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Abstract

Probabilistic reasoning, parameter learning, and most proba-
ble explanation inference for answer set programming have
recently received growing attention. They are only some of
the problems that can be formulated as Algebraic Answer Set
Counting (AASC) problems. The latter are however hard to
solve, and efficient evaluation techniques are needed. In-
spired by Vlasser et al.’s TP -compilation (JAR, 2016), we
introduce TP -unfolding, which employs forward reasoning
to break the cycles in the positive dependency graph of a pro-
gram by unfolding them. TP -unfolding is defined for any
normal answer set program and unfolds programs with re-
spect to unfolding sequences, which are akin to elimination
orders in SAT-solving. Using “good” unfolding sequences,
we can ensure that the increase of the treewidth of the un-
folded program is small. Treewidth is a measure adhering
to a program’s tree-likeness, which gives performance guar-
antees for AASC. We give sufficient conditions for the exis-
tence of good unfolding sequences based on the novel no-
tion of component-boosted backdoor size, which measures
the cyclicity of the positive dependencies in a program. The
experimental evaluation of a prototype implementation, the
AASC solver aspmc, shows promising results.

1 Introduction
Recently, there has been a rising interest in reasoning prob-
lems for Answer Set Programming (ASP) that go beyond
the classical reasoning tasks of entailment and consistency.
For example, LPMLN(Lee and Yang 2017), P-log (Baral,
Gelfond, and Rushton 2009) and Problog (De Raedt, Kim-
mig, and Toivonen 2007) allow for probabilistic reason-
ing. Weight Constraints and more generally the asprin
framework (Brewka et al. 2015) consider preferential rea-
soning over answer sets. Finally, algebraic Problog (Kim-
mig, Van den Broeck, and De Raedt 2011) and Weighted
LARS (Eiter and Kiesel 2020) capture and generalize both
of these ideas in Algebraic Answer Set Counting (AASC), i.e.
weighted answer set counting over semirings.

While the variety of frameworks that allow the specifi-
cation of such problems is big, the corresponding choice of
solvers is limited: the clingo solver (Gebser et al. 2014) only
allows for answer set counting by enumeration, which be-
comes quickly infeasible once the number of answer sets
exceeds a few millions. The dynASP2.5 solver (Fichte et al.

2017) uses the fact that answer set counting is fixed parame-
ter tractable (FPT) in the treewidth of the program. How-
ever, already for normal ASP, the best known FPT algo-
rithm for answer set counting is double exponential in the
treewidth and therefore only feasible for instances with very
low treewidth in practice. Last but not least, Problog re-
duces AASC to Algebraic Model Counting (AMC) (Kim-
mig, Van den Broeck, and De Raedt 2017), for which a wider
variety of efficient solvers exist (Oztok and Darwiche 2015a;
Sang, Beame, and Kautz 2005; Thurley 2006).

We focus on Problog as it is the most promising approach.
Here, the basic strategy is the following. First one breaks the
cyclic dependencies in the input program, obtaining a tight
program, where the answer sets are the models of its Clark
completion (Fages 1994). The CNF corresponding to the
Clark completion can then be given to a solver that compiles
it into an equivalent d-DNNF/SDD representation. On these
representations, AMC is possible in linear time (Kimmig,
Van den Broeck, and De Raedt 2017).

This approach allows for practically relevant instances to
be solved (Vlasselaer et al. 2016). However, it has limi-
tations and weaknesses. Firstly, Problog only accepts pro-
grams where negation is limited to a set of intensional atoms
or stratified programs, rather than supporting the full syn-
tax of normal ASP. Secondly, Problog only allows so called
factorized algebraic measures, i.e., AASC instances where
the weight of each individual answer set I is computed as a
product of semiring values over the literals in I rather than
allowing expressions where sums and products alternate ar-
bitrarily as in wLARS (Eiter and Kiesel 2020). Last but
not least, the way cycles in the positive dependency graph
of the program are broken can have a strong negative ef-
fect on the treewidth of the instance. This in turn has a
negative effect on performance guarantees for the compila-
tion to d-DNNF/SDD: it is merely known that an instance
of treewidth k has a d-DNNF/SDD representation of size at
most 2k. Thus an effective way of breaking cycles is needed.

Cycle breaking is an often and well studied topic in the
ASP community. Among others, Hecher’s (2020) trans-
lation from ASP to SAT guarantees that the treewidth of
the SAT instance is O(k log(l)), where k is the original
treewidth and l is the minimum of k and the size of the
largest strongly connected component of the dependency
graph of the program. Unfortunately, this translation does
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not preserve models bijectively and is thus not helpful
for answer set counting. In contrast, the cycle breaking
used primarily in Problog (Mantadelis and Janssens 2010;
Vlasselaer et al. 2016) and another (Janhunen 2004) pre-
serve models bijectively but their treewidth bounds are not
as strong.

In this work, we tackle all three of the aforementioned
issues and make the following main contributions:
• Taking inspiration from TP -compilation (Vlasselaer et al.

2016), we introduce TP -unfolding, which uses the idea of
forward reasoning to unfold a cyclic into an acyclic pro-
gram along an unfolding sequence s. Such a sequence
lists variables for unfolding steps, where variables can
occur multiple times. Intuitively, unfolding sequences
are to TP -unfolding what elimination orders are to SAT-
solving: as we will see, they have a big impact on the
treewidth of the unfolded result and thus the performance
guarantees of AASC.

• Furthermore, we introduce conditions that guarantee that
TP -unfolding along an unfolding sequence s returns a
program whose answer sets are bijectively preserved. Us-
ing these results, we can show that every program of
treewidth k can be translated into an acyclic program with
treewidth at most k ·cbs(DEP(Π)), where cbs(DEP(Π)),
is the component-boosted backdoor size of the depen-
dency graph of Π; notably, cbs(.) is a novel parameter on
directed graphs that combines backdoor sets and decom-
posability to measure the cyclicity of a directed graph.

• We show that AASC for any algebraic measure can be re-
duced in polynomial time to AASC for a factorized mea-
sure, which entails that an implementation for AASC over
factorized measures is sufficient.

• Our prototype implementation aspmc performs AASC
not only for Problog programs, but for all normal an-
swer set programs. Our experimental results show that
while clingo’s extremely fast answer set enumeration is
hard to beat when the number of answer sets is small, in
the unavoidable case where a program has too many an-
swer sets for clingo, aspmc outperforms both Problog and
lp2sat (Janhunen 2004).

After preliminaries in Section 2, we give in Section 3 the
definition of algebraic measures and show that they are
equivalent in expressive power to factorized measures. Next,
in Section 4, we introduce TP -unfolding and give bounds
on the increase of the treewidth caused by TP -unfolding in
terms of the component-boosted backdoor size of the de-
pendency graph of a program. In Section 5, we describe our
implementation and evaluate it in different relevant settings.
Finally, in Section 6, we give conclusions and mention is-
sues for further research.

2 Preliminaries
A (normal) answer set program Π is a finite set of rules

r = a← b1, . . . , bm, not c1, . . . , not cn,

where a, bj , ck are propositional variables. Given such
a rule r, we let H(r) = a, B+(r) = {b1, . . . , bn}

and B−(r) = {c1, . . . , cn}. We slightly abuse
notation and use ← b1, . . . , bm, not c1, . . . , not cn for
⊥ ← b1, . . . , bm, not c1, . . . , not cn, not⊥. Also, we al-
low choice constraints {a} ← B+(r), B−(r) as a short-
hand for the two rules a ← B+(r), B−(r), notna and
na ← B+(r), B−(r), not a, where na is a fresh proposi-
tional variable. We denote by A(Π) the set of propositional
variables that occur in Π.

An interpretation I ⊆ A(Π) satisfies Π, if for each rule
r ∈ Π it holds that H(r) ∈ I or there exists a ∈ A(Π) s.t.
a ∈ B+(r) \ I or a ∈ B−(r) ∩ I . Furthermore, I is an
answer set of Π if it is a ⊆-minimal satisfying interpretation
of the reduct1 ΠI = {r ∈ Π | B+(r) ⊆ I, B−(r)∩I = ∅}.
We denote the set of answer sets of a program Π byAS(Π).
Example 1 (Smokers). We consider the smokers program2,
which is a standard example from probabilistic logic pro-
gramming (De Raedt, Kimmig, and Toivonen 2007).

{stress(X)} ← person(X)

smokes(X)← stress(X)

{inf(X,Y )} ← friend(X,Y )

smokes(Y )← smokes(X), inf(X,Y ), smokes(Y )

This encodes that for all persons it is randomly determined
whether they are stressed. If they are, they smoke. Further-
more, if one of their friends influences them, which is again
random, and smokes, then they also smoke. We shorten
stress(.) and smokes(.) to st(.) and sm(.), respectively.

Especially in Section 4 we will make use of graphs and di-
graphs, using the following notation. The vertex- and edge-
sets of a (di)graph G are denoted by V (G) and E(G). For
V ⊆ V (G) we let G[V ] be the (di)graph obtained by re-
moving all vertices not in V from V (G) (i.e. V (G[V ]) =
V (G) ∩ V ) and removing all edges that are incident with a
vertex not in V (i.e. E(G[V ]) = E(V ) ∩ V × V ). Further,
we defineG\V asG[V (G)\V ]. The subgraphC = G[V ] is
strongly connected if every vertex inC is reachable from any
other vertex in C. We denote by SCC(G) the set of strongly
connected components (SCC) of G, which are strongly con-
nected subgraphs G[V ], where V is subset maximal.

The (positive) dependency graph DEP(Π) of a program
Π is the digraph G with V (G) = A(Π) and (b, a) ∈ E(G)
if there is a rule r ∈ Π such that a ∈ H(r) and b ∈ B+(r).
The primal graph PRIM(Π) of Π is the graph G with
V (G) = A(Π) and {x, y} ∈ E(G) if there is a rule r ∈ Π
such that x, y ∈ {H(r)} ∪B+(r) ∪B−(r).
Example 2 (cont’d). Given the input data person(i), i =
1, . . . , 3 and friend(i, j), i + 1 ≡ j mod 3 we can ground
the smokers program to Πsm

sm(X)← st(X)

sm(X)← inf(Y,X), sm(Y )

{st(x)} ← for x = 1, . . . , 3

{inf(y, x)} ← for x+ 1 = y mod 3

1All our results hold for both the FLP-reduct (Faber, Pfeifer,
and Leone 2011) and GL-reduct (Gelfond and Lifschitz 1988)

2As usual the used schema rules with variablesX,Y are implic-
itly ∀-quantified and their semantics is the grounding semantics.
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Figure 1: Dependency Graph of Πsm.

The dependency graph of the result is given in Figure 1.

Next, we recall the definition of treewidth.

Definition 1 (Tree decomposition, Treewidth). Let G be a
graph. Then a tree decomposition is a pair (T, χ), where T
is a tree and χ is a labeling of V (T ) by subsets of V (G) s.t.

• for all nodes v ∈ V (G) there is t ∈ V (T ) s.t. v ∈ χ(t);
• for every edge {v1, v2} ∈ V (E) there exists t ∈ V (T ) s.t.
v1, v2 ∈ χ(t);
• for all nodes v ∈ V (G) the set of nodes {t ∈ V (T ) | v ∈
χ(t)} forms a (connected) subtree of T .

The width of (T, χ) is maxt∈V ′ |χ(t)|−1. The treewidth of a
graph is the minimal width of any of its tree decompositions.
The treewidth of a program Π is the treewidth of PRIM(Π).

Definition 2 (Semiring). A semiringR = (R,⊕,⊗, e⊕, e⊗)
consists of a nonempty set R equipped with two binary op-
erations⊕ and⊗, called addition and multiplication, where

• (R,⊕) is a commutative monoid with identity element e⊕,
• (R,⊗) is a monoid with identity element e⊗,
• multiplication left and right distributes over addition, and
• e⊕ annihilates R, i.e. ∀r ∈ R : r⊗e⊕ = e⊕ = e⊕⊗r.

A semiring is commutative, if (R,⊗) is commutative, and is
idempotent, if ∀r ∈ R : r⊕r = r.

In the following, we restrict ourselves to commutative
semirings. Some examples of well-known semirings are

• F = (F,+, ·, 0, 1), for F ∈ {N,Z,Q,R} the semiring of
the numbers in F with addition and multiplication,

• Rmax = (N ∪ {−∞},max,+,−∞, 0), the max-plus
semiring,

• B = ({0, 1},∨,∧, 0, 1), the Boolean semiring,

• P = ([0, 1],+, ·, 0, 1), the probability semiring.

For a more comprehensive list of semirings and applications
see (Kimmig, Van den Broeck, and De Raedt 2017).

3 Algebraic Answer Set Counting
We now introduce ASP with algebraic measures, which
amounts to the restriction of weighted LARS to ASP (Eiter
and Kiesel 2020). This is sufficient, since it was shown that
algebraic Problog, Problog, LPMLNand P-log can all be ex-
pressed in ASP with algebraic measures.

We use a variant of weighted logics (Droste and Gastin
2007) restricted to propositional formulas.

Definition 3 (Weighted Logic). Let R = (R,⊕,⊗, e⊕, e⊗)
be a semiring. A weighted formula α overR is of the form

α ::= k | v | ¬v | α+ α | α ∗ α
where k ∈ R and v is a propositional variable. The seman-
tics of α w.r.t. an interpretation I, denoted JαKR(I), is

JkKR(I) = k,

JlKR(I) =

{
e⊗ l = v, v ∈ I or l = ¬v, v 6∈ I
e⊕ otherwise. ,

Jα1 + α2KR(I) = Jα1KR(I)⊕Jα2KR(I),

Jα1 ∗ α2KR(I) = Jα1KR(I)⊗Jα2KR(I).

Using weighted formulas, we define algebraic measures.
Definition 4 (Algebraic Measure). An algebraic measure
µ = 〈Π, α,R〉 consists of an answer set program Π, a
weighted formula α, and a semiring R. The weight of an
answer set I ∈ AS(Π) under µ is

µ(I) := JαKR(I),

and a query µ(a) for a ∈ A(Π) has result

µ(a) =
⊕
I∈AS(Π),a∈Iµ(I).

Example 3 (cont’d). As mentioned before, the smokers pro-
gram is a typical example from the probabilistic domain. Us-
ing algebraic measures we can introduce probabilities. We
define the measure µsm = 〈Πsm, α,P〉, where

α =Π3
i=1st(i) ∗ 0.4 + ¬st(i) ∗ 0.6

∗Πi,j=1,2,3,i+1≡j mod 3inf(i, j) ∗ 0.3 + ¬inf(i, j) ∗ 0.7.

This means that the probability of a person being stressed is
0.4 and the probability that a person influences their friend
is 0.3. The answer set I = {st(1), sm(1)} has weight
µsm(I) = 0.4 ·0.62 ·0.73. The query µ(sm(1)) corresponds
to the probability that sm(1) holds. To evaluate it we need
to perform AASC, i.e. sum up the probabilities of all answer
sets s.t. sm(1) holds.

Following the conventions of (Belle and De Raedt 2020),
we also introduce factorized measures.
Definition 5 (Factorized Measure). Let µ = 〈Π, α,R〉 be
an algebraic measure and F ⊆ A(Π). Then µ is factorized
w.r.t. F , if there is a weight function β : F ∪ {¬f | f ∈
F} → R s.t. for all I ∈ AS(Π) it holds that

µ(I) =
⊗

f∈F∩Iβ(f)⊗
⊗

f∈F\Iβ(¬f).

Example 4 (cont’d). The measure µsm is factorized over
st(i), i = 1, . . . , 3 and inf(i, j), i + 1 ≡ j mod 3, by let-
ting β(st(i)) = 0.4, β(¬st(i)) = 0.6 and β(inf(i, j)) =
0.3, β(¬st(i, j)) = 0.7.
Example 5 (Non-factorized). For an example of a non-
factorized measure, consider the measure µw = 〈Π, a +
b + (−1 ∗ ¬a ∗ ¬b),Z〉. It has value 2 if both a and b
hold, 1 if one them holds and −1 otherwise. This measure
is not factorized over F = {a, b} as there are no values
β(a), β(b), β(¬a), β(¬b) ∈ Z, s.t.

β(a) · β(b) = 2 β(a) · β(¬b) = 1

β(¬a) · β(b) = 1 β(¬a) · β(¬b) = −1

Note that there are also no such values in R.
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While not every algebraic measure is factorized, there al-
ways exists a factorized measure that preserves weights of
queries. To establish this, we need some notation for sets of
indexed subformulas of a weighted formula α.
Definition 6 (Subformulas). Let α a weighted formula.
Then S(α) is the set of pairs (i, β), where β is a subformula
of α indexed by position-string i ∈ {0, 1}∗. That is:
• For α ∈ {p(~x),¬p(~x), k} we let S(α) = {(ε, α)}.
• For α ∈ {α1 + α2, α1 ∗ α2} we let S(α) = {(ε, α)} ∪
{(0r, β) | (r, β) ∈ S(α1)} ∪ {(1r, β) | (r, β) ∈ S(α2)}.

Theorem 7 (Factorization). Let µ = 〈Π, α,R〉 be an alge-
braic measure. Then we can construct a factorized algebraic
measure µ′ = 〈Π′, α′,R〉 s.t. for a ∈ A(Π) : µ(a) = µ′(a)
in linear time.

Proof (sketch). Intuitively, we implicitly imply the distribu-
tive law. For this, we introduce a new atom αi for every
subformula (i, β) ∈ S(α), which is true if the value of the
subformula β at index i is included in the current product.
To implement this, we let Π′ = Π∪Πroot∪Π∗∪Π+∪Πleaf.
Here, Πroot = {← notα0} ensures that the value of the for-
mula at the root is included.

Π∗ =

{
αi ← αi.0, αi.1
← αi.0, notαi.1 (i, β1 ∗ β2) ∈ S(α)
← notαi.0, αi.1

}
ensures that a subformula that uses multiplication is only in-
cluded if both subformulas are included. Further, we ensure
that either both or none of the subformulas are included.

Π+ =

{
αi ← αi.1
αi ← αi.0 (i, β1 + β2) ∈ S(α)
← αi.0, αi.1

}
ensures that a subformula that uses addition is only included
if one of the subformulas is included. Further, we ensure
that at most one of the subformulas is included.

Πleaf ={{αi} ← a | (i, a) ∈ S(α)} ∪
{{αi} ← not a | (i,¬a) ∈ S(α)} ∪
{{αi} ←| (i, k) ∈ S(α), k ∈ R}.

Formally, we define α′ = Π(i,k)∈S(α),k∈Rαi ∗ k + ¬αi.
Then µ′ = 〈Π′, α′,R〉 is factorized, by choosing F = {αi |
(i, k) ∈ S(α), k ∈ R} and β(αi) = k, β(¬αi) = e⊗.

Further, along a similar line of reasoning as in (Eiter and
Kiesel 2021) it follows that µ(Π) = µ′(Π′).

Hence, any AASC instance given as an algebraic measure
can be reduced to AASC for a factorized measure. Thus,
we can focus on factorized measures for which AASC can
be performed on a tractable circuit representation like d-
DNNFs or SDDs.

4 Cycle Breaking
In order to obtain a tractable circuit representation for a pro-
gram Π using a standard knowledge compiler, we translate
Π into a propositional formula φ such that the answer sets of
Π are in a one-to-one correspondence with the models of φ.
To this end, we will prove the following as our main result
of this section:

Theorem 8. For any factorized measure µ = 〈Π, α,R〉,
there exists µ′ = 〈Π′, α,R〉 with an acyclic program Π′ s.t.

• for all a ∈ A(Π) it holds that µ(a) = µ′(a),
• the treewidth of Π′ is bounded by k ·cbs(DEP(Π)), where
k is the treewidth of Π.

There are multiple aspects to consider in order to appre-
ciate the usefulness of this Theorem. Firstly, it is important
that Π′ is acyclic, as it is well-known that when the depen-
dency graph DEP(Π) of Π is acyclic, then Clark(Π), the
Clark-completion (Fages 1994) of Π, is a propositional for-
mula whose models exactly correspond to the answer sets
of Π. The removal of cycles may significantly increase the
treewidth, which in turn is assumed to have negative effects
on the efficiency of model counting. However, according
to the above Theorem, we can bound the treewidth over-
head using cbs(DEP(()Π)), i.e., a parameter that only de-
pends on the dependency graph of Π. Here, cbs(.) is the
component-boosted backdoor size, a new digraph-parameter
that measures cyclicity.

4.1 TP -Unfolding
A current state of the art approach to AASC is TP -
compilation (Vlasselaer et al. 2016). Intuitively, the idea is
to use forward reasoning to iteratively compile an SDD that
captures the truth of variables in a program in terms of prob-
abilistic input variables. We also use forward reasoning, but
in a different way: namely, to break the cycles in the depen-
dency graph of a program by unfolding it along paths that
forward reasoning could take. Considering TP -unfolding
allows us to unfold all normal answer set programs while
TP -compilation is only defined for Problog programs and
normal answer set programs with stratified negation.

Furthermore, whereas TP -compilation relies on perform-
ing equivalence checks in order to check whether it is faith-
ful, we unfold programs along an unfolding sequence s ∈
A(Π)∗ and give conditions that ensure that the unfolding is
faithful.

Our procedure is described in Algorithm 1. Intuitively,
where the immediate consequence operator TP (Van Em-
den and Kowalski 1976) checks if an atom a follows from
previously derived atoms, TP -unfolding introduces copies
of all rules that derive a from previously considered atoms.
For this, we iterate over the unfolding sequence considering
at each step the variable si (line 4). As the head atom of
the rule-copies we take a new copy scnt(si)+1

i or the original
atom si depending on whether si is the last occurrence of si
in s (see lines 5-8). The positive body atoms are replaced by
the last copy made of them (line 10) and the negative atoms
in B−(r) are left as they are. After copying all rules with
si in the head, we update the last copy of si and increase
the counter storing the number of copies (lines 12, 13). The
output of TP -UNFOLD(Π, s) is always an acyclic program.
We further want to preserve models bijectively.
Definition 9 (Faithfulness). We say s ∈ A(Π)∗ is faithful
(for Π), if:

• |AS(Π)| = |AS(TP -UNFOLD(Π, s))| and
• AS(Π) = {I ∩ A(Π) | I ∈ AS(TP -UNFOLD(Π, s))}.
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Algorithm 1 TP -UNFOLD(Π, s)

Input A program Π and an unfolding sequence s ∈ A(Π)∗.
Output An acyclic program Π′.

1: last = {a 7→ ⊥ | a ∈ A(Π)}
2: cnt = {a 7→ 0 | a ∈ A(Π)}
3: Π′ = {r ∈ Π, H(r) = ⊥}
4: for i = 1, . . . , len(s) do
5: if ISLASTOCCURRENCE(si, i, s) then
6: head = si
7: else
8: head = scnt(si)+1

i

9: for r ∈ Π, si = H(r) do
10: B+

new = {last(b) | b ∈ B+(r)}
11: Π′ = Π′ ∪ {head← B+

new, B
−(r)}

12: last(si) = head
13: cnt(si) = cnt(si) + 1
14: return Π′

Faithfulness is important for us, as it guarantees us that
we can perform AASC over the unfolded program without
changing the result.
Lemma 10. Let µ = 〈Π, α,R〉 be a measure, s a faithful
unfolding sequence and µ′ = 〈TP -UNFOLD(Π, s), α,R〉.
Then for all a ∈ A(Π), µ(a) = µ′(a).
Example 6 (cont’d). We compute TP -UNFOLD(Πsm, s) us-
ing the unfolding sequence3 s = st(1)nst(1) . . . st(3)nst(3)
inf(3, 1)ninf(3, 1) . . . inf(2, 3)ninf(2, 3)sm(1)sm(2)sm(3)
sm(1)sm(2) and obtain:

{st(x)} ← for x = 1, . . . , 3

{inf(y, x)} ← for x+ 1 = y mod 3

sm(1)1 ← st(1) sm(1)1 ← inf(3, 1),⊥
sm(2)1 ← st(2) sm(2)1 ← inf(1, 2), sm(1)1

sm(3) ← st(3) sm(3) ← inf(2, 3), sm(2)1

sm(1) ← st(1) sm(1) ← inf(3, 1), sm(3)

sm(2) ← st(2) sm(2) ← inf(1, 2), sm(1)

We observe that s faithful for Πsm.
In general, it is enough to iterate over all the variables

n = |A(Π)|+ 1 times, since every derivation in Π can only
take n steps. However, as we have seen in the previous ex-
ample, it can suffice to use much fewer steps. This is because
the number of times a variable needs to be considered in an
unfolding sequence depends on the positive dependencies it
takes part in: e.g. st(i), i = 1, . . . , 3 does not positively de-
pend on any variable and can therefore be considered once
before all other variables and never again afterwards.

We give a sufficient condition for faithfulness that ab-
stracts away the actual program Π and is instead based on
a structural property of the digraph unfolding of DEP(Π).
Definition 11 (Digraph Unfolding). LetG be a digraph and
s ∈ V (G)∗ be an unfolding sequence. Then the unfolding
UF(G, s) of G w.r.t. s is the digraph U such that

3Recall that choice constraints {a} ← are a shorthand for a←
notna and na← not a.

sm(1)1 sm(2)1 sm(3)

sm(1) sm(2)

st(1) st(2) st(3)

inf(3, 1) inf(1, 2) inf(2, 3)

Figure 2: Dependency Graph of TP -UNFOLD(Πsm, s).

• V (U) = {ai | 1 ≤ i ≤ |{sj | sj = a}| },
• (bi, aj) ∈ E(U) if (b, a) ∈ E(G), sk = a for some k and
s1, . . . , sk contains j many a’s and i > 0 many b’s.

The idea is that the digraph unfolding of DEP(Π) w.r.t.
s ∈ A(Π)∗ is the dependency graph of the unfolded program
TP -UNFOLD(Π, s). Therefore, the vertices are the copies
of the atoms (see lines 6,8) and there is an edge (bi, aj) if bi
is the last copy of an atom that is used to derive aj , i.e. the
j-th occurrence of a in s (see lines 10,11). Formally:

Lemma 12. Let Π be an answer set program and s ∈
A(Π)∗ be an unfolding sequence. Then UF(DEP(Π), s) =
DEP(TP -UNFOLD(Π, s)) (when identifying a with acnt(a),
where cnt(a) = |{i | si = a}|, for each a ∈ A(Π)).

Example 7 (cont’d). The dependency graph of TP -
UNFOLD(Πsm, s) is given in Figure 2. As we can see it is
acyclic and corresponds to UF(DEP(Πsm), s) as expected.

Using the above Lemma, we can provide a sufficient con-
dition for faithfulness.

Theorem 13. Let Π be an answer set program and s ∈
A(Π)∗ be an unfolding sequence. If for every simple di-
rected path π = (a1, . . . , an) in DEP(Π) there is a directed
path πc = (ac11 , . . . , a

cn
n ) in UF(DEP(Π), s), then s is faith-

ful.

Proof (sketch). Let Π be some answer set program, s an un-
folding sequence that satisfies the precondition of the the-
orem and I ⊆ A(Π). We know that, regardless of s,
the reduct TP -UNFOLD(Π, s)Iext for Iext ∩ A(Π) = I
is TP -UNFOLD(Π, s)I because the rules that are added
in line 12 use the original negative body B−(r), which
only uses atoms from A(Π). Therefore, we can con-
sider TP -UNFOLD(Π, s)I , which has a unique minimal
model. We see that if there is an answer set Iext of
TP -UNFOLD(Π, s) that is equal to I on A(Π), then it is
the only such answer set.

By the same argument we see that taking the reduct w.r.t.
I and TP -compilation commute: TP -UNFOLD(Π, s)I =
TP -UNFOLD(ΠI , s). Since I is an answer set iff it is a
minimal model of the reduct ΠI , it remains to show that
a ∈ A(Π) is derivable from ΠI iff it is derivable from
TP -UNFOLD(ΠI , s). Since both programs are positive, a
is derivable iff it has an SLD tree. However, we know that s
preserves all simple paths and since the paths in every SLD
tree correspond to paths in DEP(Π), we know there exists a
corresponding SLD-tree in TP -UNFOLD(ΠI , s).
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Note that a similar theorem can be proven for TP -
compilation, which reaches a fixed point iff s is faithful.

We introduce the component-boosted backdoor size of a
digraph, which intuitively measures cyclicity. When this pa-
rameter is low, there exists a faithful unfolding sequence in
which each variable occurs only a few times.
Definition 14 (cbs(G)). Let G be a digraph. Then cbs(G),
the component-boosted backdoor size of G, is
• 1, if G is acyclic (which includes V (G) = ∅)
• 2, if G is a polytree, i.e. the undirected version of G is

connected and acyclic
• max{cbs(C) | C ∈ SCC(G)}, if G is cyclic but not

strongly connected
• min{cbs(G \ S) · (|S|+ 1) | S ⊆ V (G)} otherwise

As the name suggests, cbs adds component-boosting to a
specific variant of backdoors, which in general have already
been considered in the context of ASP (Fichte and Szeider
2015). The most related notion of a backdoor for a digraph
G is a vertex set S, such that G \ S is a polytree, polyforest
or dag, where the backdoor size of G is the minimum size
of a backdoor for G plus 1. Note that component-boosted
backdoor size additionally takes into account thatG\S may
consist of separate SCCs that can be handled recursively and
is therefore always at most as high as backdoor size.
Example 8 (cont’d). Consider the dependency graph
DEP(Πsm) in Figure 1. It is strongly connected and
not a polytree, therefore cbs(DEP(Πsm)) is given by
min{cbs(DEP(Πsm)\S)(|S|+ 1) | S ⊆ V (DEP(Πsm))}.
We see that if we take away any Si = {sm(i)}, i = 1, . . . , 3,
then DEP(Πsm) \ Si is acyclic. Therefore, we see that
cbs(DEP(Πsm)) ≤ cbs(DEP(Πsm) \ Si) · (|Si|+ 1) = 2.

In this example backdoor size and component-boosted
backdoor size align. However, for larger, more complex
graphs cbs(.) can be much smaller than backdoor size.

The following is the main result of this section.
Theorem 8. For every answer set program Π, there ex-
ists a faithful unfolding sequence s ∈ A(Π)∗ such that
the treewidth of TP -UNFOLD(Π, s) is less or equal to
k · cbs(DEP(Π)), where k is the treewidth of Π.

The theorem is based on the following fact.
Lemma 15. Let Π be an answer set program with treewidth
k and s ∈ A(Π)∗ be an unfolding sequence. If every vari-
able a ∈ A(Π) only occurs m times in s, then the treewidth
of TP -UNFOLD(Π, s) is less or equal to k ·m.

Proof (sketch). We know that during unfolding we intro-
duce at most m − 1 copies a1, . . . , am−1 of a variable
a ∈ A(Π). Now, let (T, χ) be a tree decomposition for
PRIM(Π) of width k. Then (T, χ′), where

χ′(t) = χ(t) ∪ {aj | 1 ≤ j ≤ m− 1, a ∈ χ(t)}
is a tree decomposition of TP -UNFOLD(Π, s). Further,
|χ′(t)| ≤ |χ(t)| ·m ≤ k ·m.

We remark that the converse of this Lemma does not hold.
Motivated by this Lemma and Theorem 13, we say that s

is a path-preserving m-unfolding sequence (for digraph G),

v1

v2 v3

v4 v5

v1
1

v1
2 v1

3

v1
4 v1

5

v2
1

v2
2 v2

3

v2
4 v2

5

Figure 3: A polytree G (left) and the unfolding UF(G, spostspre)
for spost = v4v5v2v3v1, spre = v1v3v2v5v4 (right).

if for every simple (directed) path π = (a1, . . . , an) in G
there is a (directed) path πc = (ac11 , . . . , a

cn
n ) in UF(G, s)

and every variable a ∈ V (G) occurs at most m times in s.
We prove Theorem 8 by showing that there exists a path-

preserving cbs(DEP(Π))-unfolding sequence for DEP(Π)
using structural induction on the definition of cbs(.).

Lemma 16. Let G be an acyclic digraph (DAG). Then there
exists a path-preserving 1-unfolding sequence.

Proof. Let s be an unfolding sequence, where every a ∈
V (G) occurs exactly once and which obeys a topological
ordering of G. Then UF(G, s) is equal to G (modulo vari-
able renaming) and therefore path-preserving.

Next, we consider the second case, where G is a polytree.

Lemma 17. For every polytree G there exists a path-
preserving 2-unfolding sequence s.

Proof. We know that G is a polytree. We take Gtree, the
corresponding undirected graph, which is a tree with some
arbitrarily chosen root. Let spost, spre ∈ V (G)∗ be se-
quences such that every vertex occurs in spost and spre af-
ter all its descendants and ancestors in Gtree, respectively.
Then spostspre, the concatenation of spost and spre, is a
path-preserving 2-unfolding sequence of G, as depicted in
Figure 3.

In the third case, which is the first recursive one, we as-
sume G is cyclic but not strongly connected. Here, we di-
vide the problem into one subproblem for each SCC of G
and obtain a global solution by combining the solutions for
the subproblems.

Lemma 18. Let G be a cyclic but not strongly connected
digraph, and for each C ∈ SCC(G) let sC ∈ V (C)∗ be a
path-preserving mC-unfolding sequence for C. Then some
path-preserving maxC∈SCC(G)mC-unfolding sequence for
G exists.

Proof. Let Gcon be the condensation of G, i.e. V (Gcon) =
SCC(G) and (C,C ′) ∈ E(Gcon) if there exist v ∈
V (C), v′ ∈ V (C ′) such that (v, v′) ∈ E(G). Since Gcon
is acyclic we can assume a topological order (C1, . . . , Cn)
of Gcon to be given. Consider, s = sC1

. . . sCn
, the con-

catenation of the unfolding sequences for the SCCs in the
chosen topological order. It is a path-preserving unfolding
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UF(G \ S, sr)

π1

S

a1

. . .

. . .

. . .

π|S|

UF(G \ S, sr)

a|S|

S
π|S|+1

UF(G \ S, sr)

Figure 4: Sketch of UF(G, s) and a path π through it, for the sec-
ond recursive case, as in the proof of Lemma 19.

sequence for G since for every directed simple path in G
that contains a, b ∈ V (G) it holds that if a ∈ Ci and b ∈ Cj
such that i < j then a must occur after b. Therefore, as the
sequences sCi per component are path-preserving, we know
that the whole sequence is path-preserving. Further, since
V (Ci) ∩ V (Cj) = ∅ for i 6= j and sCi ∈ V (Ci)

∗, it is
clear that the maximum number of times a vertex a ∈ V (G)
occurs in s is bounded by maxC∈SCC(G)mC .

Last but not least, we consider the second recursive case.
Here, G is strongly connected but not a polytree. We re-
move a set S ⊆ V (G) of “problematic” vertices such
that the component-boosted backdoor size of the rest, i.e.,
cbs(G \ S), is small and handle S and G \ S separately.

Lemma 19. Let G be a strongly connected digraph, S ⊆
V (G) and sr ∈ V (G \ S)∗ a path-preserving mr-unfolding
sequence. Then there exists a path-preserving mr(|S|+ 1)-
unfolding sequence for G.

Proof. Let S = {a1, . . . , s|S|}. We define sS = a1 . . . a|S|
and s = (srsS)|S|sr, i.e., s ∈ V (G)∗ is the sequence ob-
tained by concatenating the sequence srsS with itself |S|−1
times and then concatenating sr. Then s is a mr(|S| + 1)-
unfolding sequence, as every a ∈ S occurs exactly |S| ≤
mr(|S|+ 1) times, and every a ∈ V (G \ S) occurs at most
mr times in sr and at most mr(|S|+ 1) times in general.

Furthermore, s is path-preserving: every simple directed
path π in G uses k ≤ |S| vertices from S and thus π =
π1, ai1 , π2, ai2 , . . . , aik , πk, where πi is a simple directed
path in G \ S. Consider Figure 4, which sketches UF(G, s)
and the path π. As sr is path-preserving for G \S, we know
that we can walk π1 in UF(G \ S, sr), then go to a1 ∈ S,
walk the path π2 in UF(G \ S, sr) and so forth.

5 Implementation & Experiments
Our prototypical implementation aspmc4, written in
Python3, currently allows for two main settings: (algebraic)
Problog mode, where the accepted inputs are Problog pro-
grams Π and aspmc computes the answers to probabilistic
(resp. algebraic) queries in Π, and ASP mode, which accepts
any normal program Π and computes the number of answer
sets of Π. Our implementation aspmc proceeds as follows:

1. We parse the input program Π, using the Python API of
clingo (Gebser et al. 2014) for normal programs and our
own parser for Problog programs.

4available at github.com/raki123/aspmc (open source).

2. We compute an initial treewidth upper bound for the pri-
mal graph of Π using htd (Abseher, Musliu, and Woltran
2017), which is a highly efficient tool for computing tree
decompositions via heuristics. On all our benchmark in-
stances this required at most 60 seconds.

3. Next, we start the actual cycle breaking. While cbs(.) is
hard to compute exactly, we can compute a backdoor, i.e.
a subset of the vertices such that the dependency graph
of the program without them is a polytree or polyforest.
These backdoors are estimated by running clingo on an
ASP encoding of the problem and using the best result
found after 30s. Using the backdoor computed by clingo
we extract an unfolding sequence using Lemma 16 to 19
and apply TP -unfolding.

4. The resulting cycle-free program Π′ is then converted to
a propositional formula Clark(Π′), by using a treewidth-
aware Clark completion due to (Hecher 2020).

5. Last but not least we perform weighted/algebraic model
counting (Problog mode) or model counting (ASP mode)
on Clark(Π′) using a knowledge compiler/model counter.

Benchmark Setting. In order to evaluate the performance
of aspmc, we considered the following scenarios.
S1 Probabilistic reasoning: Computing probabilities for

atoms of Problog programs
S2 Counting (small number of solutions on average):

Counting the number of different paths between stations
in public transport networks

S3 Counting (many solutions on average): Counting
conflict-free extensions in abstract argumentation
Scenario S1 aims at improving the evaluation of Problog

programs by employing TP -unfolding. Scenario S2 tackles
an important #P-complete problem (Valiant 1979). Scenario
S3 is motivated by the recent decision of the biennial com-
petition in abstract argumentation (Mailly et al. 2021) to also
include dedicated counting tracks.

For each of these three scenarios, we state corresponding
hypotheses that we want to study and verify in the course of
our experimental analysis.

H1 Treewidth-aware cycle breaking as presented in this
work has a significant impact on solving reasoning tasks
based on cyclic logic programs.

H2 For real-world settings as in counting problems originat-
ing on networks of practical relevance, like public trans-
port networks, TP -unfolding is beneficial as long as the
treewidth is not excessively large.

H3.1 Counting by enumeration is outperformed by count-
ing via compilation for instances with many solutions.

H3.2 Even in an acyclic setting, like S3, our treewidth-
aware version of Clark completion improves counting
performance.

Compared Solvers. In our experiments, we mainly com-
pare the performance of the following configurations.
• Problog: we use version 2.1.0.42 of Problog run with the

arguments “-k sdd”, which proved to be the best overall.
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Figure 5: Runtime of the compared solver configurations for Sce-
nario S1. The x-axis shows the number of instances and the y-axis
depicts runtimes in seconds. Instances are ordered for each config-
uration individually in ascending order of their runtimes. The plot
legend lists solvers from best to worst (“right” to “left” in the plot).

solver tw ranges
configuration

∑
0-3 4-6 >6 unique time[h]

aspmc+c2d 299 184 113 2 116 133.44
Problog 182 168 12 2 0 187.41
lp2sat+c2d* 174 167 3 4 2 194.42
clingo* 56 56 0 0 0 248.92

Table 1: Detailed results for Scenario S1: “Σ” is the num-
ber of solved instances in total; “tw ranges” gives more fine
grained insights showing the number of solved instances grouped
by treewidth upper bounds; “unique” refers to the number of in-
stances solved only by that configuration. Finally, “time[h]” is the
total runtime over all instances in hours (unsolved instances count
as timeout, i.e., 1800s). Configurations marked with an asterisk
(“*”) refer to counting solutions instead of probabilistic reasoning.

• clingo: this configuration is based on version 5.4.0 and we
used arguments “-q -n 0” in order to count answer sets.

• lp2sat+c2d: instances are translated (Bomanson 2017) to
CNFs by lp2normal 2.18 in combination with lp2atomic
1.17 and lp2sat 1.24, in order to preserve answer set
counts. Then, the answer sets are counted via counting
satisfying assignments of the resulting formula, by using
c2d version 2.2 (Darwiche 2004). Overall, c2d with argu-
ments “-smooth all -reduce -in memory -count” seemed
to provide the best results on our instances, even faster
results than, e.g., minic2d (Oztok and Darwiche 2015b).

• aspmc+c2d: this configuration uses aspmc to break the
cycles and performs AASC on a tractable circuit repre-
sentation of the constructed CNF, which is obtained via
c2d 2.2 with arguments “-smooth all -reduce”.

For scenario S1, we mainly compare aspmc+c2d with
Problog, since both solvers are able to solve the reason-
ing tasks of S1. However, for S1 we still depict results
of lp2sat+c2d and clingo when counting answer sets, since
counting can be seen as the basis for solving these reasoning
tasks. Scenarios S2 and S3 focus on counting answer sets,
where we compare aspmc+c2d with clingo and lp2sat+c2d.
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Figure 6: Runtime of the compared solver configuration for Sce-
nario S2. The plot is of the same type as in Figure 5.

solver tw ranges
configuration

∑
0-5 6-10 >10 unique time[h]

aspmc+c2d & clingo 1520 767 355 398 0 824.08
clingo 1439 686 355 398 4 846.07
aspmc+c2d 1059 767 224 68 3 1083.11
lp2sat+c2d 870 609 202 59 1 1182.7

Table 2: Detailed results over instances of Scenario S2.

Benchmark Instances. The instances used in Scenario S1
are the benchmarks from (Tsamoura, Gutiérrez-Basulto, and
Kimmig 2020) and were kindly provided to us by the authors
via personal communication. They adhere to typical bench-
mark domains consisting of 490 instances of the standard
smoker’s example, 50 instances of the gene’s problem (Our-
fali et al. 2007) and 63 web knowledge base instances (Davis
and Domingos 2009). For Scenario S2 we used real-world
graphs, more specifically, public transport networks of sev-
eral transport agencies over the world (Fichte 2016) as in-
stances. They were also used in the so-called PACE chal-
lenge competitions 2016 and 2017 (Dell et al. 2017). In total
these instances amount to 561 graph networks and 2553 sub-
graphs with a focus on different transportation modes. For
each instance, we assume the station with the smallest and
largest index to be the start and end stations, respectively.

For Scenario S3 we took the instances of the abstract argu-
mentation competition (Mailly et al. 2021) from 2019, since
at the time of submission the instances for 2021 were not
available. The ASP encoding for conflict-free extensions
was taken from the ASPARTIX suite (Dvorák et al. 2020).

Note that all our instances5 as well as raw data are avail-
able at github.com/raki123/aspmc/tree/results/results.

Benchmark Platform. All our solvers ran on a cluster
consisting of 12 nodes. Each node of the cluster is equipped
with two Intel Xeon E5-2650 CPUs, where each of these
12 physical cores runs at 2.2 GHz clock speed and has
access to 256 GB shared RAM. Results are gathered on
Ubuntu 16.04.1 LTS powered on kernel 4.4.0-139 with hy-
perthreading disabled using version 3.7.6 of Python3.

5With the exception of the Problog instances (Tsamoura,
Gutiérrez-Basulto, and Kimmig 2020) that were kindly provided
to us in personal communication and are not yet published.
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Experimental Results & Discussion. In our evaluation,
we mainly compare total wall clock time and number of
solved instances. Concerning benchmark limits, we con-
sider a timeout of 1800 seconds and an 8 GB RAM limit
per instance and solver.

Figure 5 shows a plot over all instances of Scenario S1,
which indicates that aspmc+c2d solves more instances faster
than any of the other configurations that we benchmarked.
The detailed results in Table 1 indicate that cycle breaking
works well for probabilistic reasoning, thus confirming H1.

Notably, for the instances from S1, we also benchmarked
aspmc+c2d and Problog for AASC over other semirings like
the gradient semiring from (Eisner 2002) that is used for pa-
rameter learning in probabilistic settings. Here, we observed
almost identical results, implying a benefit not only for prob-
abilistic reasoning but for AASC over general semirings.

For Scenario S2 we observed that since the number of
solutions is on the smaller side, clingo can outperform
compilation-based solvers by enumerating all solutions, as
indicated in Figure 6. Note, however, that aspmc+c2d
still outperforms lp2sat+c2d, the other compilation-based
approach. Furthermore, Table 2 reveals that there are in-
stances of small treewidth that aspmc+c2d solved but clingo
did not solve. Therefore, for instances of small treewidth
aspmc+c2d is still the configuration one would choose,
thereby confirming H2. Indeed, the decomposer htd allows
us to estimate whether an instance has a small treewidth up-
per bound in a matter of seconds. Consequently, we can con-
struct an interesting portfolio, referred to by “aspmc+c2d &
clingo”, that chooses aspmc+c2d for instances of treewidth
smaller than six and clingo for the rest. This configuration
is also included both in Figure 6 and Table 2. While it does
not provide the best performance on every instance, it solves
about 80 instances more in less total time over all instances
than the second best configuration clingo.

Finally, Scenario S3 supports H3.1, the hypothesis that
compilation outperforms enumeration on instances with
many solutions, as both lp2sat+c2d and aspmc+c2d solve
more instances than clingo. On top of that, we confirm H3.2
by the results of Table 3: even though the instances are cy-
cle free, thus requiring no cycle-breaking but only transla-
tion to CNF using Clark completion, aspmc+c2d solves al-
most 60 more instances than the second best configuration
lp2sat+c2d. The improvement is especially visible in Fig-
ure 7, which depicts a so-called scatter plot comparing the
performance of instances one by one. Indeed, aspmc+c2d
outperforms lp2sat+c2d on almost every instance.

By comparing results among different scenarios, we ob-
serve that clingo is extremely fast at enumerating solutions.
Thus, on instances with not that many solutions, clingo is
faster than any of the compilation-based approaches we con-
sidered. On the other hand, when there are more solutions,
the compilation-based approaches lp2sat+c2d, aspmc+c2d
and Problog (where applicable) solve significantly more in-
stances. Thus, our results suggest that overall, one is forced
to choose between (a) high performance on instances with
few solutions at the cost of not being able to obtain a re-
sult otherwise, and (b) an overhead cost on instances with
few solutions, which in turn allows for more instances to be

solver tw ranges
configuration

∑
0-300 300-600 >600 unique time[h]

aspmc+c2d 241 185 26 30 12 45.16
lp2sat+c2d 182 182 0 0 0 73.85
clingo 144 97 21 26 2 94.78

Table 3: Detailed results over instances of Scenario S3.

0 500 1000 1500
aspmc+c2d

0

200

400

600

800

1000

1200

1400

1600

1800

lp
2s
at
+
c2
d

Figure 7: Scatter plot of aspmc+c2d and lp2sat+c2d for Scenario
S3, comparing the runtime of instances one by one.

solved, given that their treewidth does not become too large.
This is especially visible in Figure 5 and Table 1, which
correspond to our targeted application domain of probabilis-
tic reasoning. Here, clingo finishes fastest on about 30 in-
stances but solves less than one-fifth of the instances aspmc
solves.

6 Conclusion and Future Work
We have presented TP -unfolding, which uses the idea
of forward reasoning to unfold any normal program into
an acyclic program. The combination with unfolding se-
quences, which guide the unfolding, ensures that we can ob-
tain a treewidth upper bound for the unfolded program. For
any program Π, the treewidth can be at most cbs(DEP(Π))
times bigger, where cbs(.) is a novel parameter that mea-
sures the cyclicity of directed graphs. The bound on the
treewidth provides us in turn with worst case guarantees for
the knowledge compilation step in AASC. Our experimen-
tal evaluation of the prototype implementation aspmc shows
that this idea does not only provide interesting theoretical re-
sults but provides a significant speedup on standard Problog
benchmarks compared to other solvers. In our other bench-
mark settings, we saw that while clingo’s enumeration based
approach for answer set counting is hard to beat for instances
with few answer sets, it can be very beneficial to use aspmc
instead of clingo or lp2sat when this is not the case. This
applies even to programs that are already acyclic due to the
treewidth-aware Clark completion employed by aspmc.

For future work it would be interesting to find better ap-
proximation algorithms for cbs(.), to consider the combi-
nation of TP -compilation with unfolding sequences, and to
minimize input programs before cycle breaking.
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