorithm that works in
quadratic time theoretically and empirically and the achieve-
ment of full genome-wide AND/OR BN learning for real
genome data sets.

2 Preliminaries
Throughout this paper, N stands for the number of Boolean
nodes (variables) in a BN, L for the number of observed
data (state vectors), bold italic capital letters such as A for
a matrix and bold italic lower case letters such as a for a
vector. Vectors are treated as a special type of matrix de-
pending on the context. 1 specifically denotes an all-one
column vector whereas 1 denotes an all-one matrix. For a
vector a, a(j) denotes the j-th component of a and A(i, j)
stands for the (i j) component of a matrix A. ∥A∥2F is the
Frobenius norm of A and ∥a∥1 is the 1-norm of a.3 Here-
after we assume in every expression, dimensions of vectors
and matrices are always compatible. Let A, B be matrices.
A(i, :) designates the i-th row vector of A whereas A(:, j)
designates the j-th column vector of A. [A;B] is a ma-
trix formed by vertically concatenating A to B. A ⊙ B
is the element-wise product of A and B. We now in-
troduce a thresholding operation. For two numbers a and

b, define (a)≥b =

{
1 if a ≥ b
0 otherwise . For a row vector

3∥A∥2F =
∑

ij A(i, j)2 and ∥a∥1 =
∑

i |a(i)|.

a = [a1 · · · aL], define (a)≥b = [(a1)≥b · · · (aL)≥b]. (a)<b

is similarly defined. For a matrix A = [a1; · · · ;aN ] com-
prised of N rows and a column vector b = [b1 · · · bN ]T ,
define (A)≥b = [(a1)≥b(1); · · · ; (aN )≥b(N)]. As a spe-
cial case, when a is a column vector [a1 · · · aL]T , a≥b

denotes the component-wise comparison of a and b, i.e.
a≥b = [(a1)≥b(1) · · · (aL)≥b(L)]

T . For a binary matrix A,
|A| designates the number of 1’s in A. We use a non-linear
function min1(x) defined by min1(x) = min(x, 1). When
applied to a vector, it is applied element-wise. A literal is
a Boolean variable or its negation. The former is called a
positive literal whereas the latter is called a negative literal.

3 Matrix Representation of AND/OR BN
As stated before, a Boolean network (BN) is a directed graph
where each node i has a binary state xi ∈ {1, 0}4 and also
has an associated Boolean function fi(xk1

, . . . , xkm
) that

determines the state transition of node i by xi(t + 1) =
fi(xk1(t), . . . , xkm(t)) where xkp(t) (1 ≤ p ≤ m) de-
notes the state of node kp at time t. Correspondingly to
fi(xk1 , . . . , xkm), in the graph, there is a sharp (resp. blunt)
arrow from node kp(1 ≤ p ≤ m) to node i when xkp

pos-
itively (resp. negatively) affects xi. Hereafter for concrete-
ness and simplicity, we do not make a distinction between
a Boolean formula and a Boolean function it represents and
assume that a Boolean formula is associated with each node.

AND/OR BNs are subclass of BNs where associated
Boolean formulas are restricted to a conjunction or dis-
junction of distinct literals (Melkman, Tamura, and Akutsu
2010).5 There are two types of node, AND node and OR
node. An AND node (resp. OR node) is one such that the
associated Boolean formula is a conjunction x◦

k1
∧· · ·∧x◦

km

(resp. disjunction x◦
k1
∨ · · · ∨ x◦

km
). Here x◦

kp
(1 ≤ p ≤ m)

stands for a literal, i.e. x◦
kp

= xkp if x◦
kp

is a positive literal,
else x◦

kp
= ¬xkp .

Figure 1 shows an example of AND/OR BNBN0 contain-
ing three nodes (left) and their state transitions by Boolean
formulas (right).
In what follows, BN always means AND/OR BN. Now we
introduce matricized representation of BN. Suppose there is

 x1(t+ 1) = x2(t) ∧ x3(t)
x2(t+ 1) = ¬x3(t)
x3(t+ 1) = x1(t) ∨ ¬x3(t)

Figure 1: An AND/OR Boolean network BN0

4We assume that nodes are numbered from 1 to N when there
are N nodes and say “node i” to refer to the node numbered i.

5In this paper, we use AND/OR as a synonym for conjunc-
tion/disjunction.
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Q =

[
0 1 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 1

]
θ = [2 1 1 ]T

Figure 2: Q and θ representing BN0

a BN with N nodes. To represent it, we use an N × 2N
binary matrix Q that indicates for each node literal occur-
rences in a Boolean formula associated with the node but
distinguishes positive occurrence from negative occurrence
of literal. Suppose node i is an AND node with an associ-
ated conjunctionCi = x◦

k1
∧· · ·∧x◦

km
. For j (1 ≤ j ≤ 2N ),

set Q(i, j) = 1 if j = kp and x◦
kp

is a positive literal,
or j = kp + N and x◦

kp
is a negative literal for some kp

(1 ≤ p ≤ m). Otherwise set Q(i, j) = 0. The case of OR
node is treated the same way.

Q is not enough to represent the BN because it has no
information about node type, AND node or OR node, of a
node. So we introduce a threshold vector θ which is an in-
teger column vector. The primary role of θ is to store a
threshold value θ(i) for a node i which also indicates the
node type.

Suppose node i is an AND node and the associated
Boolean formula is Ci = x◦

k1
∧ · · · ∧ x◦

km
. Then put

θ(i) = m, i.e. θ(i) is the number of literals in the con-
junction Ci in the case of AND node. We can say that Ci

is true iff (if-and-only if) the number of true literals in Ci

is equal to or greater than θ(i). Likewise we put θ(i) = 1
if node i is an OR node. Consequently if θ(i) > 1 holds,
node i is an AND node. Otherwise it is an OR node but if it
contains only one literal, it is also an AND node.

Figure 2 illustratesQ and θ representing BN0.

We next show how to compute state transition using Q
and θ. Let s = [x1 · · ·xN ]T be a state vector of the BN. We
introduce a dualized state vector sd = [s;1−s]6 which holds
a state xi ∈ {1, 0} of node i (1 ≤ i ≤ N ) redundantly using
two bits, sd(i) and sd(i +N) in such a way that xi = 1 iff
sd(i) = 1 and sd(i + N) = 0, and xi = 0 iff sd(i) = 0
and sd(i+N) = 1. Let {x◦

k1
, . . . , x◦

km
} be the set of literals

occurring in a Boolean formula associated with node i. It
is easy to see that by definition of sd, Q(i, :)sd, a scalar, is
equal to the number of true literals in {x◦

k1
, . . . , x◦

km
} in the

state s. It follows by construction of θ that (Q(i, :)sd)≥θ(i)

is the next state of node i regardless of i’s node type and
(Qsd)≥θ is the next state vectors of s.

Now we extend s to a matrix. Let S = [s1 · · · sL] be an
N × L matrix containing L state vectors. Consider Sd =
[S;1−S].7 It is a 2N × L matrix containing L dualized
state vectors. Then (QSd)≥θ = [(sd1)≥θ · · · (sdL)≥θ] is a
matrix of the next state vectors for the BN.

61− s is the bit inversion of s.
71− S is the bit inversion of S.

4 Matricized BN Learning
4.1 Row-wise Learning and a Cost Function
We consider BN learning in the following setting. We are
given a set Sin = [sin1 · · · sinL ] of L input state vectors and
the set Sout = [sout1 · · · soutL ] of L corresponding output
state vectors where soutj is the next state of sinj (1 ≤ j ≤ L).
Our task is to learn a BN that maps Sin to Sout by state
transition. We tackle this task by learning a binary matrix
Q and a threshold vector θ representing a BN such that
Sout = (QSd

in)≥θ holds where Sd
in = [Sin;1−Sin].

Since two matrices are equal when two corresponding
rows are equal for every row in each matrix, this learning
task is reduced to the learning of a row binary vectorQ(i, :)
that satisfies Sout(i, :) = (Q(i, :)Sd

in)≥θ(i) for each node i
(1 ≤ i ≤ N ). We learn such vectors by cost minimization
in a continuous space considering Q(i, :) as a real-valued
vector.

Put ai = Sout(i, :) and bi = Q(i, :)(1 ≤ i ≤ N ) re-
spectively. For every node i (1 ≤ i ≤ N ), we have to learn
a binary row vector bi satisfying ai = (biS

d
in)≥θ(i). In-

troduce two non-negative cost functions, Jand
i (bi) (1) for

AND node and Jor
i (bi) (2) for OR node. Given a node type

for node i, we learn bi by minimizing Jand
i (bi) to zero if it

is an AND node, else by minimizing Jor
i (bi) to zero if it is

an OR node. Once bi is learned as the minimizer of those
cost functions, θ(i) is automatically computed from bi and
the node type for i.

Jand
i (bi) = ((1−ai) • (1−min1(bi([1;1]−Sd

in))))

+(1/2)(ai • ((bi ⊙ bi)([1;1]−Sd
in)))

+(1/2)∥bi ⊙ (1−bi)∥2F (1)

Jor
i (bi) = (ai • (1−min1(biSd

in)))

+(1/2)((1−ai) • ((bi ⊙ bi)S
d
in))

+(1/2)∥bi ⊙ (1−bi)∥2F (2)

We can prove
Proposition 1. Suppose node i is an AND node. Then
Jand
i (bi) = 0 if-and-only-if bi is a binary vector satisfy-

ing ai = (biSin)≥θ(i) where θ(i) is the number of literals
in the conjunction associated with node i.

Proof. Suppose Jand
i (bi) = 0. First we prove bi is bi-

nary. Since every term in (1) is non-negative, Jand
i = 0

implies all terms in (1) are zero, in particular we have
∥bi⊙(1−bi)∥2F = 0. So bi is a binary vector. We next prove
ai = (biSin)≥θ(i). We assume bi represents a conjunction
Ci associated with node i. Take an arbitrary j (1 ≤ j ≤ L)
and put δ = (bi([1;1]−Sd

in))(j). δ is the number of literals
in the conjunction Ci which are false in the state Sin(:, j).
If ai(j) = 0, then 1 − min1(δ) = 0 follows from the first
term in (1) being zero, which implies δ ≥ 1. δ ≥ 1 in
turn implies Ci contains at least one literal false in Sin(:, j).
Therefore biS

d
in(:, j), the number of literals in Ci true in

Sin(:, j), is less than the number of all literals Ci which is
equal to θ(i) by construction of θ(i). So biS

d
in(:, j) < θ(i)
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holds. Hence we have (biS
d
in(:, j))≥θ(i) = 0. Otherwise

suppose ai(j) = 1. Then by the second term in (1) be-
ing zero, and by the fact that bi ⊙ bi = bi holds when bi
is binary, we can similarly conclude Ci is true in the state
Sin(:, j) and (biS

d
in(:, j))≥θ(i) = 1 holds. Consequently

ai(j) = (biS
d
in(:, j))≥θ(i) holds for any value of ai(j).

Thus, since j is arbitrary, we have ai = (biSin)≥θ(i).
Conversely, suppose ai = (biSin)≥θ(i) holds and bi is a

binary vector. So the third term in (1) is zero. Now suppose
ai(j) = 0 for j (1 ≤ j ≤ L). Then (biSin)(j)≥θ(i) = 0
which implies (biSin)(j) < θ(i). So in the state Sin(:, j),
the number of true literals in Ci is less than the number of
all literals in Ci. In other words, there is a false literal in Ci,
and hence the number of false literals in Ci is greater than
1, thereby giving min1(bi([1;1]−Sd

in))(j) = 1. Conse-
quently we conclude that when ai(j) = 0, (1−ai)(j) · (1−
min1(bi([1;1]−Sd

in)))(j) = 0 holds. Therefore, since j is
arbitrary, the first term in (1) is zero. Similarly by consider-
ing the case of ai(j) = 1, we can prove the second term in
(1) is also zero. The third term is zero because bi is binary.
Hence we have Jand

i (bi) = 0.

Dually to Proposition 1, we can prove
Proposition 2. Suppose node i is an OR node. Then
Jor
i (bi) = 0 if-and-only-if bi is a binary vector satisfying

ai = (biSin)≥θ(i) where θ(i) = 1.
It follows from Proposition 1 and Proposition 2 that an

AND/OR BN having the specified state transitions from sinj
to soutj for j (1 ≤ j ≤ L) is obtained by learning Q =

[b1; · · · ; bN ] such that Ji(bi) = 0 (Ji ∈ {Jand
i , Jor

i }) for
every i (1 ≤ i ≤ N ).

4.2 Jacobians and a Learning Algorithm
Weminimize Ji ∈ {Jand

i , Jor
i } by Newton’s method. So we

compute two Jacobians, ∂Jand
i /∂bi and ∂Jor

i /∂bi as fol-
lows.

Jand
i Jacob (3)

= ∂Jand
i /∂bi

= −((1−ai)⊙ (ci)<1)([1;1]− Sd
in)

T

+(ai([1;1]− Sd
in)

T )⊙ bi + bi ⊙ (1−bi)⊙ (1−2bi)

Jor
i Jacob (4)
= ∂Jor

i /∂bi

= −(ai ⊙ (di)<1)S
T
in

+((1−ai)S
T
in)⊙ bi + bi ⊙ (1−bi)⊙ (1−2bi)

Here ci = bi([1;1] − Sd
in) and di = biS

d
in. ci(j) (resp.

di(j) ) is the number of literals in a conjunction (resp. dis-
junction) associated with node i which are false (resp. true)
in the state Sin(:, j)(1 ≤ j ≤ L).
We show the derivation of Jand

i Jacob. First to simplify no-
tation, introduce S¬d

in = [1;1]− Sd
in which is the bit inver-

sion of Sd
in. Let bi(p) be the p-th component of bi and put

∂bi/∂bi(p) = Ip. Ip is a one-hot vector whose component
is 0 except for the p-th component which is 1. Now we have

∂Jand
i /∂bi(p)

= ((1−ai) • (−((ci)<1 ⊙ (IpS
¬d
in )))

+(ai • ((Ip ⊙ bi)S
¬d
in ))

+((bi ⊙ (1−bi)) • (Ip ⊙ (1−2bi)))
= (−((1−ai)⊙ (ci)<1)(S

¬d
in )T

+(ai(S
¬d
in )T )⊙ bi + bi ⊙ (1−bi)⊙ (1−2bi) • Ip)

Since p is arbitrary, we obtain (3). Here we use the fact that
(u•(v⊙w)) = ((u⊙v)•w) and (u•(vA)) = ((uAT )•v)
hold for vectors u,v,w and matrix A. Jor

i Jacob is similarly
derived.

The updating formula for bi depends on the node type of
node i but it is uniformly described as

bi ← bi − (Ji/∥Ji Jacob∥2F )Ji Jacob. (5)

Here Ji = Jand
i and Ji Jacob = Jand

i Jacob, or Ji = Jor
i and

Ji Jacob = Jor
i Jacob depending on the node type. The updat-

ing formula (5) implements Newton’s method and is derived
from the first order Taylor expansion of Ji and by solving
Ji+(Ji Jacob•(bi new−bi)) = 0 w.r.t. bi new where (a•b)
is the inner product of a and b.
Having derived the updating formula (5), we next describe

Algorithm 1, an algorithm for learning an AND/OR BN in
vector spaces. This algorithm learns a matricized AND/OR
BN by minimizing a cost function

∑N
i=1 Ji (possibly to

zero). Algorithm 1 is mostly (and hopefully) self-evident.
There we use 1-norm ∥a∥1 to denote the number of 1’s in
a binary vector a for convenience. Minimization is carried
out by the inner q-loop and the outer p-loop exists for retry
when the inner loop fails to achieve an error ϵi = 0. Line 20
adds perturbation to bi to escape a local minimum.

Since line 4 and line 8 include somewhat complicated op-
erations behind them, we detail them. At line 4, a node
type is determined. Given bi, we uniformly split an interval
[min(bi)max(bi)] into 20 levels {µ1, . . . , µ20} and gener-
ate 20 binary vectors b∗i,j = (bi)≥µj (1 ≤ j ≤ 20). For each
j, we compute an error ϵi,j = ∥ai − (b∗i,jS

d
in)≥µ(i,j)∥1 for

two threshold levels, µ(i, j) = ∥b∗i,j∥1 and µ(i, j) = 1. If
µ(i, j) = ∥b∗i,j∥1 yields a smaller ϵi,j , node i is an AND
node. Else it is an OR node. Finally, after deciding the node
type with ϵi,j for every j, we choose j that gives the min-
imum ϵi,j and decide the node type as the one for j. At
line 8, a thresholding operation is performed. Like line 4,
we first compute thresholded vectors b∗i,j = (bi)≥µj for ev-
ery j (1 ≤ j ≤ 20). Then we choose the best b∗i,j as b∗i
that gives a minimum error ϵi,j = ∥ai − (b∗i,jS

d
in)≥θ(i,j)∥1

where θ(i, j) = ∥b∗i,j∥1 if the node type is AND. Otherwise
θ(i, j) = 1.

With max try and max itr being fixed, since there is only
vector-matrix multiplication in the q-loop, time complexity
per iteration in the q-loop is estimated as O(N2L).
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Algorithm 1 for learning an AND/OR BN as matrix
Input: N × L binary matrices Sin, Sout

Output: N × 2N binary matrix Q, N dim. threshold vector θ
s.t. Sout = (QSd

in)≥θ where Sd
in = [Sin; (1−Sin)]

1: for i = 1 to N do
2: randomly initialize 2N dim. row vector bi
3: for p = 1 to max try do
4: determine node type (AND,OR) of node i
5: for q = 1 to max itr do
6: compute Ji (1),(2) and Ji Jacob (3),(4)
7: update bi by (5)
8: threshold bi to a binary vector b∗i
9: setQ(i, :) = b∗i

10: if node type = AND then
11: put θ(i) = ∥b∗i ∥1
12: else
13: θ(i) = 1
14: end if
15: compute ϵi = ∥ai − (b∗iS

d
in)≥θ(i)∥1

16: if ϵi = 0 then
17: exit p-loop
18: end if
19: end for
20: bi = 0.5 · bi + 0.5 ·∆ %∆ ∼ U(0,1)
21: end for
22: end for
23: returnQ and θ

5 Experiments
5.1 Random AND/OR BN: Learning Time vs

Network Size
Here we measure learning time of Algorithm 1 for ran-
dom AND/OR BNs while varying network size which is
measured by the number of nodes N .8 For a given N , a
max indegree γ = 5 and a probability p = 0.5, we first
generate an N × 2N binary matrix Q0 and a threshold vec-
tor θ0 encoding a random AND/OR BN such that the in-
degree of a node9 is uniformly distributed over [1, . . . , γ]
and almost half of the nodes are AND nodes. Using this
Q0, we generate randomly L = 100 state vectors whose
element is one with probability p, store them in an N × L
matrix Sin = [sin1 · · · sinL ] and compute the next state vec-
tors Sout = (Q0S

d
in)≥θ0 = [sout1 · · · soutL ] corresponding to

Sin. Finally we add noise to Sout by flipping each bit of
Sout with a probability q = 0.0/0.1 to obtain S

′

out.
Using Sin and S

′

out as learning data, we learn Q and
θ by Algorithm 1 and measure learning time and error
for various N . Learning error is computed as error =

8This experiment and the next experiment are carried out using
GNUOctave 4.2.2 on a PCwith Intel(R) Xeon(R) CPU E5-2699 v4
@ 2.20GHz with 64 threads. All other experiments are carried out
using GNU Octave 4.2.2 and Python 3.6.3 on a PC with Intel(R)
Core(TM) i7-3770@3.40GHz CPU, 28GB memory.

9The indegree of a node n is the number of nodes having an out-
going edge to n. So, if the indegree of the node is k, the next state
of n is determined by a Boolean formula comprised of k variables.

N 1000 2000 3000 4000 5000
q = 0.0

time(s) 17.45 90.6 217.2 516.2 940.8
error(%) 0 0 0 0 0

q = 0.1

time(s) 539.2 1260.3 2170.6 3414.8 4532.5
error(%) 4.61 2.80 2.07 1.72 1.34

Table 1: Learning time and error for various network size N

Figure 3: Learning time vs network sizeN with quadratic fit curves

|Sout − (QSd
in)≥θ|/N · L which is the ratio of the total

number of incorrectly predicted bits by the learned matrix
Q to the total number of bits in Sout.

The results are shown in Table 1 and Figure 3. Notice that
learning time is quadratic w.r.t. N as indicated by quadratic
regression in Figure 3, and this is what is expected from
O(N2L) time complexity of Algorithm 1. Also notice er-
ror = 0 is achieved for allN ’s when the noise probability q is
zero. It means that the learned BN completely recovers ran-
domly chosen 100 state transitions in the original AND/OR
BN for all N ’s. Even if noise is added with q = 0.1 to the
learning data Sout, and hence 10% of the learning data is
incorrect, the error by the learned BN is mostly less than
3%.

We next compare our method with the standard BN
reconstruction methods: the BestFit extension algorithm
(Lähdesmäki, Shmulevich, and Yli-Harja 2003) and the RE-
VEAL algorithm (LIANG, FUHRMAN, and SOMOGYI
1998). However since they did not work in the setting where
N ≥ 1000, we used smaller data set (N = 10 . . . 90). Fig-
ure 4 shows that our method is far more scalable with respect
to the number of variables than those conventional ones. So
we can say that our method is particularly effective in situ-
ations involving a large number of variables, e.g. genome-
wide network analysis. We remark that all algorithms run in
a single thread in this experiment for comparison.

5.2 Prediction Accuracy with Artificial Data
The previous experimental result suggests that the learned
model,Q, is likely to recover 100% of learning data as long
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Figure 4: Comparison of learning time with conventional methods

as it is generated by an AND/OR BN, which naturally gives
rise to the concern of overfitting. So in this experiment, us-
ing artificially generated state transition data, we examine
prediction performance of the learned AND/OR BN in terms
of 10-fold cross-validation (CV) used in the machine learn-
ing field.

First we generate state transition data {SCV
in ,SCV

out } from
an AND/OR BN for L ∈ {50, 100, 150, 200} where L is the
length of state transitions as follows. PutN = 100. We con-
struct a binary random matrix Q0 and a threshold vector θ0
for an AND/OR BN BN0 having N nodes in the same way
as in the previous subsection. Then for each f (∈ [1 . . . 10]),
we simulate L state transitions s0 → s1 → · · · → sL
in BN0 by starting from an initial state vector s0 whose
element is one with probability p = 0.5 and sequentially
computing sj = (Q0s

d
j−1)≥θ0

(1 ≤ j ≤ L). Then

we put state vectors together as S(f)
in = [s0 · · · sL−1] and

S
(f)
out = [s1 · · · sL]. S(f)

in and S(f)
out are N × L matrices.

Finally we concatenate all those matrices into one big
N × 10 · L matrix like SCV

in = [S
(1)
in · · ·S

(10)
in ]. Similarly

we constructSCV
out = [S

(1)
out · · ·S

(10)
out ]. SoS

CV
in andSCV

out in-
clude transition data starting form 10 different initial states.
Then, we measure prediction accuracy of the AND/OR BN
learned from {SCV

in ,SCV
out } by Algorithm 1 in terms of 10-

fold CV.
Table 2 presents measured prediction accuracy “acc” with

standard deviation for each L together with “acc 3” and “ra-
tio 3”. “acc 3” is the prediction accuracy restricted to nodes
with a small indegree. Here small indegree means less than
or equal to three. “ratio 3” is the ratio of the number of such
nodes to N , the total number of nodes.

What is noticeable in Table 2 is high prediction accu-
racy for all L’s. This is also true with small indegree
(see “acc 3”) and such nodes account for 26.4%(L=100) to
39.0%(L=200) of total nodes. The observation that small
AND/ORs show good prediction performance will be re-
peated in the experiment with real data sets in the following
Subsection 5.4.

The experimental result here demonstrates that as long as

L 50 100 150 200
acc(%) 99.5(0.8) 99.9(0.1) 99.9(0.0) 99.8(0.0)
acc 3(%) 99.9(0.1) 99.9(0.1) 100(0.0) 100(0.0)

ratio 3(%) 36.4(2.3) 26.4(2.0) 29.4(2.3) 39.0(0.0)

Table 2: Prediction accuracy with state transition data

the data is generated by an AND/OR BN, prediction accu-
racy byAlgorithm 1 is very high, which however is not nec-
essarily true of real data.

5.3 Learning Genome-wide AND/OR BNs for
Budding Yeast

Here we address the problem of learning a genome-wide
AND/OR BN from real data. By genome-wide, we mean
analyzing the whole set of genes simultaneously, not learn-
ing a network of genes sampled from the original data.

We prepared two transcription profile data sets,
E MTAB01 and E MTAB0210, for budding yeast (Saccha-
romyces cerevisiae) obtained by measuring mRNA levels
for three cell cycles. Each contains data on N = 10, 928
labeled mRNA fractions measured at 41 time points. In the
usual gene analysis, this transcription is reduced to gene
expression profile by aggregating mRNA levels in the same
gene to filter target genes and to reduce computational costs.
In our setting however, to demonstrate scalability of our
method, we uses all transcription profile in the data. In the
sequel, we sometimes use interchangeably gene for mRNA
for convenience.

We apply the robust multi-array average (RMA) method
(Irizarry et al. 2003), a standard preprocessing method for
micro-array data, and binarization by using an average
threshold. As a result, we can consider each data set as
state transition data containing 40 state transitions. Follow-
ing Subsection 5.2, we construct two sets of 10, 928 × 40
binary matrices Sin and Sout, corresponding to E MTAB01
and E MTAB02, as learning data representing state transi-
tions, and learnQ and θ representing an AND/OR BN from
them by Algorithm 1. Using learning parameters max try =
10 and max itr = 100 in Algorithm 1, we measure approx-
imation accuracy11 of the learned model in terms of 4-fold
CV. Table 3 presents measured accuracies for each data set.

Looking at Table 3, we know that our approach achieves
rather good approximation accuracy despite the simplicity

data set acc(%) time(s)
E MTAB01 87.3 104015.4
E MTAB02 80.0 180253.0

Table 3: Approximation accuracy with genome-wide budding yeast
data

10downloadable at https://www.ebi.ac.uk/
arrayexpress/experiments/E-MTAB-1908/

11“approximation accuracy” means accuracy for learning data.
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of AND/OR BN model. For example, acc = 87.3% for
E MTAB01 data set means that the next state of an mRNA
is correctly recovered 87 times out of 100 trials on average
by the learned model. Learning time however requires tens
of hours12 and there remain problems to be solved as we
discuss next.

5.4 Constrained Learning and Relearning
In the previous subsection, we observe that real large scale
biological data E MTAB01 and E MTAB02 are reasonably
approximated by AND/OR BNs. However there remain two
problems. One is low prediction accuracy. For example it
turns out to be merely 40.9%, less than 50%, for E MTAB01
data set by 4-fold CV.
The other is too long AND/OR formulas (some have more

than 100 literals). Figure 5 is the indegree distribution of
BN E MTAB01, an AND/OR BN learned from E MTAB01
(cut off at indegree = 100). The indegree of a node is the
number of literals in a conjunction or disjunction associ-
ated with it. From Table 4, we can see about 3,000 nodes
have long AND/OR formulas containing more than 10 liter-
als. Needless to say, such long AND/OR formulas are not
very comprehensible to humans and worse, likely to cause
overfitting.

Hence, we introduce two strategies working in tandem to
improve readability and prediction accuracy. One is to con-
strain the length of AND/OR formulas when learning. The
other is relearning an AND/OR formula for each gene after
learning. First we constrain the length of AND/OR formulas
to four or less. That is, when we construct an AND/OR for-
mula at line 8 in Algorithm 1, we simply keep the initial (at
most) four literals among those represented by b∗i and pad
zeros into the rest of b∗i .
Let dom(g) be a list of variables in a conjunc-

tion/disjunction associated with a gene g and |dom(g)| the
number of variables in dom(g). Initially variables in dom(g)
are selected from 10,928 ones by learning and |dom(g)| may

2000 4000 6000 8000 10000
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e

Figure 5: Indegree distribution of BN E MTAB01

12This is partly due to the use of a high-level language, Octave,
and can be improved by shifting to a procedural language such as
C++.

indegree x x ≤ 3 4 ≤ x ≤ 10 x > 10

#node 2933 4998 2997

Table 4: Indegree of node in BN E MTAB01

be 10 or 100 as seen in Figure 5 but now by this constraint,
we have forcibly |dom(g)| ≤ 4.
Next to mitigate the negative effect of the forced condi-

tion |dom(g)| ≤ 4, we introduce a relearning process, i.e.,
learning again an AND/OR formula for each gene by Algo-
rithm 113. This time, however, learning data becomes part
of Sin and Sout related to the gene g, that is Sin(dom(g), :)
and Sout(g, :).14

We conduct a learning experiment with E MTAB01 and
E MTAB02 using the modified AND/OR BN learning de-
scribed above and obtain Table 5. As we see, in the case
of E MTAB01, by adding size constraint and relearning,
prediction accuracy by 4-fold CV is improved from 40.9%
to 84.3%, more than doubled, and the learned AND/OR
formula consists of 3.7 literals on average. Furthermore,
if we focus on “acceptable AND/ORs” which are learned
AND/OR formulas giving 0 or 1 error in the test phase of a
fold in cross-validation, their average prediction accuracy in
a fold further rises up to 94.9%. Note acceptable AND/OR
formulas are not a minority of the learned AND/OR formu-
las. They are the majority occupying 6623.8/10928 = 60.6%
of the learned AND/OR formulas on average. In other
words, we could find, among the total 10,928 genes in the
data set E MTAB01, more than 6,000 genes together with
associated small AND/OR formulas (consisting of less than
or equal to four literals) which predict their next state with
94.9% accuracy. A similar result is obtained for E MTAB02
where we could identify on average 3,797 genes and their
associated small AND/OR formulas achieving 93.5% pre-
diction accuracy.

What we have seen in this section is the genome-wide
analysis of real data by an AND/OR BN, which, to our
knowledge, is unprecedented. There are 10,928 genes and
their transition to the next state can possibly depend on
10,928 genes. Despite the formidable number of possi-
ble genes to be considered in state transition, all possibil-
ities are considered in a continuous space and their logi-

AND/ORs acceptable AND/ORs
data set acc(%) length acc(%) ratio

E MTAB01 84.3 3.7 94.9 6623.8/10928
E MTAB02 75.9 3.5 93.5 3797.0/10928

Table 5: Prediction accuracy of all AND/ORs and acceptable
AND/ORs

13The hope is that the new set of variables might be further re-
duced or the choice of AND/OR might be properly adjusted.

14Sin(dom(g), :) is a sub-matrix of Sin consisting of rows cor-
responding to dom(g), and Sout(g, :) is a row in Sout for the gene
g.
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cal interdependency is captured in the form of AND/OR
formula. Also it is unexpected that small AND/OR for-
mulas obtained through constrained learning and relearning
achieve more than 90% prediction accuracy despite the fact
that AND/OR Boolean formulas lack the expressive power
of general Boolean ones.

6 Related Work
Boolean networks (BNs) express the logical dependency
among nodes as a graph and AND/OR BNs aim at scal-
ability by restricting general Boolean formulas to con-
junction/disjunction. Concerning expressing dependency,
dependency networks similarly express dependency by a
graph but deal with probabilistic or statistical dependen-
cies. For example Heckerman et al. proposed dependency
networks for graphical model which are directed networks
like Bayesian networks but allow cyclic paths (Heckerman
et al. 2000). A consistent probability distribution is de-
fined through the process of Gibbs sampling when it ex-
ists using a set of local conditional distributions. This sam-
pling based approach is further extended to relational data
(Schulte et al. 2016). Also there are statistical, correla-
tion based dependency networks. Kenett et al. used par-
tial correlation to define the influence of a node j on a
node i through other nodes and applied to financial market
analysis and immune system analysis (Kenett et al. 2010;
Madi et al. 2011).

These dependency network approaches somehow recog-
nize nodes that influence a target node. For example they are
given as local conditional distributions in the case of (Heck-
erman et al. 2000) or they are deterministically computed
(Kenett et al. 2010). Contrastingly in our approach, we iden-
tify the dependency relation among nodes by learning, i.e.
by minimizing objective functions Jand

i (·) and Jor
i (·) (1),

which empirically scales well with the number of nodes.
Technically, the scalability of our approach fundamen-

tally depends on the matrix encoding of AND/OR BN in
terms of an N × 2N matrix. It enables us first to formu-
late BN learning as a cost minimization problem in a con-
tinuous space and, second, to realize O(N2) time learn-
ing. This polynomial time/space complexity, though ob-
tained at the cost of restricting general BNs to AND/OR
BNs, is a key property to the success of our large scale
AND/OR BN learning. It is also what differentiates our
approach from previous matrix approaches where a 2N ×
2N or 2N × 2N matrix is used to express an unrestricted
Boolean function (Cheng and Qi 2005; Cheng and Qi 2010;
Kobayashi and Hiraishi 2014).

Restricted Boolean networks are another subclass of BNs
other than AND/OR BNs in which the next state of a gene is
determined by the difference between the weighted sum of
“on” neighboring genes minus and that of “off” neighboring
genes (Li et al. 2004; Higa, Louzada, and Hashimoto 2010;
Ouyang et al. 2014). Heuristic algorithms inferring such re-
stricted BNs have been proposed but they all work in a dis-
crete space whose size is exponential in the number of nodes
and scalability seems hard to achieve.

There are logical approaches to BN learning (Inoue,
Ribeiro, and Sakama 2014; Tourret, Gentet, and Inoue 2017;

Chevalier et al. 2019). From a logical point of view, our
work is considered as a matricized version of “learning from
interpretation transition” in logic programming in which a
BN is represented as a propositional normal logic program
(Inoue, Ribeiro, and Sakama 2014). The main difference is
that we search for a solution by minimizing a differentiable
cost function for scalability instead of applying logical op-
erations such as resolution and subsumption in a symbolic
space. Tourret et al. extracted DNF formulas from param-
eters of a feed-forward neural network learned from state
transitions and convert them to logical rules describing a BN
(Tourret, Gentet, and Inoue 2017).

Our learning is similar to deep neural network learning for
biological data (Yue and Wang 2018) in that it is based on
the sum-product of matrix and vector and the use of a non-
linear function. The difference is that we perform symbolic
learning in vector spaces for Boolean formulas, not millions
of network parameters for a classifier.

In bioinformatics, BNs have been used as a basic mod-
eling tool for biological networks. For recent reviews, see
(Hickman and Hodgman 2009; Liu 2015). From the view-
point of gene-wide modeling of gene networks, however,
most networks are relatively small. For example, Silvescu
introduced Temporal Boolean networks (TBNs) where a
state changes depending on the several past states and stud-
ied TBNs with 16 nodes using artificial data (Silvescu and
Honavar 2001). Joo et al. proposed a BN with 5 nodes as a
model for epithelial-to-mesenchymal transition (EMT) and
examined dynamic stability of the cell attractors w.r.t. ge-
netic mutations (Joo et al. 2018). Wilson et al. analyzed
BNs with 5 nodes for gene regulatory network (GRN) to in-
vestigate the relationship between evolution and attractors
(Wilson et al. 2019).

Kemmeren et al. performed genome-wide analysis of ge-
netic perturbations by single gene deletions on Saccha-
romyces cerevisiae. They created a genetic perturbation
network containing 3,476 nodes whose connectivity shows
power-low distribution (Kemmeren et al. 2014).

Barman and Kwon inferred BNs by GA based on mutual
information. They learned BNs with 100 nodes from arti-
ficial time-series data and also ones with 10 and 11 nodes
from E.coli and yeast data (Barman and Kwon 2018).

Much larger networks are analyzed by Yang et al., though
not by BNs. They synthesized GRNs by genetic expres-
sion programming (GEP), a variant of GA and GP, based
on MapReduce framework and examined the acceleration
effects on their parallel learning algorithm by parallel com-
puting, using 500 genes selected from Saccharomyces cere-
visiae (Yang et al. 2018).

7 Conclusion
We presented a novel approach to learning large scale
AND/OR BNs. What differs most from the existing learning
methods is that our learning is carried out in a vector space
where an AND/OR BN is represented by a binary matrix
Q paired with an integer vector θ and they are learned from
state transition data by minimizing a cost function expressed
by matrix operations on Q and a thresholding operation us-
ing θ.
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Using state transition data artificially generated from
AND/OR BNs, we empirically confirmed O(N2) learning
time behavior of our learning algorithm up to N=5,000
where N is the number of nodes in a BN. We also observed
more than 99.5% prediction accuracy with artificial state
transition data generated from an AND/OR BN with 100
nodes. Concerning applicability to real data, we learned two
genome-wide AND/OR BNs consisting of 10, 928 nodes
for budding yeast from transcription profiling data sets,
each containing 10, 928 mRNAs and 40 transitions. The
scale of BN learning in this size seems unprecedented. By
introducing constrained learning together with relearning,
we achieved for instance 84.3% prediction accuracy of the
learned AND/OR BN for one data set and successfully ex-
tract more than 6,000 small AND/ORs whose average pre-
diction accuracy reaches much higher 94.9%.

Our approach is expected to open a new way to scalable
analysis of gene network data by scalable learning of BNs.
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