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Abstract

Attack-Incomplete Abstract Argumentation Frameworks (att-
iAAFs) are a popular extension of AAFs where attacks are
marked as uncertain when they are not unanimously per-
ceived by different agents reasoning on the same arguments.
We here extend att-iAAFs with the possibility of specifying
correlations involving the uncertain attacks. This feature sup-
ports a unified and more precise representation of the differ-
ent scenarios for the argumentation, where, for instance, it
can be stated that an attack o has to be considered only if an
attack (3 is considered, or that « and (8 are alternative, and
so on. In order to provide a user-friendly language for spec-
ifying the correlations, we allow the argumentation analyst
to express them in terms of a set of elementary dependen-
cies, using common logical operators (namely, OR, NAND,
CHOICE, =). In this context, we focus on the problem of
verifying extensions under the possible perspective, and study
the sensitivity of its computational complexity to the forms of
correlations expressed and the semantics of the extensions.

1 Introduction

The need of suitably modeling the uncertainty character-
izing the real world has led to the introduction of sev-
eral variants of Dung’s Abstract Argumentation Frameworks
(AAFs) (Dung 1995). In particular, attack-incomplete Ab-
stract Argumentation Frameworks (att-iAAFs) have proved
effective in enabling a “qualitative” representation of the
uncertainty involving the attacks between the arguments
occurring in disputes. Basically, an att-iAAF is an AAF
where the set of attacks is partitioned into the sets of cer-
tain and uncertain attacks: an attack is marked as certain
if its presence in the argumentation is guaranteed, and un-
certain otherwise. As observed in (Baumeister et al. 2018;
Coste-Marquis et al. 2007; Cayrol, Devred, and Lagasquie-
Schiex 2007), resorting to att-iAAFs is natural in the case
where the argumentation involves several agents having dif-
ferent subjective views. Here, different opinions on the
meaning of the various arguments or on the trustworthi-
ness of who claimed the arguments may yield to different
opinions on which attacks make sense. Thus, when the
analyst examines the “global” view of the argumentation,
they find it natural to model the attacks that are not unan-
imously perceived as “uncertain”. Analogously, when sev-
eral agents may contribute to a dispute by claiming argu-
ments and by elaborating on why some arguments (not nec-
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essarily claimed by them) attack other arguments, it is natu-
ral to consider as “uncertain” the attacks motivated by agents
whose participation is not guaranteed.

It is easy to see that an att-iAAF compactly encodes a set
of alternative scenarios for the argumentation: each scenario
is called “completion” and is an AAF containing all the ar-
guments and the certain attacks of the att-iAAF, plus a subset
of its uncertain attacks. In order to take into account the fact
that, differently from “traditional” AAFs, multiple scenarios
are possible, the traditional notion of extension for an AAF
has been re-formulated in terms of i*-extension (Fazzinga,
Flesca, and Furfaro 2020b): A set of arguments S is a pos-
sible (resp., necessary) i*-extension of the att-iAAF I F' if,
for some (resp., every) completion F' of IF, the set S is an
extension of F.

Example 1. Consider the att-iAAF IF over the set of ar-
guments A = {a,b,c} and the set of attacks D = {(a,b),
(b,a),(c,b)} depicted in Fig. 1 (disregard the dotted edges
for now). All the attacks are uncertain, thus IF has the
Jollowing 8 completions, denoted as pairs ( arguments, at-

tacks ):

Fy = (A, D),

= <A7 {(a7 b)}>’

FB = <A, {(bv a)}>;

F4 = <A7 {(Cv b)}>’

Fs = <A7 {(CL, b)a (b7 a)}>;

Fs = <Av {(b’ a)a (Cv b)}>;

Fr = <A> {(a7 b)’ (Cv b)}>;

Fs = <A7 {(CL, b)a (b7 a)a (C7 b)}>

It is easy to see that every subset of A is a possible i*-
extension under the admissible semantics, since it is an ad-
missible extension in Fy. The only necessary i*-extensions
(under the admissible semantics) are () and {c}.

A limit of the representation paradigm of att-iA AFs is that
it does not take into account possible correlations between
the uncertain attacks. For instance, the argumentation ana-
lyst cannot specify that, if an attack « is considered when
reasoning on the acceptability of (sets of) arguments, then
also the attack 3 should be considered (since the motiva-
tions that lead an agent to believe that o holds imply that
also 3 holds), or that o and  cannot co-exist in any realistic
scenario (since the motivations that lead an agent to believe
that o or 3 hold are antithetical).

In fact, the presence of such dependencies between the
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Figure 1: =- and CHOICE- labeled edges/lines represent depen-
dencies, the edges marked with a white circle are uncertain attacks

O
A

attacks can imply that some completions encoded by the att-
1AAF represent scenarios that cannot actually occur, and this
may deeply affect the reasoning process, as shown in Exam-
ple 2.

Example 2. Consider the att-iAAF of Example 1 and as-
sume that it has been defined for modeling a television de-
bate between two parties: the anarchists and the authorities.
Assume that the arguments b and c are claimed by two dis-
tinct representatives of the authorities (Bob and Charlotte,
respectively), while a is claimed by Anthony, a representa-
tive of the anarchists.

The analyst who defined the att-iAAF wants to reason on
the debate by considering the possible subjective views of
the audience. Specifically, the analyst knows that Charlotte
is an authoritative and popular personality, so that the ca-
pability of her argument c to attack b can be perceived by
every type of audience, independently from the fact that they
are supporters of anarchists or authorities. Moreover, the
analyst knows that if the audience perceives the attack (b, a)
as valid, they will also agree on the attack (c,b), since the
reasons of (b, a) imply those of (c,b). Finally, since the an-
alyst wants to focus on two “antithetic” and polarized types
of audience (that is, the supporters of anarchists and those
of authorities), the attacks (a, b) and (b, a) are mutually ex-
clusive, as the former will be present in the subjective view
of the supporters of the anarchists, and the latter in the au-
thorities’ view. Overall, this means that the anarchists’s sup-
porters will consider the attack (a,b) and possibly the attack
(¢, b), while the authorities’ supporters will consider the at-
tacks (b, a) and (¢, b) in their view.

The above-described correlations between the at-
tacks of the att-iAAF can be formally written as
CHOICE((a, b), (b, a)) and (b,a) = (c,b), and can be eas-
ily represented in a graphical form: in Figure 1, they are
represented as dotted edges over the argumentation graph,
labeled with the logical connective. Taking into account the
dependencies makes the att-iAAF encode the only three pos-
sible scenarios that can occur, according to the system of be-
lief of the audience. In fact, considering the dependencies,
many of the completions listed in Example 1 encode scenar-
ios that do not correspond to any subjective view. The only
“valid” completions are I, Fg and F. In the light of this,
under the admissible semantics, the sets {a,b} and {b,c}
are no more possible i*-extensions, and the sets {a} and
{a, ¢} become necessary i*-extensions.

As shown in Example 2, the fact that att-iAAFs have no
mechanism for expressing correlations can cause an impre-
cise representation of the possible scenarios for the argu-
mentation, and this can yield wrong assessments. For in-
stance, under the possible perspective, it may happen that
the completions witnessing that a set S is an i*-extension
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are not scenarios that can occur in practice (i.e. scenarios
compatible with some of the subjective views summarized
in the att-iAAF). Hence, disregarding the correlations may
lead the analyst to wrongly consider S as a set of arguments
that is “robust” according to at least one way of perceiving
the attacks (as happens in examples 1 and 2 for {a, b} and
{b,c}).

An analogous issue was the motivation of the framework
in our previous work (Fazzinga, Flesca, and Furfaro 2021),
where a language for specifying correlations between argu-
ments in argument incomplete AAFs was introduced. In
fact, this work can be viewed as a natural continuation
of (Fazzinga, Flesca, and Furfaro 2021): we here intro-
duce “att-iAAFs with dependencies” (d-att-iAAFs), where
the same language for expressing correlations exploited in
argument incomplete AAFs is now used to specify depen-
dencies between uncertain attacks. This language offers
a set of classical n-ary logical connectives (namely, OR,
NAND, CHOICE, =) that allow “elementary” dependencies
over sets of attacks to be expressed in a user-friendly man-
ner.

Given this, we first extend the notion of i*-extension to the
case of d-att-iAAFs (so that, when deciding whether a set is
an extension or not, only the completions consistent with the
dependencies are included). Then, we characterize the com-
plexity of the verification problem for possible i*-extensions
for a d-att-iAAF under Dung’s semantics (admissible, sta-
ble, complete, grounded and preferred). We perform a thor-
ough investigation, where we study the sensitivity of the
computational complexity to the forms of dependency used
to specify the correlations and to the semantics of exten-
sions. Interestingly, we show that, for some combinations
(dependency, semantics), the complexity is P (the same as
the verification problem over att-iAAFs in the absence of
correlations), while for others the complexity moves to NP-
complete. In order to give an insight on the sources of com-
plexity, we even study the impact of the arity of the logical
connectives on the complexity, and show that for some con-
nectives (i.e., NAND, CHOICE) the verification is hard even
for the lowest arity, while for = the verification problem be-
comes solvable in polynomial time if we suitably limit the
number of operands. Table 1 reports a synopsis of the results
proved in the paper.

2 Preliminaries

An abstract argumentation framework (AAF) is a pair
(A, D), where A is a finite set, whose elements are called
arguments, and D C A x A is a binary relation over A,
whose elements are called attacks. Given a set of arguments
S and an argument a, we say that “S attacks a” if there is an
argument b in S such that b attacks a, and that “a attacks S”
if there is an argument b € S such that a attacks b. More-
over, we say that a is acceptable w.rt. S if every argument
attacking « is attacked by .S, and say that S is conflict-free if
there is no attack between its arguments.

Several semantics for AAFs have been proposed to iden-
tify “reasonable” sets of arguments, called extensions (Dung
1995). A set S C A is: an admissible extension (ad) iff S
is conflict-free and all its arguments are acceptable w.r.t. S;
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a stable extension (st) iff S is conflict-free and S defeats
each argument in A \ S; a complete extension (co) iff S is
admissible and S contains all the arguments that are accept-
able w.r.t. S; a grounded extension (gr) iff S is a minimal
(w.r.t. C©) complete set of arguments; a preferred extension
(pr) iff S is a maximal (w.r.t. C) complete set of arguments.

We recall the notion of attack-incomplete Abstract Argu-
mentation Framework (att-iIAAF) (Baumeister, Rothe, and
Schadrack 2015).

Definition 1 (att-iAAF). An attack-incomplete Abstract Ar-
gumentation Framework is a tuple (A, D, D*), where A is a
set of arguments and D and D’ are disjoint sets of attacks
between arguments in A. The attacks in D (resp., D’) are
said to be certain (resp., uncertain), i.e. they are guaranteed
(resp., not guaranteed) to occur in the argumentation.

An att-iAAF compactly represents the alternative scenar-
ios for the argumentation, i.e. all the possible combinations
of arguments and attacks that can occur according to what is
certain and uncertain. Each scenario is called completion.

Definition 2 (Completion). Given an att-iAAF IF
(A, D, D?), a completion for IF is an AAF F = (A, D’)
where D C D' C (DU D").

In (Fazzinga, Flesca, and Furfaro 2020b), i*-extensions
were introduced to adapt the notion of extension to the case
of att-iAAFs. Specifically, since an att-iAAF encodes sev-
eral alternative scenarios, i*-extensions were defined under
both the possible and the necessary perspective, where the
condition of being extension is required to be true in at least
one and every scenario, respectively. Example 1 contains
examples of possible and necessary i*-extensions over att-
iAAFs.

Definition 3 (i*-extension). Given an att-iAAF IF and a
semantics o, a set S is a possible (resp., necessary) i*-
extension for I'F (under o) if, for at least one (resp., for
every) completion F of IF, the set S is an extension of F
under o.

3 Augmenting att-iAAFs with Correlations

The original paradigm of att-iAAFs assumes that the attacks
are independent from one another: the occurrence of an at-
tack does not have any effect on the occurrence of other at-
tacks. As we have shown in Example 2, the independence
assumption may not be valid in general, since it can happen
that some correlation is known to exist between uncertain
attacks, and this has important consequences.

Indeed, introducing dependencies may have the effect of
discarding some completions, as they turn out to describe
scenarios that cannot occur. This has a strong impact on the
reasoning. In fact, under the possible perspective, a set that
is an i*-extension when dependencies are not considered
may be no longer an i*-extension when dependencies are
taken into account. For instance, Example 2 shows that
this happens with {a, b}, since the completion F}, that is
the only completion witnessing that {a, b} is an admissible
extension, turns out to be an impossible scenario when
the CHOICE-dependency is taken into account. Under the
necessary perspective, a set that, with no dependency, is
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not an i*-extension may become an i*-extension when the
dependencies are considered. In Example 2 the sets {a} and
{a,c} become necessary admissible i*-extensions as the
only completions representing possible scenarios are Fs, Fg
and F~.

In order to encode the correlations among attacks, we re-
sort to the language introduced in (Fazzinga, Flesca, and
Furfaro 2021) in the analogous scenario where the correla-
tions involve the arguments in argument-incomplete AAFs.
We use this language since, as we will see later on, it is
expressive enough to allow every form of correlation to be
specified and, moreover, it is easy and intuitive. The lan-
guage offers a set of n-ary logical connectives, so that cor-
relations are expressed in terms of dependencies of the fol-
lowing form.

Definition 4 (Dependency). A dependency & over an att-
iAAF IF = (A,D,D") is an expression X = Y (=-
dependency) or OP(X ) (OP-dependency), where OP € {OR,
NAND, CHOICE} and X, Y are non-empty subsets of D",

Specifying dependencies makes some scenarios become
invalid. We now define the “valid” completions, that are
those that satisfy the dependencies.

Definition 5 (Valid completion). A completion F = (A, D')
is valid w.r.t a dependency 6 (written F |= §) iff

— 0is OR(X) and X N D" # 1),

- 0isNAND(X)and X N D' C X,

— 0 is CHOICE(X ) and | X N D'| =1,

- disX=Yand if X CD' thenY ND'" # 1.
F is valid w.r.t. a set of dependencies A if V6 € A F = 6.

Thus, an OR- (resp., CHOICE-) dependency imposes that
at least (resp., exactly) one of the specified attacks is in the
completion; a NAND-dependency imposes that the specified
attacks cannot occur all together; an implication = means
that if a completion contains all the attacks on the left-hand
side, then it must contain at least one of the attacks of
the right-hand side. An implication whose right-hand side
consists of only one attack is called disjunction free. The
attacks on the left-had side of the implication are called
implicants. We did not consider AND and NOR as here they
make no sense: an AND- (resp., NOR-) dependency requires
that each (resp., none) of the specified attacks is in the
completion, but this can be done by putting these attacks in
D (resp., removing these attacks from D7).

Definition 6 (d-att-iAAF). An attack-incomplete Abstract
Argumentation Framework with dependencies (d-att-iAAF)
is a pair DIF = (IF,A), where IF is an att-iAAF and A
a set of dependencies over I F.

Note that the completions of a d-att-iAAF DIF = (IF, A)
are the completions of [F', and the valid completions of
DIF are the completions of DIF valid w.r.t. A. We now
adapt the notion of i*-extension to d-att-iAAFs considering
only valid completions in the reasoning.

Definition 7 (i*-extensions over d-att-iAAFs). Given a d-
att-iAAF DIF and a semantics o, a set of arguments S is a
possible (resp., necessary) i*-extension for DIF (under o)
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if, for at least one (resp., for every) valid completion F of
DIF, the set S is an extension of F under o.

Once the notions of dependency, valid completion, and
i*-extensions for d-att-iAAFs have been introduced, we
can formalize and summarize the observations made at the
beginning of this section in Proposition 1, which states
that, as the set of dependencies grows, the set of possi-
ble i*-extensions gets smaller and the set of necessary i*-
extensions gets larger:

Proposition 1. Lert DIF = (IF,A) and DIF' = (IF,A’)
be two d-att-iAAFs, where A C A'. Let o be a semantics in
{ad, st, co, gr, pr}, and let PExt(-) and NExt(-) return
the sets of possible and necessary i*-extensions of a d-att-
iAAF under o, respectively. It holds that:

1. PExt(DIF) D PExt(DIF");
2. NExt(DIF) C NExt(DIF").!

The introduction of d-att-iAAFs gives a great benefit to
the analysts: augmenting att-iAAFs with the possibility of
defining correlations among uncertain attacks enables ana-
lysts to reason more precisely over att-iAAFs. As a matter
of fact, the dependencies introduced in Definition 4 are an
easy and compact tool for expressing elementary correla-
tions, that do not require to write complicate formulas. In
this regard, we point out that using a set of dependencies is
a general mechanism to specify any correlation expressible
by means of a propositional formula whose variables repre-
sent the presence/absence of uncertain attacks. In fact, any
propositional formula over a set of variables {x1,...,2,}
representing the presence/absence of attacks can be trans-
lated into a set of dependencies reasoning as follows. Let
® = C° A --- A CF be a propositional formula in CNF over
{x0,...,2,}. Every clause C' can be translated into a sin-
gle dependency, reasoning by cases on the form of C*:

— Ct=gziV---va! (i.e. C' contains only positive literals):
C" is equivalent to OR(z}, - - - , %),

- C" = =z V.-V -z (ie. C' contains only negative
literals): C* is equivalent to NAND(z%, ..., z%),

- C'=—aiVv---Vozt val V---Va) (ie. C' contains
both positive and negative literals): C" is equivalent to
Yy Ty = Tppaqs- -5 Thye

Moreover, in practical cases, encoding the correlations into
A allows for distinguishing the various forms of correlations
imposed by the analyst, which could be otherwise “hidden”
if a general propositional formula were used. This allows
us to provide the contribution presented in the next sec-
tion: a fine-grained analysis of the impact of correlations on
the computational complexity of the fundamental reasoning
problem over att-iAAFs. This contribution is still of inter-
est if a propositional formula is used to encode correlations
instead of the set of dependencies: our study can be viewed
as a sensitivity analysis of the complexity of the reasoning
tasks to some syntactic restrictions of practical interest.

'Note that this holds also in the case where no valid completions
exists, due to the definition of necessary extension. If one changes
the definition of necessary i*-extensions adding the requirement
that they are extensions in at least one completion, then the second
statement does not hold anymore.
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4 The Verification Problem over d-att-iAAFs
and its Computational Complexity

Starting from the definition of i*-extension for d-att-iAAFs
(Definition 7), it is natural to adapt the classical verification
problem to d-att-iAAFs as follows:

Definition 8 (PDVER?(DIF,S)). Let DIF be a d-
att-iAAE, S a set of arguments, and o a semantics
for extensions. PDVER?(DIF,S) (Possible-perspective
Dependency-aware VERIification) is the problem of verify-
ing if S is a possible i*-extension for DIF under o.

Observe that we focus on the possible perspective,
and defer the study of the verification of necessary i*-
extensions to future work. In what follows, any instance
of PDVER? (DIF, S) will be denoted as (DIF,S) where
DIF = (IF,A) is a d-att-iIAAF and S a set of arguments
(thus, this notation considers the semantics o implied by the
context).

In the rest of this section, we provide the main contri-
bution of this work: a thorough study of the computational
complexity of PDVER? (DIF, S), where we investigate its
sensitivity to the form of dependencies appearing in the d-
att-iAAF and to the semantics o. In order to obtain fine-
grain insights on the sources of complexity, our analysis will
consider some restrictions on the arity of the logical connec-
tives occurring in the dependencies of Definition 4. In or-
der to refer to these restrictions, we use the following nota-
tions: given OPE {OR, NAND, CHOICE}, we denote as OP*-
dependency an OP-dependency where OP is applied over a
set X such that | X]| x; moreover, we denote as ,, =,-
dependency an =-dependency of the form X = Y where
|X|=mand|Y|=n.

Our results are summarized in Table 1. Here, EMPTY
means A = (), and the corresponding row is a result from
(Baumeister et al. 2018), where the verification problem
over att-iAAFs (with no dependencies) was shown to be in
P for o € {ad, st, co,gr} and X5-complete for o = pr.
ANY OTHER stands for “any combination of 2 or more forms
of dependencies different from the combinations in the other
rows”. Observe that the combination OR+; =, is not in-
cluded in ANY OTHER, but is in a distinguished row, as its
complexity is different from the other combinations.

4.1 Upper Bounds

We start the presentation of our results by stating
an upper bound for the computational complexity of
PDVER?(DIF,S).

Theorem 1 (Upper bound). PDVER? (DIF, S) is in NP for
any o € {ad, st, co,gr} and in X8 for o = pr.

Proof. An instance ((IF,A),S) of PDVER?(DIF,S)
can be solved by guessing a completion F' of IF' and then
verifying if F' = A and if S is a o-extension over F.
Then, the statement follows from the fact that checking
F = Aisin P, and that verifying extensions is in P for
any o € {ad, st, co,gr} and in coNP for 0 = pr. ]
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PDVER?(DIF, S)
ad, st L co L gr L pr

1) | EMPTY P P P ¥hc

2) | % P | NP< | NP< | %
(even OR®)

3) NAND NP-c | NP-c | NP | 3%
(even NAND?)
m:>n

4) NP-c | NP-c | NP-c | ¥
(anym > 2,n>1)

5) | 77 P | NP< | NP< | s3<
(anyn > 1)

6) CHOICE NP-c | NP-c | NP | ¥
(even CHOICE?)

7) | OR + 1=, P NP-c | NP | ¥8-c
(even OorR?%, n > 1)

8) | ANY OTHER NP-c | NPc | NP | X

Table 1: Complexity of PDVER? (DIF, S) over att-iAAFs

4.2 Lower Bounds: Intractability Results

‘We now consider lower bounds, and we first address the case
of the preferred semantics. Here, the >5-hardness trivially
follows from the above mentioned result in (Baumeister et
al. 2018), where the verification problem was shown to be
ES -hard over att-iAAFs, that is for d-att-iAAFs with A = (.

Proposition 2. Under 0 = pr, PDVER?(DIF,S) is ¥5-
hard, even if A = ().

We now focus on the other semantics and show the com-
binations { form of dependency, semantics ) for which the
NP upper bound stated in Theorem 1 is also a lower bound.
All the proofs in the rest of this section are based on reduc-
tions from 3SAT. Hence, for the sake of brevity, in each
proof we avoid repeating that we show a reduction from
3SAT, and we start the proof as if we already said that we
are given a 3CNF formula ® over the variables x4, ..., x,
and the clauses C1, ..., C,, where each Cj is of the form
C; = l{ VI VI, and each I, is a literal of the form z; or —z;.

We start with Theorems 2 and 3, presenting the cases
where the hardness for NP holds even under the admissible
and stable semantics. That is, we show that considering only
=>- or only NAND- or only CHOICE- dependencies suffices
to make PDVER? (DIF, S) hard, even under o € {ad, st}
and even if we impose the strongest limit to the arity of the
connectives NAND and CHOICE, and we limit = to =1 (i.e.
two implicants and no disjunction in the head).

Theorem 2. Under any o € {ad, st, co, gr}, if A con-
tains only =-dependencies, then PDVER? (DIF, S) is NP-
hard, even if the =-dependencies are disjunction-free and
have at least two implicants.

Proof. We consider 0 = ad (it is easy to see that the
same proof holds for the other semantics). Let DIF(®) =

<<A, D, D?), A> be the d-att-iAAF constructed as follows.
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A contains three arguments y, z, ®, and, for each 7 € [1..n],
the arguments z; and —x;, and, for each j € [1..m], the
argument C;. Then, D contains, for each j € [1..m], the
attack (C;, ®). Moreover, D contains the uncertain attack
(y, z) and, for each j € [1..m], an uncertain attack towards
C; from every literal x; or —z; occurring in C;. Finally, for
each pair of attacks (x;, C/), (—x;, Cjr) (i.e., attacks orig-
inating from opposite literals of the same variable) A con-
tains (x;,Cj), (ma;, Cj») = (y,%). An example of con-
struction is in Figure 2. We prove the equivalence: “® is
satisfiable” < “S = {x1,~x1, ..., Tp, Ty, y, 2, P} is an
admissible i*-extension of DIF(®)”.
=: Let ¢t be a truth assignment for z1,...,x, making ®
evaluate to true, and F' = (A, D U Dp) the completion of
DIF(®) where Dp is the subset of D’ containing, for each
x; such that t(z;) = true (resp., false), the attack (x;, C;)
(resp., (—x;, Cy)). It is easy to see that, since ¢ assigns ex-
actly one truth value to each variable, no implication in A
is triggered: therefore, the presence of the attack (y, z) is
not implied, and then F' (which does not contain (y, z)) is a
valid completion. Moreover, since ¢ makes ® satisfied, every
argument C; in F' is attacked by at least one argument (of
the form x; or —z;) in .S, and this implies that ¢ is defended
by S from the attacks (Cy,®),...,(Ck, ®). This implies,
along with the fact that S is conflict-free, that S is an admis-
sible extension of F'.

<: Let F be a valid completion of DIF(®) such that S
is an admissible extension of F'. Since S is admissible, it
means that F' does not contain the attack (y, z) (otherwise,
S would not be conflict-free in F'). Hence, since F'is a valid
completion, no implication in A is triggered in F', and this
means that, for every i € [1..n], F may contain attacks out-
going from either z; or —x;, but not from both. This entails
that the three rows in the following definition of ¢ are alter-

native cases:
true if 35 € [1.m] | (z;,C;) € Dp;
t(z;) =< false if3j e [l.m]|(—x;,C;) € Dp;
false otherwise

Hence, t is a function from {z1,...,2,} to {frue, false},
that is, a truth assignment over the variables x1, . . ., z,,. Ob-
serve that the third row in the definition of ¢ means that, if

Figure 2: Construction of Theorem 2, for ® = C7 A Cs, where
C1 =21 VzzzVzezand Cy = 21 V —x2 V —x3 (we recall that
uncertain attacks are marked with a white circle)
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there is no attack in F' outgoing from z; or —x;, we assign
false to variable x;: however, it is easy to see that the valid-
ity of the proof is independent from the value assigned to x;
in this case.

Now, since S is admissible in F, all the attacks towards
® must be counter-attacked by S, and this means that every
Cj is attacked in F' by some x; or some —x;. By construc-
tion, the attacks (z;, C;j) and (—x;, C;j) mean that z; = true
and z;= false makes C; evaluate to true, respectively. This
means that ¢ makes every C; evaluate to true, and then @ is
satisfiable. |

Theorem 3. Under any o € {ad, st,co,gr}, if
A contains only NAND-dependencies or only CHOICE-
dependencies, then PDVER? (DIF, S) is NP-hard, even if

the dependencies are binary.

Proof. The statement can be proved with minor changes
to the strategy used in the case of =--dependencies. In
the construction of the proof of Theorem 2, arguments
y and z must be removed from A, as well as the at-
tack (y,z) from D?. Moreover, in order to prove the
case of NAND- (resp., CHOICE-) dependencies, every de-
pendency (z;,Cjr), (—xz;,Cj») = (y,z) must be re-
placed with NAND ((z;,Cj/), (—@;, Cjr)) (resp., CHOICE
((zi,Cjr), (ma;,Cjr))). Finally, the set S to be verified is
S ={z1,-x1,...,Tpn, Ty, P} m]

As using implications with two implicants (even with-
out exploiting the disjunction in the head) makes
PDVER?(DIF,S) NP-hard (as proved above), it is natu-
ral to ask what happens if we use only implications with
one implicant. The following theorem gives a first an-
swer to this question, as it states that PDVER? (DIF, S) re-
mains NP-hard with this restriction under ¢ € {co,gr}.
In the following, we will see that this restriction makes
PDVER?(DIF, S) solvable in polynomial time under o €
{ad, st}.

Theorem 4. Under any o € {co, gr}, if A contains only
=-dependencies, then PDVER? (DIF, S) is NP-hard, even
if the =-dependencies are disjunction-free and have at most
one implicant.

co (the same construc-
gr). Let DIF(®) =

<<A, D, D?), A> be the d-att-iAAF constructed as follows.

A contains, for each j € [1..m], the argument C, and, for
each i € [l..n], the arguments z;, —x;, ¢, ¢, i'’. Then, D
contains, for each ¢ € [1..n], the attacks (¢',4), (¢",7) and
the self-attacks (i’,4’), (i”,4"). Moreover, D contains, for
each ¢ € [1..n], the attacks (x;,4’), (—z;, "), and, for each
j € [1..m], an attack towards C; from every x; and —z; oc-
curring in C';. As for A, it contains:

1) for each (x;,C;) in D, the dependency (z;,C;) =
(@i,");

2) for each (—xz;,C;) in D?, the dependency (—z;,C;) =
(_\l'i7 7;”).

We prove the equivalence: “® is satisfiable” < “S
{z1,~21,...,Tpn, @, } is a complete i*-extension of

Proof. We prove the case o
tion works for the case o
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Figure 3: Construction of Theorem 4, for ® = C; A C5, where
Ci=—-z21VaxaVaxzand Cy = x1 V —x2 V —x3

DIF(®)”.

=: Let ¢t be a truth assignment for x1,...,x, making ®
evaluate to true, and F' = (A, D U D) the completion of
DIF(®) where D consists of every attack outgoing from
x; (f t(x;) = true) or from —x; (if t(x;) = false). It is easy
to see that this construction entails that F' = A. Since ¢ as-
signs exactly one truth value to each variable, we have that,
for each ¢ € [1..n], one of the attacks (z;,¢'), (—x;, ") is
not in Dg. This implies that no complete extension of F' can
contain any argument ¢, since one of the attacks (i’,4), (¢",7)
cannot be counter-attacked. Moreover, since t makes ® eval-
uate to true, every C; in F is attacked by at least one argu-
ment x; or —x;, and this implies that no C'; can belong to
any complete extension of F'. Considering this jointly with
the facts that ¢’ and " are self-attacked (for each i € [1..n])
and that S is admissible (as F' contains no attack towards .5),
we have that S is a complete extension of F'.

<: Let F' be a valid completion of DIF(®) such that S
is a complete extension of F. This means that, for each
i € [l..n], F does not contain at least one of the attacks
(24,4") and (—x;,4") (otherwise S would not be complete,
as some argument ¢ would be acceptable w.r.t. S). Due to
the implications in A, this entails that, for each ¢ € [1..n],
F' does not simultaneously contain attacks outgoing from x;
and attacks outgoing from —x;. This implies that the three
rows in the following definition of ¢ are alternative cases:

true if 35 € [1.m]|(z;,C;) € Dp;
t(xz;) = { false if 35 € [1.m]|(—x;,C;) € Dp;
false otherwise

and then ¢ is a function from {z1,...,z,} to {truefalse}.
The third case in the definition of ¢ means that, if there is
no attack in F' outgoing from x; or —z;, we assign false to
variable x; (however, it is easy to see that the validity of the
proof is independent from the value assigned to x; in this
case). Since S is a complete extension of F, every C; in F'
is attacked by some argument z; or —x;. In turn, since the
existence of (x;, C;) (resp., (—x;,C;) ) in D? means that
assigning true to x; (resp., false to z; ) makes C) true, this
implies that ¢ makes ® evaluate to true. |
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To complete the picture of NP-hard cases, we now show
that the use of OR-dependencies makes PDVER? (DIF, S)
hard under the complete and grounded semantics.

Theorem 5. Under any o € {co,gr}, if A contains
only OR-dependencies, then PDVER? (DIF, S) is NP-hard,
even if the dependencies are binary.

Proof. We consider o co, but the same proof holds
for 0 = gr. Let DIF(®) = <<A,D,D?>,A> be the d-

att-iAAF constructed as follows. A contains an argument
s as well as, for each i € [l..n], the arguments z; and
—z;, and, for each j € [1..m], the argument C;. Then, D
contains, for each ¢ € [1..n], the self-attacks (x;,z;) and
(—z;, —x;), and, for each clause C; containing z; (resp.,
—x;), the attack (z;, C;) (resp., (—z;,C;)). Moreover, D’
contains, for each ¢ € [1..n], the uncertain attacks (s, ;) and
(s, —z;). Basically, the absence of (s, z;) and of (s, —z;) in
a completion will be used to simulate the assignment of the
values true and false to the variable z;, respectively. Fi-
nally, A contains, for each i € [1..n], the OR?-dependency

OR ((5, x;), (8, —\931)> We prove the equivalence: “® is sat-

isfiable” < “{s} is a complete i*-extension of DIF(®)”.
=: Let ¢t be a truth assignment for z,...,x, making
® evaluate to true, and F = (Ap, Dp) the completion
of DIF(®) containing, for each ¢ € [l..n], the attack
(s, ;) (resp., (s,—x;)) if and only if ¢(z;) = false (resp.,
t(x;) =true). It is straightforward to see that F' = D, since
the fact that ¢ is a truth assignment implies that exactly one
between (s, x;) and (s, —a;) is in Dp, for each i € [1..n].
Moreover, since ¢t makes P satisfied and we do not put in
Dy any attack (s, z;) (resp., (s, ~x;)) if x; = true (resp.,
x; = false) makes C; true, we have that every C in F is
attacked by at least one argument of the form x; or —z; that
is not attacked by s. Hence, no C; can belong to an admis-
sible extension of F'. Considering this jointly with the fact
that every argument of the form z; or —z; is self-attacked,
we obtain that the only C-maximal admissible extension of
Fis {s}.

«: Let F' = (Ap, Dp) be a valid completion of DIF(®)
admitting {s} as a complete extension. Since F | A,
there is no ¢ € [l..n] such that both (s,z;) ¢ Dp and
(s,~x;) € Dp. Hence, the three rows in the following defi-
nition of ¢ are alternative cases:

true if (S,LI,‘Z‘) ¢DF;
{ false if (s,—x;) € Dp;
false if (s,x;) € Dp A (s,—x;) € Dp.

t(z;)

Hence, t is a truth assignment over the variables x1, ..., 2y,
as it unambiguously assigns one truth value to each z;.
Given this, as {s} is a complete extension of F', every C;
in F' is attacked by at least one x; or —x; that is not coun-
terattacked by s. This means that ¢ makes every C; evaluate
to true, and thus & is satisfiable (observation: this property
does not depend on which truth value is used in the third
case of the definition of ?). O
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Figure 4: Construction of Theorem 5, for ® = C; A Ca, where
Ci =—-x1VaeVazand Cy = 21 V —x2 V 23

4.3 Upper Bounds: Polynomiality Results

We here show that, in the (even simultaneous) presence of
OR- and 1 =,- dependencies, PDVER?(DIF, S) becomes
solvable in polynomial time under both the admissible and
stable semantics. This will be proved by showing that Al-
gorithm 1, that uses a constructive strategy for checking that
S is an admissible i*-extension, is correct and runs in poly-
nomial time. Basically, Algorithm 1 starts from considering
the completion of DIF whose set of attacks D* contains
all the certain and uncertain attacks (line 1). Then, it re-
fines D* by removing the uncertain attacks (if any) making
S conflicting (lines 2— 9) or attacked by arguments that are
not counter-attacked (lines 10— 17). After removing an at-
tack, all the attacks on the right-hand side of some ; =,-
dependency (x,y) = B may turn out to be absent from D*,
thus the algorithm removes the left-hand side («, y) from D*
in order to pursue the validity of the completion (lines 9, 17).
The removal of attacks is done iteratively, as removing an at-
tack to force the admissibility of S or the consistency with
the =-dependencies may trigger the violation of another de-
pendency. Observe that the removal of an attack is done only
if it is uncertain and if it does not make D* violate any OR-
dependency (note that C' denotes the set of the other attacks
involved in the OR-dependency); otherwise (lines 3, 7, 15),
the algorithm returns No. If Algorithm 1 manages to force
the admissibility of S while guaranteeing that the dependen-
cies are satisfied, it eventually returns Yes.

Theorem 6. Under o € {ad,st}, if A contains

only OR-dependencies and 1 =>,-dependencies, then
PDVER?(DIF,S) is in P.

Proof. Case 0 = ad. We prove the statement by showing
that Algorithm 1 is correct and runs in polynomial time.
The correctness of Algorithm 1 derives from the fact that
all the attacks denoted as (a,b) or (z,y) that are detected
at lines 2, 6, 10, 14, and that are removed or that trig-
ger the answer No, cannot belong to any valid completion
where S is admissible. In fact, these attacks contrast the ad-
missibility of S or imply the presence of further attacks that
contrast the admissibility of S. Moreover, the answer Yes is
provided only if the AAF containing all the arguments and
all the attacks of the input d-att-iAAF but the attacks (a, b)
or (z,y) mentioned above is a valid completion. In fact, if
the answer Yes is returned, it means that the AAF (A, D*)
that reaches line 18 is a valid completion, as every attack re-
moval that has been performed to obtain it is preceded by a
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Algorithm 1 Deciding PDVER? (DIF, S) (under ¢ = ad
and only OR- and 1=, -dependencies)

Require: Aninstance (DIF, S) of PDVER? (DIF, S)underoc =
ad (where DIF = <<A7 D,D"), A>, S C A, and A contains
only OR- and 1=, -dependencies)

Ensure: The answer to (DIF, S)

I: D*=DuUD’

2: while 3(a,b) € D" s.t. {a,b} C S do

3: if (a,b) € D"V 30R((a,0),0) € Ast. CND* =0
then

4: return No

5. D" =D"\{(a,b)}

6:  while 3(z,y)eD*s.t. 3 (z,y) = B € Ast. BND*=()

do
7: if (z,y) ¢ D" V3 0Rr((x,y),C) € Ast. CND* =0
then
8: return No
9: D* = D"\ {(z,y)}

10: while 3(a,b)€ D" s.t. be S and As € S s.t. (s,a) € D" do
11:  if (a,b) € D" VI 0or((a,b),C) € Ast. CND* =0

then

12: return No

13:  D*=D"\{(a,b)}

14:  while 3(x,y)e D" s.t. I (x,y) = B € Ast. BND* =0
do

15: if (z,y) ¢ D"V 30R((z,9),C) € Ast. CND* =0

then
16: return No
17 D*=D"\{(z,)}

18: return Yes

check of the fact that it does not raise a dependency viola-
tion. Moreover, since S is an admissible extension for the
completion (A, D*) that reaches line 18 (as otherwise the
while-condition at line 10 would be still true), we have that
S is an admissible i*-extension for DIF'.

Finally, the polynomiality of Algorithm 1 trivially
follows from the fact that the number of removals is linear
in the number of attacks, and each removal requires a num-
ber of tests that is linear in the number of dependencies in A.

Case 0 = st. The proof is even simpler than the previ-
ous case. We can compute the answer to PDVER? (DIF, S)
by invoking an algorithm that performs lines 1-9, and then
simply checks if there is an attack from S towards every
argument outside S. This algorithm obviously runs in poly-
nomial time. Its correctness follows from these facts: 1) as
shown in the above case, the attack removals at lines 2-9 are
necessary and sufficient to make S conflict-free, and 2) if,
after performing these removals, S is not stable, there is no
way to make it attack every external argument by removing
further attacks. m]

4.4 Discussion of the Results

The results reported so far give a complete picture of how
the complexity of reasoning on extensions is affected by the
introduction of dependencies.

As abaseline, PDVER? (DIF, S) is in P if A = () under
all the Dung’s semantics but the preferred one, under which
it is X:5-complete. It is easy to see that the presence of de-
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pendencies does not make PDVER? (DI F, S) harder under
o = pr (this derives from the fact that the cost of verify-
ing the dependencies is dominated by the cost of verifying
preferred extensions over a standard AAF).

As for the other semantics, PDVER? (DI F, S) remains in
P under 0 € {ad, st} if we allow OR- and ; =,,- depen-
dencies to be specified (even simultaneously, and with no
limit on the arity of OR). However, under o € {co,gr},
these limitations on the allowed forms of dependencies do
not prevent the explosion of the complexity. In fact, even if
we impose the strongest restrictions on the arities of OR and
= and forbid their combined use, the complexity explodes:
under o € {co,gr}, PDVER?(DIF,S) is NP-hard even
if only OR2- or only 1=>1- dependencies are allowed.

In the presence of any other form of dependency (namely,
NAND, CHOICE, and ,, =,, with m > 2 and n >
1), PDVER?(DIF,S) is NP-hard, under every seman-
tics. While, as recalled above, PDVER? (DIF, S) becomes
tractable if the arity of the implication is further limited,
there is no way to make PDVER?(DIF, S) in P by reduc-
ing the arity of NAND and CHOICE, since the NP-hardness
holds also for binary dependencies of these forms.

Thus, further investigation is needed to find islands of
tractability for the forms of dependencies in the presence of
which PDVER?(DIF, S) is NP-hard even under o € ad.
Interestingly, even the acyclicity of the argumentation graph
is not a condition making PDVER? (DIF, S) easier in these
cases: the argumentation graphs exploited in the proofs of
theorems 2 and 3 are acyclic. On the other hand, the acyclic-
ity of the argumentation graph makes the complexity of
PDVER?(DIF, S) under o € {co, gr,pr} in the presence
of OR- and ;=,,- dependencies (row 7 of Table 1) move in
P, since the acyclicity makes the complete, grounded, and
preferred semantics collapse with the stable semantics (un-
der which PDVER? (DIF, S) is in P).

PDVER? (DIF,S)
ad, st L co L gr L pr
1| EMPTY P P P Xh-c
2 OR P p NP-c | ¥b-c
3 NAND P NP-c | NP | X5
4 m=n NP-c | NP-c | NP | ¥t
5 m=>1 P NP-c | NPc | ¥%-c
6 CHOICE NP-c | NP-c | NP | X
7 CHOICE? P NP-c | NP-c | ©h-c
8 OR + NAND NP-c | NP | NP | ¥8-c
9 OR + XOR? NP-c | NP | NP | 2%
10 NAND + XOR? || NP-c | NP-c | NP | k¢
11 m=>1 + XOR? NP-c | NP | NP<c | Y%
12 m=>1 + OR NP-c | NPc | NP | ¥%-c
13 m=>1 + NAND P NP-c | NP | ¥%-¢
14 ANY OTHER NP-c | NP-c | NP | X

Table 2: Complexity of PDVER? (DIF, S) for arg-iAAFs
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By comparing the results in this paper with our previous
work (Fazzinga, Flesca, and Furfaro 2021), whose results
on the computational complexity of PDVER? (DIF, S) over
arg-iAAFs are summarized in Table 2, we observe that the
correlations between attacks make the reasoning harder than
the case of correlations involving arguments: the complexity
of PDVER?(DIF, S) over arg-iAAFs is a lower bound for
its complexity over att-iAAFs (if the same dependencies are
allowed). Besides this, the main differences are:

e OR-dependencies and ¢ = co: PDVER?(DIF,S) is
in P over arg-iAAFs, but NP-complete over att-iAAFs,

even for arity 2;

e NAND-dependencies and o € {ad, st}:
PDVER?(DIF,S) is in P over arg-iAAFs, but
NP-complete over att-iAAFs, even for arity 2;

e CHOICE-dependencies and 0 € {ad,st}: over arg-
iAAFs, PDVER?(DIF,S) is in P for arity 2, and NP-
complete for arity greater than 2, while over att-iAAFs it
is NP-complete for any arity;

e ., =p-dependencies and 0 € {ad,st} and n = 1
PDVER?(DIF,S) is in P over arg-iAAFs for any m,
while, over att-iAAFs, PDVER?(DIF, S)isin Pif m =
1, and NP-complete otherwise.

5 Related Work

Uncertain attacks were first introduced as the core of Par-
tial Argumentation Frameworks (PAFs) in (Coste-Marquis
et al. 2007; Cayrol, Devred, and Lagasquie-Schiex 2007), to
allow a form of ignorance to be encoded when deciding on
the type of interaction between arguments. att-iAAFs have
been introduced as a special case of iAAFs (where both ar-
guments and attacks can be uncertain) in (Baumeister et al.
2018), where the computational complexity of the verifica-
tion problem has been studied. Here, a completion-based se-
mantics for extensions of iAAFs has been introduced, later
denoted in the literature as “i-extensions”. In (Fazzinga,
Flesca, and Furfaro 2020b), i*-extensions have been intro-
duced as a revisitation of i-extensions to fix some counter-
intuitive behaviors. However, in the case of att-iAAFs
(where the arguments are certain), i- and i*- extensions coin-
cide. As for the acceptance problem over iAAFs, it was de-
fined (by implicitly resorting to i*-extensions) in (Baumeis-
ter et al. 2021), where it was shown to be NP-hard under
Dung’s semantics. This means that embedding dependen-
cies in iAAFs does not increase the complexity of the ac-
ceptance, and that the practical algorithms for this problem
in (Baumeister et al. 2021) are prone to be adapted, since de-
pendencies can be suitably encoded in the propositional for-
mula used to represent the completions in these algorithms.

Reasoning over incomplete AAFs is also related to revis-
ing AAFs to enforce the existence of an extension (Bau-
mann and Ulbricht 2019), or to make a set an exten-
sion (Coste-Marquis et al. 2015), as well as to the credu-
lous/skeptical conclusion problems in Control Argumenta-
tion Frameworks (Dimopoulos, Mailly, and Moraitis 2018).

As for the quantitative approaches to the representa-
tion of uncertainty, they allow the specification of pref-
erences and/or weights (Amgoud and Vesic 2011; Bench-
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Capon 2003; Brewka, Polberg, and Woltran 2014; Coste-
Marquis et al. 2012; Dunne et al. 2011; Kaci, van der
Torre, and Villata 2018; Modgil 2009) and/or trust de-
grees (Fazzinga, Flesca, and Furfaro 2020a), or probabil-
ities, according to the “epistemic” (Thimm 2012; Hunter
and Thimm 2014), or the “constellation” paradigm (Hunter
2014; Dung and Thang 2010; Doder and Woltran 2014;
Dondio 2014; Hunter 2012; Li, Oren, and Norman 2011,
Fazzinga, Flesca, and Parisi 2015; Fazzinga, Flesca, and
Furfaro 2019a; Fazzinga, Flesca, and Furfaro 2019b). The
last ones are more related to our framework, as they can be
seen as iAAFs where a probability distribution is defined
over the completions.

Other related works are those where, even if with different
purposes, constraints are embedded in the argumentation
framework, such as (Coste-Marquis, Devred, and Marquis
2006) (where constraints refine the set of extensions), (Al-
fano et al. 2021) (where weak constraints define a ranking
of the extensions), (Brewka et al. 2017) (where the logical
formulas occurring in Abstract Dialectical Frameworks can
be viewed as constraints defining acceptance conditions),
and (Wallner 2020) (where constraints are used to limit the
admitted structural modifications in dynamic scenarios).
Finally, our study is also related with works investigating the
effects of removing/adding terms of the argumentation on
the status of (sets of) arguments (Alfano and Greco 2021).

6 Conclusions and Future Work

In continuation with our previous work on argument-
incomplete AAFs (Fazzinga, Flesca, and Furfaro 2021),
we have investigated a generalization of attack-incomplete
AAFs, where correlations between the uncertain attacks can
be specified in terms of “elementary” dependencies (ex-
pressed by means of common logical connectives). This
widens the scope of traditional attack-incomplete AAFs,
whose representation paradigm, although recognized as a
suitable formalism for merging different subjective views
on the interactions between the arguments, is intrinsically
limited by the assumption of independence between the at-
tacks (as already observed in (Neugebauer 2019)). Our re-
search has been focused on the computational complexity of
the verification problem under the possible perspective and
for Dung’s semantics. In this regard, we have performed
a thorough investigation, by studying the sensitivity of the
complexity to the semantics of extensions and the form of
correlations. In the future work, we plan to address the veri-
fication problem under the necessary perspective.
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