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Abstract

Restoring consistency of a knowledge base, known as con-
solidation, should preserve as much information as possible
of the original knowledge base. On the one hand, the field of
belief change captures this principle of minimal change via
rationality postulates. On the other hand, within the field of
inconsistency measurement, culpability measures have been
developed to assess how much a formula participates in mak-
ing a knowledge base inconsistent. We look at culpability
measures as a tool to disclose epistemic preference relations
and build rational consolidation functions. We introduce tacit
culpability measures that consider semantic counterparts be-
tween conflicting formulæ, and we define a special class of
these culpability measures based on a fixed-point characteri-
sation: the stable tacit culpability measures. We show that the
stable tacit culpability measures yield rational consolidation
functions and that these are also the only culpability measures
that yield rational consolidation functions.

1 Introduction
Handling inconsistency is a problem that appears in many
scenarios within Computer Science and Artificial Intelli-
gence (AI), such as in integrating distributed data-sources,
ontology evolution, formal specification and verification of
systems, automated reasoning and commonsense reasoning.
Two main fields within AI that study how to handle incon-
sistencies are belief change (Alchourrón, Gärdenfors, and
Makinson 1985; Gärdenfors 1988; Hansson 1999) and in-
consistency/culpability measures (Grant 1978; Hunter and
Konieczny 2005; Thimm 2019).

Belief change studies how to keep consistency of an
agent’s epistemic state as it evolves. One of the most stud-
ied belief change operations is contraction, which consists
in relinquishing an unwanted (or obsolete) piece of infor-
mation. Operations such as contraction are governed by sets
of rationality postulates that prescribe suitable behaviours
for belief change operators. These rationality postulates are
motivated by the principle of minimal change: when remov-
ing an undesirable/obsolete piece of information ϕ, an agent
should remove only those pieces of information that con-
tribute to entailing ϕ. In addition, classes of belief change
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operators that are characterised by such rationality postu-
lates, called rational belief change operators, were proposed,
such as the smooth kernel contraction operators (Hansson
1994) and partial meet contraction operators (Alchourrón,
Gärdenfors, and Makinson 1985). A main difference be-
tween these two classes of contraction functions is that while
smooth kernel functions choose what to remove, partial meet
functions choose what to keep (Falappa, Fermé, and Kern-
Isberner 2006). In both approaches, the actual choice of what
to remove/keep is postponed to an extra-logical mechanism
that realises the agent’s epistemic preferences.

A special kind of belief change operation is consolidation
that purges inconsistencies from a knowledge base. Con-
solidation corresponds to contracting by falsum (Hansson
1997). In this paper, we focus on the consolidation opera-
tion from the perspective of rational belief change, specif-
ically the operations based on the what-to-remove strategy
(smooth kernel contraction).

While belief change has a qualitative perspective to han-
dle inconsistencies, the field of inconsistency measurement
(Grant 1978; Hunter and Konieczny 2005; Thimm 2019)
handles inconsistencies from a quantitative perspective: it
proposes functions, called inconsistency measures, that tag
a knowledge base with a real number that indicates its de-
gree of inconsistency. Inconsistency measures are helpful in
pinpointing causes of inconsistencies in a knowledge base,
and assist in semi-automatic approaches for inconsistency
removal, see e. g. (Grant and Martinez 2018) for some con-
crete applications. A related family of measures are culpa-
bility measures (Daniel 2009), also called inconsistency val-
ues (Hunter and Konieczny 2006), that assess how much a
formula participates in making a knowledge base inconsis-
tent. The higher the culpability value of a formula, the more
responsible for producing inconsistency is such a formula.

The values that a culpability measure assigns to the for-
mulæ of a knowledge base could be interpreted as the epis-
temic preference relation of an agent, when its knowledge
base becomes inconsistent. The higher the culpability value
of a formula, the less reliable/entrenched it is. From this
perspective, a culpability measure induces a choice function
that points to the most undesirable pieces of information that
should be removed. Thus, a culpability measure can be used
to construct a consolidation function by preferably removing
those formulæ with high culpability values.
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Unfortunately, as we show in Section 4, the few culpabil-
ity measures existing in the literature do not induce rational
consolidation functions. We argue that this failure occurs be-
cause these measures rely significantly on syntactic aspects
of knowledge bases and disregard the semantic counterparts.
To overcome this problem, we propose a new class of cul-
pability measures that consider both syntactic and seman-
tic elements: the tacit culpability measures. In addition, we
construct a special kind of tacit culpability measures based
on a fixed-point characterisation: the stable tacit culpability
measures. We show that stable tacit culpability measures not
only yield rational consolidation functions, but they are also
the only class of culpability measures capable of generating
such rational consolidation functions.

In Section 2, we introduce some notation that will be used
throughout this paper. In Section 3, we briefly recap belief
contraction and consolidation. In Section 4 we give a brief
introduction to culpability measures, and we show their lim-
itation in inducing rational consolidation functions. In Sec-
tion 5, we introduce the notions of explicit and implicit roles
in producing inconsistency. From the latter, we define tacit
culpability measures. This notion of implicit role also helps
us in identifying a sufficient condition for a culpability mea-
sure to yield a rational consolidation function: tacit domi-
nance. We then exploit tacit dominance in order to devise a
novel class of culpability measures that yield rational con-
solidation function by combining both explicit and implicit
roles of culpabilities: the stable tacit culpability measures.
Finally, in Section 6, we make some final consideration and
discuss some future works. Full proofs are presented in the
appendix at http://mthimm.de/misc/proofs kr21 jsmt.pdf.

2 Notation and Technical Background
Let At be some fixed finite set of propositional symbols,
and L be the propositional language built upon At and the
usual Boolean connectives ∧ (conjunction), ∨ (disjunction),
→ (implication),↔ (equivalence) and the classical negation
operator ¬. Let |= be the usual semantic consequence rela-
tion of propositional logic. A knowledge base K is a finite
set of formulæ. Given two formulæϕ andψ, we writeϕ ≡ ψ
to indicate that ϕ and ψ are logically equivalent.

Given a set D, and a binary relation <: D×D, we define
max<(X) = {a ∈ X | a 6< b or b < a, for all b ∈ X}, and
min<(X) = {a ∈ X | b 6< a or a < b, for all b ∈ X}, for
all X ⊆ D. Let R≥0 denote the set of all non-negative real
numbers. Let f : D → R≥0 be a function that maps some
elements from a domain D to a non-negative real number.
For a finite set X ⊆ D, we define maxf (X) = y, such that:
(1) y = f(a) for some a ∈ X and y ≥ f(b) for all b ∈ X , if
X 6= ∅; (2) y = 0; if X = ∅. Analogously, minf (X) = y,
where: (1) y = f(a) for some a ∈ X and y ≤ f(b) for
all b ∈ X , if X 6= ∅; (2) y = 0; if X = ∅. Given two
functions g, g′ : D → D′, we write g ≡ g′ to denote they
are equivalent, that is, g(a) = g′(a), for all a ∈ D.

3 Belief Contraction and Consolidation
A major approach to representing an agent’s beliefs is via a
set of sentences known as belief base. The term belief base

has been used in the literature with two specific purposes: (i)
as a finite representation of an agent’s beliefs (Nebel 1990;
Dixon 1994; Dalal 1988), and (ii) as a way of differentiat-
ing the explicit beliefs of an agent from its implicit beliefs
(Fuhrmann 1991; Hansson 1999). In this work, we look at
a belief base as a finite representation of an agent’s beliefs.
We will use the terms belief base and knowledge base inter-
changeably.

Removal of an undesirable belief is known as contraction.
Let K be a belief base, a contraction function for K is a
function −̇ : L → 2L that given an unwanted piece of in-
formation outputs a subset of K. A contraction function is
subject to the following basic rationality postulates (Hans-
son 1991, 1994):
(success): if 6|= ϕ then K−̇ϕ 6|= ϕ;
(inclusion): K−̇ϕ ⊆ K;
(vacuity): if K 6|= ϕ then K−̇ϕ = K;
(uniformity): if for all K ′ ⊆ K it holds that K ′ |= ϕ iff
K ′ |= ψ, then K−̇ϕ = K−̇ψ;
(core-retainment): if ψ ∈ K \ (K−̇ϕ) then there exists
a K ′ ⊆ K s.t K−̇ϕ ⊆ K ′, K ′ 6|= ψ, K ′ ∪ {ϕ} |= ψ.

A contraction function that satisfies all the rationality pos-
tulates above is called a rational contraction function. For a
discussion about the rationale of these postulates see (Hans-
son 1999). The five rationality postulates above characterise
the class of kernel contraction functions (Definition 3 be-
low), which is founded on α-kernels and incision functions:
Definition 1. An α-kernel of a knowledge baseK is a setX
such that (1) X ⊆ K; (2) X |= α; and (3) if X ′ ⊂ X then
X ′ 6|= α.

An α-kernel of a knowledge baseK is a minimal subset of
K that does entail α. The set of all α-kernels of a knowledge
base K is denoted by K⊥⊥α.
Definition 2. An incision function σ is a function such that
• σ(K⊥⊥ϕ) ⊆

⋃
K⊥⊥ϕ;

• if X ∈ K⊥⊥ϕ and X 6= ∅ , then X ∩ σ(K⊥⊥ϕ) 6= ∅.
Intuitively, given a formula α to be relinquished, an inci-

sion function σ for K selects at least one formula from each
α-kernel within K. The rationale is that σ behaves as an
epistemic choice function that realises the epistemic pref-
erences of the underlying agent, and it picks the least en-
trenched pieces of information to be removed.
Definition 3. Given a belief baseK and an incision function
σ for K, the kernel contraction operator −̇σ is defined as:
K−̇σϕ = K \ σ(K⊥⊥ϕ).
Theorem 1. (Hansson 1999) A contraction function sat-
isfies success, inclusion, vacuity, uniformity, and core-
retainment iff it is a kernel contraction function.

Hansson (1999) has identified that the basic rationality
postulates are not strong enough to forbid some irrational
behaviours. Consider the following example:
Example 1. Let K = {p, p ∨ q, p ∨ ¬q,¬p}. We want to
contract the contradiction⊥. Note thatK⊥⊥⊥ = {A1, A2},
whereA1 = {p,¬p} andA2 = {p∨q, p∨¬q,¬p}. Let σ be
an incision function such that σ(K⊥⊥⊥) = {p,¬p}. Thus,
K−̇σ⊥ = {p ∨ q, p ∨ ¬q}.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

530



The example above illustrates that kernel contraction op-
erators do not necessarily guarantee a minimal change, since
p was removed unnecessarily. To see this, note that p ∨ q
and p ∨ ¬q, which were retained, jointly restore p. Hansson
(1999) proposed an additional rationality postulate to forbid
this spurious behaviour:

(relative closure): α ∈ K−̇ϕ, if α ∈ K and K−̇ϕ |= α.

Relative closure states that if a belief α is removed when
contracting a formula ϕ, then the new epistemic state of the
agent cannot entail α. In other words, relative closure for-
bids spurious removal of beliefs. To capture relative closure,
one can constrain the way that incision functions behave by
imposing the following condition:

(smoothness): if K ′ ⊆ K, and K ′ |= ψ and ψ ∈ σ(K⊥⊥ϕ)
then K ′ ∩ σ(K⊥⊥ϕ) 6= ∅.

An incision function that satisfies smoothness is called a
smooth incision function, and a kernel contraction built upon
a smooth incision function is called a smooth kernel contrac-
tion.
Theorem 2. (Hansson 1999) A kernel contraction −̇σ is
smooth iff it satisfies all basic rationality postulates and rel-
ative closure.

A specific kind of contraction is consolidation whose pur-
pose is to remove the inconsistencies within a knowledge
base. Consolidation corresponds to the special case of con-
tracting the contradiction. Therefore, consolidation can be
defined via (smooth) kernel contraction:
Definition 4. Given a kernel contraction function −̇σ for a
knowledge base K, a kernel consolidation function for K is
a function !σ such that K!σ = K−̇σ⊥. If σ is smooth then
!σ is called a smooth consolidation function.

As consolidation focuses only on removing inconsistency,
the original rationality postulates can be simplified:
Theorem 3. (Hansson 1997) A function K! = K−̇⊥ is a
kernel consolidation function iff ! satisfies:

(consistency), K! 6|= ⊥; (inclusion), K! ⊆ K; and
(core-retainment), if ψ ∈ K \K!, then there is aK ′ ⊆ K

such that K ′ 6|= ⊥ and K ′ ∪ {ψ} |= ⊥.
An incision function behaves as an extra-logical mecha-

nism that reveals the epistemic choices that an agent makes
in order to remove a piece of information α. As an agent
should not decide arbitrarily, its choices should be ratio-
nalised by some epistemic preference between its beliefs.
This epistemic preference could be defined via a binary rela-
tion< on an agent’s belief base. Intuitively, ϕ < ψ indicates
that ϕ is at least as entrenched as ψ. Towards this end, an in-
cision function can be “induced” by some binary preference
relation that captures the epistemic preferences of an agent
among its beliefs.
Definition 5. Given a knowledge base K, and a binary re-
lation <: K × K. The function σ< is a relational incision
function iff (1) σ<(K⊥⊥ α) =

⋃
X∈K⊥⊥αmax<(X), and

(2) σ< is an incision function.
Although not every kernel contraction function can be ob-

tained via relational incision functions (Hansson 1999), we

show that kernel consolidation functions can be obtained via
relational incision functions:
Theorem 4. For every kernel consolidation function !σ ,
there is some binary relation < such that σ(K⊥⊥ ⊥) =
σ<(K⊥⊥⊥).

In the next section, we propose to use culpability mea-
sures to unveil an agent’s epistemic preference relation.

4 Culpability Measures
A culpability measure (Daniel 2009; Hunter and Konieczny
2006) for a knowledge base K is a function CK : K → R≥0
such that:
(consistency): if K 6|=⊥ then CK(ϕ) = 0 for all ϕ ∈ K;
(blame): if ϕ ∈

⋃
K⊥⊥⊥ then CK(ϕ) > 0 for all ϕ ∈ K.

When it is clear from the context, we will omit the sub-
script K from a culpability measure CK . The value 0 is re-
served to indicate absence of inconsistency. If a knowledge
base is consistent, none of its formulæ should be blamed
(consistency). If a formula participates in yielding inconsis-
tency, its degree of culpability is higher than zero (blame).

Let core(K,ϕ) = {X ∈ K⊥⊥ ⊥ | ϕ ∈ X} be the set
of all inconsistent kernels within a knowledge base K that
contains a formula ϕ. We present below some culpability
measures from the literature (Hunter and Konieczny 2008):

CDK(ϕ) =

{
1 if ϕ ∈

⋃
K⊥⊥⊥

0 otherwise.

C#K(ϕ) = |core(K,ϕ)| CCK(ϕ) =
∑

X∈core(K,ϕ)

1

|X|

The drastic culpability measure CDK distinguishes only
two levels: 1, if culpable; 0, if not culpable. The culpability
measure C#K simply counts the number of inconsistent ker-
nels that a formula ϕ participates in, while CCK considers the
size of each inconsistent kernel that a formula is in: directly
proportional to the number of inconsistent kernels, and in-
verse proportional to the size of the inconsistent kernels.

Kernel consolidation functions, as presented in Section 3,
depend on an incision function that pinpoints which for-
mulæ should be removed, based on a relation that reveals an
agent’s epistemic preferences. It is not clear, however, from
where such an epistemic preference would come, let alone
how to construct it. To address this issue, we propose to look
at culpability measures as a way to grade an agent’s beliefs
according to their participation degree in producing incon-
sistency. Towards this end, a culpability measure works as
a tool that unveils the underlying epistemic preference re-
lation of an agent, and a relational incision function could
be constructed to perform consolidation. Definition 5 can be
adapted in the following way to construct incision functions
based on culpability measures:

σCK (K⊥⊥⊥) =
⋃

X∈K⊥⊥⊥

{ϕ ∈ X | maxCK (X) = CK(ϕ)}.

Example 2 illustrates how consolidation functions can be
constructed via the culpability measures CCK and C#K , and
why these measures do not yield smooth incision functions.
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Example 2. Consider the inconsistent knowledge baseK =
{p, p∨ q, p∨¬q,¬p∧ q,¬p∧¬q,¬p∧ r,¬r} with 8 incon-
sistent kernels:

X1 = {p,¬p ∧ q} X2 = {p,¬p ∧ ¬q}
X3 = {p,¬p ∧ r} X4 = {p ∨ q,¬p ∧ ¬q}
X5 = {p ∨ ¬q,¬p ∧ q} X6 = {¬p ∧ q,¬p ∧ ¬q}
X7 = {¬p ∧ r,¬r} X8 = {¬p ∧ r, p ∨ q, p ∨ ¬q}

The culpability measures C#K and CCK assigns the following
values to the formulæ in K:

p p ∨ q p ∨ ¬q ¬p ∧ q ¬p ∧ ¬q ¬p ∧ r ¬r
C#K 3 2 2 3 3 3 1

CCK 3/2 5/6 5/6 3/2 3/2 4/3 1/2

Thus, σC#K (K⊥⊥⊥) = σCCK (K⊥⊥⊥) = {p,¬p ∧ q,¬p ∧
¬q,¬p∧r}. Note that σC#K and σCCK are not smooth, because
p ∈ σC#K (K⊥⊥⊥) = σCCK (K⊥⊥⊥), the set X = {p ∨ q, p ∨
¬q} |= p, but X ∩ σC#K (K⊥⊥⊥) = X ∩ σCCK (K⊥⊥⊥) = ∅.

Observation 5. The culpability measures C#K and CCK do not
induce smooth incision functions for every knowledge base.

Proposition 6. The culpability measure CDK produces only
the severe consolidation: K! = K \

⋃
K⊥⊥⊥.

Although the drastic culpability measure induces a
smooth incision function, the corresponding consolidation
function is too severe, as it removes all formulæ that produce
inconsistency. This happens because CDK is unable to distin-
guish different levels of culpabilities. In order to devise more
robust consolidation functions from culpability measures,
we define in the next section the concept of tacit functions,
which will be used to devise new culpability measures and
establish a representation theorem between smooth consoli-
dation functions and culpability measures. This supports the
idea that culpability measures can work as a general frame-
work to provide epistemic preference relations.

5 Tacit Culpability Measures
Most of the culpability measures discussed in Section 4
judge the degree of culpability of a formula by quantifying
its explicit participation in entailing inconsistency. For in-
stance, the knowledge base {p, p ∨ q, p ∨ ¬q,¬p} has only
two sources of inconsistencies: kernels A1 = {p,¬p} and
A2 = {p ∨ q, p ∨ ¬q,¬p}. The culpability measure C# as-
signs value 1 to p because it appears only in the kernelA1. A
closer look shows us that the formula p contributes to incon-
sistency both explicitly and implicitly. Explicitly, because it
conflicts with ¬p in A1, and implicitly because in A2 the
reason for inconsistency is that the formulæ p∨q and p∨¬q
jointly imply p which in turn conflicts with ¬p. As in both
cases, p appears as the central reason of inconsistency by
conflicting with ¬p, it would be plausible to assign to p the
same inconsistency value of ¬p, or at least take into account
the implicit role of p in yielding inconsistency in A2. If one

can measure such an implicit role of p by a value x, then
a more accurate culpability value for p would be to merge
both explicit and implicit degrees of inconsistency, that is,
1 + x.

The above recipe can be generalised to any culpability
measure. Assume we agree upon a culpability measure C
that considers how explicit the formulæ in a knowledge base
contributes to making it inconsistent, such as C# and CC . If
we define a function τ that discloses the implicit degree of
inconsistencies of the formulæ in a knowledge base, then the
culpability measure that takes explicit and implicit degree of
inconsistency can be defined via C◦(ϕ) = C(ϕ) + τ(ϕ). A
function τ that discloses the implicit degree of culpability
will be called a tacit function, while a culpability measure
C◦that assembles both explicit and implicit degrees of cul-
pability will be called a tacit culpability measure.

Tacit functions will be used to construct more accurate
culpability measures that combine both explicit and implicit
degrees of culpability. But first we need to formally define
what it means for a formula to implicitly contribute in mak-
ing a knowledge base inconsistent. For this, we first properly
define what it means in general for a formula to participate
in making a knowledge base inconsistent, and then we define
the special cases of explicit versus implicit contributions of
inconsistency.
Definition 6. Let X+

ϕ = {A ∈ X⊥⊥ϕ | A 6|= ⊥} denote the
set of all consistent ϕ-kernels of X .
1. A ϕ-witness within K is an inconsistent set X ⊆ K such
that (i)

(
X \

⋃
X+
ϕ

)
6|= ⊥ and (ii)

(
X \

⋃
X+
ϕ

)
∪{ϕ} |= ⊥.

2. A formula ϕ participates in making K inconsistent iff ϕ
has some witness within K.
3. A formula ϕ explicitly makes K inconsistent iff ϕ has
some witness X such that ϕ ∈ X .
4. A formula ϕ implicitly makes K inconsistent iff ϕ has
some witness X such that ϕ 6∈ X .

Intuitively ϕ contributes in making K inconsistent if in
some subset X of K, the information that a formula ϕ
carries is essential in producing inconsistency. This is for-
malised by removing from X all formulæ that consistently
imply ϕ and replacing them by ϕ itself. If such a removal
of formulæ produces a consistent set, condition 1.(i), but
the insertion of ϕ brings back the inconsistency, condi-
tion 1.(ii), then ϕ is indeed involved in producing incon-
sistency. In our previous example, the inconsistent kernel
A2 = {p ∨ q, p ∨ ¬q,¬p} is a p-witness, because the only
consistent p-kernel withinA2 is the setA′ = {p∨q, p∨¬q}
and (1.i) (A2 \ A′) 6|=⊥, and (1.ii) replacing A′ by ϕ re-
sults inA1 = {p,¬p} which indeed produces inconsistency,
that is, (A2 \ A′) ∪ {p} = A1 |=⊥. Moreover, p implicitly
contributes to the inconsistency because p 6∈ A2. Note that
the notion of an implicit contribution to inconsistency, un-
like the explicit counterpart, does not require a formula ϕ to
be in the knowledge base K. Rather, it focus on the consis-
tent information entailed by ϕ that conflicts with consistent
information within K.

Tacit functions will be explored in the next section as a
means to produce culpability measures capable of inducing
smooth consolidation function.
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5.1 Constructing Rational Consolidation via Tacit
Culpability Measures

In this section, we look at culpability measures as a way
of disclosing an epistemic preference of an agent in order
to perform consolidation. We identify a sufficient condition
that guarantees a culpability measure to yield rational con-
solidation functions:

tacit dominance If A ∈ core(K,ψ), A′ ∈ K⊥⊥ ψ, and
X ∈ ((A \ {ψ}) ∪ A′)⊥⊥⊥ then there is a ϕ ∈ X ∩ A′
such that CK(ϕ) ≥ CK(ψ).

The postulate tacit dominance addresses the concept of
implicit contributions towards inconsistency, and relates
tacit and explicit degrees of culpability. It states that if a for-
mulaψ participates in yielding inconsistency implicitly, then
some formula that contributes to the implicit role of ψ in an
inconsistent kernel X should be at least as culpable as ψ.

Theorem 7. Given a culpability measure CK and an inci-
sion function σCK . If CK satisfies tacit dominance then the
consolidation function !σCK is smooth.
Proof sketch. Let K ′ ⊆ K and ψ ∈ σCK (K⊥⊥⊥) s.t. K ′ |=
ψ. Thus, there are A ∈ core(K,ψ) and A′ ∈ K⊥⊥ ψ s.t.
maxCK (A) = CK(ψ). Let Y = (A \ {ψ}) ∪ A′, and X ∈
Y⊥⊥⊥ (note that Y |= ⊥). From tacit-dominance, there is
a ϕ ∈ X ∩ A′ s.t. CK(ϕ) ≥ CK(ψ). Thus, maxCK (A) ≤
CK(ϕ) ≤ maxCK (X). This implies maxCK (X) = CK(α),
for some α ∈ A′. Hence, σ is smooth: K ′ ∩ σ(K⊥⊥⊥) 6= ∅.

Theorem 7 states that it is enough for a culpability mea-
sure to satisfy tacit dominance in order to induce a smooth
consolidation function. In Subsection 5.2, we explore tacit
dominance as a means to define a new class of culpabil-
ity measures that yield smooth incision functions: the sta-
ble tacit culpability measures (Definition 8). This new class
exploits the concept of tacit functions introduced in the pre-
vious section. In the remainder of this section, we construct
the auxiliary tools necessary for defining the stable tacit cul-
pability measures. For sake of clarity, we provide examples
to support the intuition of how these auxiliary tools work.

We give a brief overview of how these auxiliary tools will
be used to define stable tacit culpability measures. The aux-
iliary tools assume an underlying culpability measure CK
that identifies explicit culpability degrees. The core ingredi-
ent is the function νCK that identifies some of the tacit values
within a knowledge base K. In Section 5.2, νCK is used in
an iterative approach to identify all the tacit values within
K. These tacit values are realised by exploiting a strategy
of maximising (via a function µCK ) and minimising (via a
function δCK ) distances between the explicit culpability val-
ues provided by CK . The notion of distance we conceptu-
alise here depends on other elements we introduce. The first
ingredient is the function λCK that, for each formula ϕ in-
volved in producing inconsistency, identifies the most sig-
nificant culpability value related to ϕ. This significant value
is called ϕ’s pole of inconsistency. The intuition is that the
closer a formulaϕ is to its pole of inconsistency, the more in-
fluential is ϕ in producing inconsistency. From this concept
of influence degree, we define a function ∆ that establishes a

notion of distance between the influence degrees of two for-
mulæ in producing inconsistency. This notion of distance is
then further generalised by two other functions: dCK (ϕ,ψ)
that localises the distance between ϕ and ψ within the in-
consistent kernels that ϕ is; and δCK (X,ψ) that minimises
the distances between a single formula ψ and the formulæ
within a set X of formulæ. A function µCK (ϕ,ψ) is de-
fined to maximise the distances between ψ and all ϕ-kernels
that contributes to the implicit role of ψ in yielding incon-
sistency. The intuition is that the more ϕ-kernels support ψ
in yielding inconsistency, the higher is the tacit value of ψ.

We start by defining the notion of a pole of inconsistency,
which will be helpful in inducing tacit functions from ex-
plicit degrees of culpability. Not all sources of inconsisten-
cies contribute equally towards inconsistency, and the higher
the culpability values of the formulæ in an inconsistent ker-
nel, the more influential are such formulæ in producing in-
consistencies. Within an inconsistent kernel X , a formula ψ
with the highest culpability value is deemed the most culpa-
ble one in producing the inconsistency. The closer the cul-
pability value of a formula ϕ ∈ X approaches to the culpa-
bility value of ψ, the more influential is ϕ within X in pro-
ducing inconsistency. Let us call ψ a pivot of ϕ. Intuitively,
a pivot of a formula ϕ can be understood as a significant for-
mula in producing inconsistency in the presence of ϕ. The
pivots of each formula is given by

pivCK (ϕ) =
⋃

X∈core(ϕ,K)

{ψ ∈ X | CK(ψ) = maxCK (X)}.

A formula ϕ might have more than one pivot. The closer the
culpability value of ϕ is to the culpability value of a pivot,
more influential is ϕ in producing inconsistency. There-
fore, ϕ is more influential exactly in the inconsistent kernels
where ϕ and its least culpable pivots are. The pole of incon-
sistency of a formula ϕ describes the significant culpability
value where ϕ maximises its influence in yielding inconsis-
tency. If ϕ is itself one of its pivots, then the culpability value
of ϕ is its own pole of inconsistency. The pole of inconsis-
tency of ϕ is therefore the minimal culpability value of all its
pivots. Given a culpability measure CK , the pole of inconsis-
tency of each formula involved in producing inconsistency
withinK is given by the function λCK : (

⋃
K⊥⊥⊥)→ R≥0,

λCK (ϕ) = minCK (pivCK (ϕ)).

Observation 8. Given a culpability measure CK , if
core(K,ϕ) 6= ∅ then λCK (ϕ) ≥ CK(ϕ).

Example 3 below illustrates the intuition of the pole of
inconsistency.
Example 3. Let K1 = {p, p ∨ r, p ∨ ¬r,¬p, r, (p ∨ r) →
z, z ↔ r, z,¬z}, and a culpability measure C′ that ranks the
culpability of these formulæ between 1 and 5 as depicted in
Figure 1. The formula r has exactly 3 inconsistent kernels:
A1 = {(p ∨ r) → z, r,¬z}, A2 = {r, z ↔ r,¬z} and
A3 = {p∨¬r, r,¬p}which are highlighted in Figure 1. Note
that the ¬z is the most culpable formula in both A1 and A2,
while ¬p is the most culpable formula inA3. The culpability
value of r is much closer to the culpability value of¬z rather
than ¬p. This means that the culpability value of r is more
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influential in the presence of¬z, which makes the culpability
value of ¬z the pole of inconsistency of r. Table 1 below
presents the poles of inconsistency of the formulæ in K1:

p p ∨ r p ∨ ¬r ¬p r (p ∨ r)→ z z ↔ r z ¬z
λC′ 5 4 5 5 4 4 4 4 4

Table 1: Poles of inconsistency for K1.

(p ∨ r) → z

p ∨ r z ↔ r

1 2 3 4 5

z

r

p ∨ ¬r ¬p

¬z p

Figure 1: A graphical overview of how the culpability values of the
formulæ in Example 3 are ranked. The inconsistent kernels of r are
outlined.

Lemma 9. Given a culpability measure CK , if there exists
a set A ∈ K⊥⊥ ⊥, and two formulæ ϕ,ψ ∈ A such that
CK(ψ) = maxCK (A) then: (1) λCK (ψ) = CK(ψ), and (2)
λCK (ϕ) ≤ λCK (ψ).

The pole of inconsistency helps us to grade the formulæ
based on how influential they are in producing inconsisten-
cies: the closer the culpability value of a formula is to its
pole of inconsistency, the more influential it is. Towards
this end, the influence degree of a formula ϕ can be mea-
sured as the ratio between its culpability value and its pole
of inconsistency, that is, CK(ϕ)/λCK (ϕ). Figure 2 depicts
the formulæ of Example 3 graded by its influence degrees.
The distance between the influence degrees of two formulæ
can be measured by the signed distance function1 ∆CK :
(
⋃
K⊥⊥⊥)× (

⋃
K⊥⊥⊥)→ R such that

∆CK (ϕ,ψ) =
CK(ψ)

λCK (ψ)
− CK(ϕ)

λCK (ϕ)
.

The function ∆CK not only measures how far the in-
fluence degrees of two formulæ are from each other, but
also indicates which one is more influential than the other:
∆CK (ϕ,ψ) < 0 indicates that ϕ is more influential than ψ,
while ∆CK (ϕ,ψ) ≥ 0 indicates that ψ is at least as influ-
ential as ϕ. For instance, in Example 3, the formulæ r and
p∨¬r have the same culpability value 3. However, as shown
in Figure 2, r is more influential than p∨¬r because the cul-
pability value of r is much closer to its pole of inconsistency
than p ∨ ¬r is to its pole of inconsistency (see Table 1 for
the pole of inconsistencies). On the other hand, z ↔ r and
z are equally influential, because their culpability values are

1The term distance is often used a synonym for metric which
should, among other properties, be a non-negative real function.
Here, instead, the term distance is used to capture the notion of
farness between culpability values of formulæ and negative values
are used to give a notion of oriented distance.

(p ∨ r) → z

p ∨ r z ↔ r

z

r

1
4

1
2

3
5

3
4 1

p ∨ ¬r ¬p

¬z

p

Figure 2: Formulæ from Example 3 ranked according to their in-
fluence degrees.

not only equal, but they also present the same pole of incon-
sistency 4.

A formula produces inconsistency only within its incon-
sistent kernels, or core for short. The distance, given by
∆CK , between two formulæ should then be localised within
their cores.

If one wants to localise the distance between the influence
degrees of two formulæ ϕ and ψ within one of their cores,
say ϕ, then it suffices to multiply the distance by the pole
of inconsistency of ϕ. This localisation is realised by the
function dCK : (

⋃
K⊥⊥⊥)× (

⋃
K⊥⊥⊥)→ R≥0,

dCK (ϕ,ψ) = ∆(ϕ,ψ) · λCK (ϕ).

A formula ϕ depends on other formulæ in order to im-
plicitly contribute to entail inconsistency. For instance, the
formula p in the knowledge base {p, p ∨ q, p ∨ ¬q,¬p}
implicitly entails inconsistency only because in the kernel
{p∨q, p∨¬q,¬p}, the formulæ p∨q and p∨¬q jointly entail
p. We say that both p∨q and p∨¬q contribute to the implicit
role of p in yielding inconsistency; or simply that they con-
tribute to the implicit role of p towards inconsistency. It will
be helpful to have a function, that given a formula ϕ, identi-
fies which formulæ ψ the formula ϕ potentially contributes
to the implicit role of ψ towards inconsistency:

imp(K,ϕ) = {ψ ∈
⋃
K⊥⊥⊥ | ϕ ∈

⋃
K⊥⊥ψ}.

We will define a tacit function that uses the influence de-
grees to determine the tacit value of a formula.

Given a formula ϕ that contributes to entail inconsistency
within a knowledge base K, its tacit value could be deter-
mined by how strongly connected its influence degree is to
the influential degrees of the formulæ in imp(ϕ,K). The
function dCK will be essential in this task. Let us start by
defining the function δCK : 2K × (

⋃
K⊥⊥⊥) → R≥0 such

that

δCK (X,ψ) = min({dCK (ϕ,ψ) | ϕ ∈ X ∩ (
⋃
K⊥⊥⊥)}).

The function borrows intuition from the pole of inconsis-
tency. Back to Example 3, the set X1 = {r, p ∨ ¬r} entails
p. The distance from the influence degrees of r and p ∨ ¬r
to the influential degree of p can be visualised in Figure 2.
While both r and p ∨ ¬r have the same culpability value,
the influence degree of r is closer than the influence degree
of p ∨ ¬r to the influence degree of p. This means that r
contributes more than p ∨ ¬r to the implicit role of p in
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producing inconsistency. Therefore, the closer the influence
degree of a formula ϕ is to the influence degree of a for-
mula ψ, the more ϕ contributes to the implicit role of ψ in
producing inconsistency. The distance ∆ provides the raw
distance between the influence degrees of two formulæ, but
does not provide any context of how this distance is inter-
preted in their cores. The distance ∆(ψ,ϕ) can be projected
towards ϕ to weight the connection between ϕ and ψ, which
can be done by using dCK instead of ∆.

Intuitively, δCK (X,ψ) minimises the distances between
ψ and the formulæ in X that participate in producing in-
consistency. Back to Example 3, for X1 = {r, p ∨ ¬r}, we
have δCK (X1, p) = min({dCK (r, p), dCK (p ∨ ¬r, p), }) =
min({1, 2}) = 1. The concept of influence degree is ap-
plied only to formulæ that contribute in yielding inconsis-
tency, therefore the condition ϕ ∈ X ∩ (

⋃
K⊥⊥⊥) is used

to guarantee that only such formulæ will be considered.
If a formula ϕ contributes to the implicit role of a formula

ψ in yielding inconsistency via only one ψ-kernel, then δCK
can be used to assess how much ϕ contributes to the im-
plicit role of ψ. However, ϕ may contribute to the implicit
role of ψ in producing inconsistency via more than one ψ-
kernel. The more ψ-kernel ϕ participates in, the farther ϕ
potentially becomes from ψ. Therefore, the tacit value of ϕ
should maximise the value of δCK to each of the ψ-kernels
that ϕ participates in. This is accomplished by the function:

µCK (ϕ,ψ) = max({δCK (X,ψ) | X ∈ K⊥⊥ψ,ϕ ∈ X}).

Example 4. (Continued from Example 3). The formula p ∨
¬r contributes to entail p via two kernels: X1 = {r, p∨¬r}
and X2 = {p∨ r, p∨¬r}. The implicit connection between
p ∨ ¬r and p can be measured by µCK (p ∨ ¬r, p). Note that
δCK (X2, p) = 2, and δCK (X1, p) = 1. Thus,

µCK (p ∨ ¬r, p) = max({δCK (X1, p), δCK (X2, p)}) = 2.

The function µ is used to assess how much a formula ϕ
contributes to the implicit role towards inconsistency of a
formula ψ. However, a formula ϕmight contribute to the im-
plicit role towards inconsistency of more than one formula.
Let us define the function νCK : K → R≥0 that considers
all the formulæ that a formula ϕ contributes to the implicit
role towards inconsistency:

• νCK (ϕ) = 0, if core(K,ϕ) = ∅;
• νCK (ϕ) = max({µCK (ϕ,ψ) | ψ ∈ imp(ϕ,K)}), other-

wise.

Intuitively, νCK approximates the culpability value ofϕ to its
own pole of inconsistency taking the distances between the
culpability value of ϕ and each formula ψ it contributes to
the implicitly role towards inconsistency. If a formula does
not contribute to make K inconsistent, then νCK (ϕ) = 0.

Example 5. (Continued from Example 4) Let us look at how
implicitly connected is the formula p∨r in producing incon-
sistencies according to νC′ . The formula p∨r participates in
entailing only three formulæ that contributes in making K1

inconsistent: p, z and r via the kernelsX2 = {p∨r, p∨¬r},
X3 = {(p∨r)→ z, p∨r} andX4 = {p∨r, p∨r → z, z ↔
r}, respectively. Thus, imp(K1, p ∨ r) = {p, z, r, p ∨ r},

p p ∨ r p ∨ ¬r ¬p r (p ∨ r)→ z r ↔ z z ¬z
νC′ 0 2 2 0 1 0 2 2 0
C′◦ 5 3 5 5 4 2 4 4 4

Table 2: Functions νC′ and C′◦ on formulæ from Example 3.

and νC′(p∨ r) = max({µC′(p∨ r, p), µC′(p∨ r, z), µC′(p∨
r, r), µC′(p∨r, p∨r)}). From the previous example, we have
δC(X2, p) = 2. Note that δC′(X3, z) = min({dC′(p ∨ r →
z, z), dC′(p∨ r, z)}) = min({0, 1}) = 0; and δC′(X4, r) =
min({dC′(p ∨ r, r), dC′(p ∨ r → z, r), dC′(z ↔ r, r)}) =
min({2, 1, 1}) = 1. Thus,

µC(p ∨ r, p) = max({δ(X2, p)}) = 2

µC(p ∨ r, z) = max({δ(X3, z)}) = 0

µC(p ∨ r, r) = max({δ(X4, r)}) = 1

µC(p ∨ r, p ∨ r) = max({δ({p ∨ r}, p ∨ r)}) = 0.

Thus, νC′(p∨r) = max({0, 1, 2}) = 2. Table 2 summarises
νC′ .

Proposition 10. For every culpability measure CK , 0 ≤
νCK (ϕ) ≤ λCK (ϕ)− CK(ϕ), for all ϕ ∈

⋃
K⊥⊥⊥.

According to Proposition 10, the values identified by νCK
are always non-negative and bounded by the poles of in-
consistency. We can use νCK to construct a culpability mea-
sure that combines both the explicitly and implicitly coun-
terparts. Let CK be a culpability measure, we define

C◦K(ϕ) = CK(ϕ) + νCK (ϕ).

The function C◦K is indeed a culpability measure.

Observation 11. For every culpability measure CK , the
function C◦K built upon CK is also a culpability measure.

Table 2 shows the culpability measure C′◦ built upon the
culpability measure C′ from Example 3.

5.2 A Tacit Function Based on Fixed Points
Let us see how νCK and C◦K connect with tacit dominance:

Example 6. (Continued from Example 5) Let us compare C′
and C′◦. Note that C′ is not tacit dominant because C′(p) =
5, while the formulæ in the p-kernels X1 = {p ∨ ¬r, r} and
X2 = {p ∨ r, p ∨ ¬r} have culpability value strictly less
then 5. Using νC′ to identify the tacit values within K1 and
combining them with C′, produces the culpability measure
C′◦ that grades at least one formula in both X1 and X2 as
culpable as p. Precisely, due to the tacit values identified by
νC′ , the formulæ p ∨ ¬r has the same culpability value of
p, that is, C′(p) = C′(p ∨ ¬r) = 5. At a first glance, this
shows the potential of νC′ in capturing tacit dominance. On
the other hand, C′ is not tacit dominant, because C′(z) = 4,
while all the formulæ in the z-kernelX5 = {p∨r, p∨r → z}
have culpability value strictly less than 4.

Example 6 shows us that νCK is not strong enough to cap-
ture tacit dominance. A closer look, however, will show us
why νCK fails tacit dominance and how it could be modified
in order to achieve tacit dominance. Precisely, νCK focuses
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on tacit values of formulæ directly connected to the most in-
fluential formulæ. For instance, the formula z jointly with
z ↔ r and p ∨ ¬r implies p whose culpability value co-
incides with its pole of inconsistency 5. On the other hand,
the formula α = p ∨ r → z had no tacit value identified,
because the only formulæ it consistently contributes to en-
tail are r and z which are originally not among the most in-
fluential formulæ, as their influence degree are respectively
3/4 and 1/2 (the influence degrees are depicted in Figure 2).
However, z has a tacit value of 2, due do its close connection
with p, putting z among the most influential formulæ in K1:
C′◦(z) = 2+2 = 4 and λC′◦(α) = 4 which implies in an in-
fluence degree of 1. But since {p∨ r, α} implies z, which is
indeed among the most influential ones due to its tacit value,
then α should indeed have some tacit value as well, which
was not identified by νC′ . The reason why νC′ was unable to
identify the tacit value of α is because νC′ is not sensitive to
the realisations that the tacit value of a formula, say z, would
interfere with the tacit value of another formula, say α.

We can then extend νCK to become sensitive to these shift-
ing of values as the tacit values of other formulæ are identi-
fied. We can achieve this by resorting to a iterative strategy:
νCK is used to identify the tacit values of some formulæ, and
assemble them with the original culpability value, resulting
in C◦K ; we then apply νC◦K to identify remaining tacit values.
We put this on the loop until no more tacit values are iden-
tified. To avoid summing up overlapping tacit values in the
iterative strategy, we can restrict νCK to focus only on some
specific formulæ whose tacit values will be fully identified
in each iteration. In the beginning of our discussion, we have
argued that νCK focuses mainly on the formulæ directly con-
nected to the most influential formulæ. Thus, we can priori-
tise these formulæ in each iteration. For convenience, let us
slightly modify νCK to certify that in each iteration it will fo-
cus only on the formulæ closest to the most influential ones:
• ν+CK (ϕ) = νCK (ϕ), if there exists ψ ∈ imp(ϕ,K) such

that CK(ψ) = λCK (ψ) and µCK (ϕ,ψ) > 0;

• ν+CK (ϕ) = 0, otherwise.
For the iterative approach, we define

T 0
CK (ϕ) = CK(ϕ) + ν+CK (ϕ)

T i+1
CK (ϕ) = T iCK (ϕ) + ν+T iCK

(ϕ), for 0 ≤ i ∈ Z.

The base case T 0
CK applies ν+CK to identify the tacit values

of the formulæ in the most influential subsets and combine
them with CK . The function ν+ is applied then on the values
obtained by T 0

CK to identify the tacit values of the remaining
formulæ, in the knowledge base. This process repeats until
all tacit values are found. The first issue is to show that this
iterative approach indeed converges to a fixed point, that is,
after a number m of iterations no tacit values are produced.
This can be formalised in the following way.
Definition 7. Given a culpability measure CK , a fixed point
of TCK is a m ∈ Z+ such that T mCK ≡ T

m+1
CK . If 0 ≤ m − 1

is not a fixed point, or m = 0 then m is the least fixed point.
We will first show that TCK has at least one fixed point.

For this we will need the following lemma.

Lemma 12. If T i+1
CK 6≡ T iCK then there is some α ∈ K such

that T i+1
CK (α) > T iCK (α) and T jCK (α) = T i+1

CK (α), for all
j ≥ i+ 1.

Lemma 12 informs that in each iteration step, the tacit
value of some formula α is fully identified, in the sense that
in the further iterations its tacit value is not sensitive to the
tacit value of other formulæ anymore. From this it is easy to
see that after a number of iterations, a fixed point is reached.
Theorem 13. For every culpability measure CK , the func-
tion TCK has a least fixed point.

We can then define a culpability measure based on the
fixed point of TCK .
Definition 8. Given a culpability measure CK , the tacit cul-
pability measure νCK built upon CK and let m be the least
fixed point of TCK . The function ηCK (ϕ) = T mCK (ϕ) is the
stable tacit function of CK .
Example 7. (Continued from Example 6). Note that T 0

C′ ≡
C′◦, which we already have presented on Table 2. Thus,
T 1
C′(ϕ) = TT 0

C′
(ϕ) + νT 0

C′
(ϕ) = C′◦(ϕ) + ν+C′◦(ϕ).

One of the formulæ that still presents some tacit value is
α = (p ∨ r) → z. Solving ν+T 0

C
(α) and simplifying some

equations will give us
ν+T 0
C

(α) = µT 0
C

(α, r) = δT 0
C

({α, p ∨ r}, r) = 1.

Thus, T 1
C′(α) = C′◦(α) + ν+C′◦(α) = 2 + 1 = 3. The table

below summarises T 1
C′ . One can check that T 2

C′ ≡ T 1
C′ , that

is, the least fixed point of TC′ is 1.

p p ∨ r p ∨ ¬r ¬p r p ∨ r → z r ↔ z z ¬z
ν+TC′ 0 1 0 0 0 1 0 0 0

T 1
C′ 5 4 5 5 4 3 4 4 4

Observation 14. For every culpability measure, the stable
tacit function ηCK is a culpability measure.

The function ηCK indeed yields smooth consolidation
functions:
Theorem 15. Given a stable tacit culpability measure η, the
consolidation function !ση is smooth.

It turns out that stable tacit culpability measures not
only induce rational consolidation functions, but also every
smooth consolidation function can be constructed via a sta-
ble tacit culpability measure
Theorem 16. If a consolidation function !σ is smooth, then
there is some stable tacit culpability measure η such that
!ση ≡ !σ .

Actually, the representation theorem between stable tacit
culpability measures and consolidation functions, obtained
jointly by Theorems 15 and 16, is even stronger: the stable
tacit culpability measures form the only class of culpability
measures capable of inducing smooth consolidation func-
tions.
Theorem 17. If C is a culpability measure and !σC is
smooth, then C is a stable tacit culpability measure.
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6 Discussion and Future Works
In this paper, we proposed to use culpability measures as
a tool to disclose an agent’s epistemic preference relation
and use it to perform consolidation. The existing culpabil-
ity measures in the literature, however, fail to yield consol-
idation functions that satisfy the relative closure postulate,
known as smooth consolidation functions. To address this
problem, we have introduced the concept of tacit functions
that take the semantic counterparts to define more precise
culpability measures. In this direction, we have introduced
a special class of tacit culpability functions, the stable tacit
culpability measures, that use an initial culpability measure
that assess the explicit degree of culpability and then realises
the tacit values of the formulæ. We showed then a repre-
sentation theorem between stable tacit culpability measures
and smooth consolidation functions. In addition, the repre-
sentation theorem is strengthened by showing that the stable
tacit culpability measures are the only class of culpability
measures that yield smooth consolidation functions. In the
remainder of this section, we discuss about some future re-
search direction worth to take.

Belief Change and Culpability Measures A future re-
search path worth to explore is to use culpability measures,
in particular the stable tacit culpability measures, to support
other kinds of belief change operations:

(1) Belief contraction and safe contraction: assume that a
formula α should be relinquished from a knowledge base
K. The formulæ within K could be graded according to
their contribution degree in entailing α. Respectively, one
could grade the formulæ within K according to their con-
flicting degree with ¬α. The conflicting degree between the
formulæ within K and ¬α could be assessed by applying a
culpability measure CK′ at K ′ = K ∪ {¬α}. The contrac-
tion could then be performed by a (smooth) kernel contrac-
tion K−̇CK′α whose incision function is induced by CK . It
is still not clear if, in this strategy, tacit-dominance would
be enough to guarantee relative closure and/or which ex-
tra properties a culpability measure would need to satisfy to
capture relative-closure. In addition, it would be necessary to
investigate how well behaved are these contraction functions
based on this strategy. Kernel contraction functions whose
incision functions are based on epistemic preference rela-
tions are known as safe contraction (Alchourrón and Makin-
son 1985; Rott and Hansson 2014). Therefore, the use of
culpability measures, as proposed, to construct kernel con-
traction functions, would bring to light a new kind of safe
contraction whose rationality would be worth to explore, as
well as the role of tacit dominance in this setting.

(2) Belief revision: In a knowledge base K, revision by a
formula α, denotedK∗α, can be performed via Levi’s exter-
nal identity (Hansson 1993b): (K∪{α})−¬α, that consists
in first adding α to the knowledge base, potentially making it
inconsistent, and then removing the information conflicting
with α. In this case, a culpability measure could be applied
in (K ∪ {α}) to identify the most culpable formulæ and use
it as an epistemic preference relation to construct a (smooth)
contraction function as discussed in the topic (1) above.

(3) Transmutation: when a belief change operation is ap-
plied on a knowledge base, like contraction and revision, the
agent’s epistemic preference relation also changes. This pro-
cess of modifying the epistemic preference relation is known
as transmutation (Williams 1994, 1995). Assume that the
epistemic preference relation of an agent could be given by a
function f that informs the entrenched degree of its beliefs.
In our approach, the tacit function νf would inform how
strongly connected are the formulæ in producing inconsis-
tency. The minimise/maximise approach we have proposed
to unveil these hidden values could be adapted to identify
how strongly connected are the formulæ in entailing a for-
mula α to be contracted/revised. In this case, the obtained
tacit values could be used to define the new epistemic pref-
erence relation in the new knowledge base.

Pseudo-Consolidation and “Conflicts Under the Water”
De Bona and Hunter (2017) identified cases where sub-
formulæ of a knowledge base might not participate in any
of the minimal inconsistent subsets, and yet be responsi-
ble in entailing inconsistencies. To deal with this problem,
they have introduced the concept of “conflicts under the wa-
ter” which is similar to our concept of implicit contribution
to inconsistency. De Bona and Hunter’s strategy consists in
defining some consequence operators Cn∗ (which we shall
call here a pseudo consequence operator) that augment a
knowledge base with some formulæ in order to reveal hidden
sub-formulæ that indeed participate in making the knowl-
edge base inconsistent. From the pseudo consequence oper-
ators Cn∗, De Bona and Hunter define consolidation func-
tions based on pseudo-contraction (Hansson 1993a), which
consists in consolidating the superset Cn∗(K), instead of
K, in order to minimise loss of information. Towards mea-
suring inconsistencies, they have introduced some inconsis-
tency measures (which, unlike culpability measures, evalu-
ate the inconsistency degree of a knowledge base as a whole)
based on their concept of “conflicts under the water”. Al-
though similar in spirit, their strategy to identify hidden con-
flicts differs from ours. While the “under the water” for-
mulæ responsible for causing inconsistencies depend on the
adopted pseudo consequence operator, our concept of im-
plicit contribution towards inconsistency is applied on the
whole language, and are not confined to sub-formulæ of the
original knowledge base. On the other hand, we focus on
measuring the implicit culpability degree of the formulæ in
a given knowledge base, as we are not interested in pseudo-
contraction.

It would be worth to explore the precise connection be-
tween our concept of implicit contribution towards incon-
sistency and “conflicts under the water”. A potential re-
search direction, towards consolidation, is to define tacit cul-
pability measures in the supersets generated by the pseudo
consequence operators proposed by De Bona and Hunter
(2017) and other pseudo consequence operators in the lit-
erature (Santos et al. 2018). This includes investigating how
tacit-dominance would behave in this setting. Secondly, our
concept of implicit contribution towards inconsistency, and
tacit culpability measure could also be used to define new
pseudo-contraction/consolidation operators.
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