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Abstract
Interpretability is a desirable property for machine learning
and decision models, particularly in the context of safety-
critical applications. Another most desirable property of the
sought model is to be unique or identifiable in the consid-
ered class of models: the fact that the same functional depen-
dency can be represented by a number of syntactically differ-
ent models adversely affects the model interpretability, and
prevents the expert from easily checking their validity. This
paper focuses on the Choquet integral (CI) models and their
hierarchical extensions (HCI). HCIs aim to support expert de-
cision making, by gradually aggregating preferences based on
criteria; they are widely used in multi-criteria decision aiding
and are receiving interest from the Machine Learning com-
munity, as they preserve the high readability of CIs while ef-
ficiently scaling up w.r.t. the number of criteria. The main
contribution is to establish the identifiability property of HCI
under mild conditions: two HCIs implementing the same ag-
gregation function on the criteria space necessarily have the
same hierarchical structure and aggregation parameters. The
identifiability property holds even when the marginal utility
functions are learned from the data. This makes the class of
HCI models a most appropriate choice in domains where the
model interpretability and reliability are of primary concern.

1 Introduction
Decision aiding models aim at supporting human decision
makers (DM) in selecting the most appropriate alternatives
with respect to the current context, based on preference rela-
tions among the criteria involved. Multi-criteria decision aid
(MCDA) models are instrumental in a wide range of critical
applications, where the decision rests upon the DM, who as-
sesses the alternatives sorted by the model based on their full
awareness of the context.

MCDA models usually proceed in two steps. In a first
step, the value of each attribute (criterion) is turned into a
utility score using the so-called marginal utility functions. In
a second step, the utility scores are combined via an aggre-
gation function, defining the aggregated utility of the alter-
native, and a decision is taken based on this aggregated util-
ity (Fig. 1). For a better scalability, the criteria are usually
structured along a hierarchy; thus, the aggregation function
has a recursive structure, computing the aggregated utility of
each hierarchy node from that of its child nodes.

Figure 1: Decision process

Example 1. A decision maker (DM) wishes to buy a house.
Let us assume that houses are defined by seven criteria: 1.
House surface area, 2. Garden surface area, 3. Garage
(yes/no), 4. Proximity to a large road, 5. Proximity to public
transportation, 6. Proximity to downtown, 7. Price. These
criteria are gradually aggregated as illustrated in Fig. 2 to
form new compound criteria: 8. Commodities, 9. Building
comfort, 10. Accessibility, and 11. Global score. The goal
of an MCDA model is to rank the alternatives corresponding
to the different ads, allowing the DM to quickly retrieve the
best opportunities according to their own preferences.

In many application domains related to decision making
and artificial intelligence at large, an essential requirement
is to gain the users’ trust (O’Neill 2016). To this end, the
model must be interpretable, that is, the DMs must un-
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Figure 2: Hierarchy of criteria described in Ex 1.
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derstand which criteria influence the decision, how, and to
which extent; in other words, they must be able to trace back
the assessment of an alternative to the criteria involved. In
some cases, syntactic constraints (e.g. monotonicity) might
be enforced to facilitate the interpretation of the model; in
other cases, specific domain knowledge is available (e.g. im-
plying some preferences w.r.t. some criteria, everything else
being equal), and the model must comply with this prior
knowledge. Naturally, the trust-worthiness of the model is
all the more important in safety-critical contexts. Related
with the interpretability and verifiability of the model is its
identifiability. Typically, ambiguities arise if the same utility
function can be represented in different ways, preventing the
DM from understanding the impact of each attribute.

Formally, let us consider a parametric model space H,
where each model is specified from a parameter vector de-
pending on the attribute space, representing the importance
of each criterion and of their interactions. The identifiability
property is formalized as follows: letting F and F ′ denote
two models, parameterized by θ (resp. θ′), H is identifiable
iff F = F ′ implies θ = θ′ (Rothenberg 1971).

Note that the identifiability property is also relevant in the
machine learning context: the existence of a single solution
brings several benefits to the learning (Paulino and Pereira
1994; Ran and Hu 2017).

This paper focuses on the class of Choquet integral (CI)
models (Choquet 1953), widely used in Multi-Criteria de-
cision aiding for their high readability. More specifically,
we focus on the hierarchical extension of CIs (HCIs), re-
taining the CI readability while enabling a better scalability
w.r.t. the number of criteria, through a gradual aggregation
of the criteria along the considered hierarchy. Recent ad-
vances in machine learning have been devoted to the data-
driven modeling of both CIs (Fallah Tehrani et al. 2012;
Havens and Anderson 2019) and HCIs (Bresson et al.
2020b). The contribution of the paper is to establish the
identifiability of HCIs, formally showing that, if two HCIs
are equal for all possible alternatives, then they have to have
the same parameters, and thus the same interpretation. This
result encompasses the identifiability of the marginal utili-
ties from the raw criteria data, of the aggregation hierarchy,
and of the aggregation parameters. Moreover, it bridges a
gap between both fields of Machine Learning− where pow-
erful black-box models are learned with no general identi-
fiability guarantees − and MCDA, where models are con-
strained and need to be interpretable. The HCI model space
thus offers an interesting trade-off for safety-critical applica-
tions, enabling the data-driven learning of interpretable and
identifiable models.

The paper is organized as follows. Section 3 describes the
formal background and introduces MCDA models. Section
4 defines the identifiability problem, and establishes the HCI
(and marginal utilities) identifiability when the hierarchy is
fixed. Section 5 finally establishes the identifiability of both
the hierarchy and the parameters of the sought model.

2 Related Work
Due to their desirable properties, CIs have long been popu-
lar decision models (Grabisch and Perny 2003; Grabisch and

Labreuche 2010). A more general, multi-layered form was
introduced in (Ovchinnikov 2002), and later refined in (Gra-
bisch et al. 2009; Angilella et al. 2013) in order to support a
tree-like hierarchical structure. This hierarchical extension,
referred to as HCI, enables to represent some given struc-
ture on the criteria, with better interpretability than flat CIs
when the number of critera increases (Labreuche and Fos-
sier 2018). HCIs can also be fitted with marginal attribute
rescalings, called marginal utilities, for a better expressivity
(Bresson et al. 2020b).

The interest of this class of models has motivated sev-
eral approaches for eliciting the CI parameters. These meth-
ods are mostly either constraint-based (Grabisch, Kojadi-
novic, and Meyer 2008; Pelissari and Duarte 2020) or ma-
chine learning-based (Fallah Tehrani et al. 2012; Havens and
Anderson 2019). There was also work on learning HCIs
with marginal utilities and a given hierarchy (Bresson et al.
2020b).

These approaches raise the issue of knowing whether the
HCI, when fitted with marginal utilities, is identifiable or not
in the sense of (Rothenberg 1971) (more in Section 4). In
(Bouyssou and Marchant 2010), the authors presents some
results on identifiable marginal utilities for ordered classi-
fication. Bishop (2006) states that it is not a trivial prop-
erty for hierarchical models. While some results have been
presented for Gaussian-based hierarchical models (Xie and
Carlin 2006; Ogle and Barber 2020), they do not extend to
HCIs.

As said, this paper tackles the HCI identifiability and
presents mild assumptions enforcing the identifiability prop-
erty. The impact of this result might be appreciated in the
view of (Ovchinnikov 2002), showing that CIs organized in
a Directed Acyclic Graph (DAG) are not identifiable. The
restriction of DAGs to trees is here shown to be sufficient to
achieve identifiability.

3 Formal Background
3.1 General Preference Model
Let us consider a finite set of n attributes taking values in
domains X1, . . . , Xn. With no loss of generality, it is as-
sumed that Xi ⊆ R = [−∞,+∞] for all i = 1 to n. Let
N = {1, . . . , n}, Y := [0, 1] and U := [0, 1]n. An alterna-
tive x = (x1, . . . , xn) is an element ofX = X1×. . .×Xn ⊆
Rn.

In preference modeling problems, the goal is to represent
the preferences of a decision maker (DM) over elements of
X . More precisely, we need a numerical representation F :
X → Y of the preferences of the DMs, such that x is at
least as good as y if and only if F(x) ≥ F(y) (Krantz et
al. 1971). Scale Y is interpreted as a degree of preference
where value 1 (resp. 0) represents a complete satisfaction
(resp. dissatisfaction).

Many MCDA models are written using the decomposable
form (Keeney and Raiffa 1976):

F(x) = A(u1(x1), . . . , un(xn)) ∀x ∈ X (1)
where the ui : Xi → Y are called the marginal utilities, and
A : U → Y is an aggregation function. For i ∈ N , ui rep-
resents a marginal preference on the values of xi (see Ex. 2),
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with ui(xi) ≥ ui(x
′
i) if value xi for attribute i is more sat-

isfying than x′i. A criterion is an attribute Xi together with
its marginal utility ui.
Example 2. [Ex. 1 cont’d] Consider attribute 4: proxim-
ity to a large road (in kilometers). The DM prefers to be
close enough for easy access, but far enough that they are
not bothered by the noise. Assuming 0.1km is too close, 2km
is optimal, and 10km is too far. This preference is reflected
by u4(2) > u4(0.1) and u4(10) < u4(2).

The aggregation function A combines the normalized
scores of the criteria and returns the overall score on the
same scale. In order to capture the DM preferences, A
should satisfy the following monotonicity condition:

∀a, a′ ∈ U, a ≥ a′ ⇒ A(a) ≥ A(a′), (2)
where a ≥ a′ iff ai ≥ a′i for all i ∈ N , with a =
(a1, . . . , an). All value functions return scores on the same
scale. Hence an alternative with same satisfaction degree α
on all criteria yields an overall score of α:

A(α, . . . , α) = α ∀α ∈ [0, 1]. (3)
This condition is called idempotency. E.g., if the alternative
is good on all criteria, then it remains globally good.

3.2 Aggregation Model A
The simplest aggregation function is a weighted sum (WS).

WSw(a) =
∑
i∈N

wi ai, (4)

where the vector w = (w1, . . . , wn) are the criteria weights.
They satisfy wi ≥ 0 and

∑
i∈N wi = 1 in order to ful-

fill monotonicity (2) and idempotency (3) properties. Even
though this model is very easy to understand, it is limited by
the fact that it assumes that criteria are independent.
Example 3 (Ex. 1 cont.). We assume a sub-domain of Ex.
1, where we can evaluate houses only on criteria 4, 5 and
6, focusing on aggregation node 10 and its children in Fig.
2. As we focus on the aggregation, we assume the marginal
utilities to have already been computed. Thus, we represent
a house as a vector of satisfactions on criteria 4, 5, 6; that
is, a house that is totally satisfying on criterion 4 and dissat-
isfying on criteria 5, 6 is represented as (1, 0, 0). Let � and
∼ be a preference relation and an equivalence relation on
houses restricted to criteria 4, 5, 6. The DM considers that
public transportation will mostly be used for accessing the
downtown hub; it is thus equivalently satisfying to be close
to downtown, to the public transportation, or to both. This
means that, given the satisfaction α on criterion 4, we have

(α, 0, 1) ∼ (α, 1, 0) ∼ (α, 1, 1). (5)
The DM also considers that having only access to the city

(5. or 6.) is as satisfying as having only access to the outside
world (4.), but is still better than having access to neither.
Thus

(0, 1, 0) ∼ (1, 0, 0) � (0, 0, 0). (6)
Given a WS, first equation gives us w5 = w6 = 0, and thus
w4 = 1. On the other hand, the second one gives w4 =
w5 > 0; we can thus not represent the DM’s rules with a
WS.

A classic way to generalize this model is to consider a
piecewise affine model PA(a) characterized by a partition
D of U composed of a finite set of domains such that PA
is a (monotone and idempotent) weighted sum within each
domain D ∈ D, and PA is continuous.

This model is very general and can approximate any con-
tinuous and smooth (e.g. Lipschitz continuous) function, a
phenomenon which is in particular exploited in ReLU-based
neural networks (Glorot, Bordes, and Bengio 2011).

The price to pay for such flexible functions is their lack
of interpretability. The question thus becomes to find a good
trade-off between flexible, piecewise affine functions, and
interpretable functions.

The class of Choquet integral models thus is considered.

3.3 Choquet Integral
In order to generalize the weighted sum aggregation model,
the idea is to assign weights not only to single variables but
also to any subset of variables.

Definition 1. A fuzzy measure (FM) on a set N is a set
function µ : 2N → [0, 1] such that

• µ(∅) = 0; µ(N) = 1

• B ⊆ A ⊆ N ⇒ µ(B) ≤ µ(A)

Given a setA ⊆ N , µ(A) can be seen as the weight of the
importance of all the criteria in A. Therefore, it is at least as
large on a set than on one of its subsets.

Example 4 (Ex. 3 cont.). We can define the following FM
µ defined on set {4, 5, 6} at aggregation node 10: µ(∅) =
0, µ({4}) = µ({5}) = µ({6}) = µ({5, 6}) = 0.5, and
µ({4, 5}) = µ({4, 6}) = µ({4, 5, 6}) = 1.

The Choquet integral is defined as follows.

Definition 2. (Choquet 1953) The Choquet integral (CI) of
a vector a = (a1, ..., an) parameterized by FM µ is defined
as:

Cµ(a) =

n∑
i=1

aσ(i) (µ(Ai)− µ(Ai+1)) (7)

with σ the reordering of the indices such that aσ(1) ≤
aσ(2) ≤ · · · ≤ aσ(n) and Ai = {σ(i), . . . , σ(n)}.

The conditions on a FM ensure that the CI satisfies mono-
tonicity (2) and idempotency (3) properties.

Example 5 (Ex. 4 cont.). We wish to show that the FM
given in Ex. 4 fulfills the preferences given in Ex. 3 – namely
relations (5) and (6). Let us compute

Cµ(α, 0, 1) = α (µ({4, 6})−µ({6}))+1µ({6}) =
α

2
+

1

2
.

Likewise, Cµ(α, 1, 0) = α
2 + 1

2 = Cµ(α, 1, 1), so that con-
dition (5) is satisfied.

We also check that Cµ(0, 1, 0) = µ({5}) = 1
2 =

Cµ(1, 0, 0) > Cµ(0, 0, 0) = 0. Hence (6) is also satisfied.

The CI can represent a wide range of decision be-
haviours, including interactions among criteria (Grabisch
and Labreuche 2010). This model can be interpreted thanks
to indicators derived from the Cooperative Game Theory
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that can be directly applied to the FM. The Shapley value
(Shapley 1953) indicates the mean importance of each cri-
terion, and the interaction indices (Murofushi and Soneda
1993; Grabisch and Roubens 1999) measures the degree to
which a subset of criteria interact.

The CI can also be written in the following way:

Cµ(a) =
∑
A⊆N

m(A) ·min
i∈A

ai, (8)

where m is the Möbius representation of µ, defined by
m(A) =

∑
B⊆A

(−1)|A\B|µ(B).

In order to reduce the exponential complexity, one usually
requires that most Möbius coefficients are zero. We set S =
{A ⊆ N : m(A) 6= 0}. For instance a FM is said to be k-
additive (for k ∈ {1, . . . , n}) when S = {A ⊆ N : |A| ≤
k} (Grabisch 1997). Index k = 2 is often considered in
practice as it is a good trade-off between the representation
power and the interpretability of the model.

3.4 Hierarchical Choquet Integral
Towards a Generalization of the Choquet Integral By
Eq. (8), a CI is a piecewise affine function, involving subdo-
mains where the CI returns a weighted sum, and the domains
being separated by hyperplanes of the form ai ≥ aj . While
these domains make sense in the view of the idempotency
property, one would like to generalize them.

It is shown in (Grabisch et al. 2009), based on (Ovchin-
nikov 2002), that any piecewise affine function can be rep-
resented by a network of interconnected CIs. This result
can be interpreted as: a set of CIs aggregate all criteria, and
their output are then aggregated by a final CI. While this re-
sult shows the generality of interconnected CIs, the lack of
structure on these CIs might harm the overall interpretabil-
ity, all the more so as there is no restriction on number of
CIs, possibly yielding very large models.

Moreover, as each CI aggregates all inputs, the traceabil-
ity of the criteria impact and their interactions is lost. The
model needs to be inspected in every detail to be understood.

HCI Model The hierarchical Choquet Integral (HCI)
model retains the generalization from a single CI to a net-
work of CIs. Nonetheless, it restricts their structure to a tree.

Each leaf of the tree corresponds to a single criterion, and
each criterion appears as a single leaf. Accordingly, the non-
leaf nodes in the tree have a clear meaning to the DM, as
illustrated in Fig. 2 in Ex. 1. Note that, whatever the struc-
ture of the tree, the number of aggregations and the size of
each aggregation is at most n− 1. Therefore, the number of
parameters is lower or equal to that of a CI.

Example 6 (Ex. 1 cont.). Consider the tree in Fig. 2. With
2k parameters for an aggregation node with k children, we
have 4 + 4 + 8 + 8 = 24 parameters in a model with that
hierarchy. On the other hand, a flat model, with a single
aggregation, would have 27 = 128 parameters. The number
of parameters is thus greatly reduced by a given hierarchy.

Definition 3. A hierarchy onN consists of a directed rooted
tree T = 〈r,M,Ch〉 where M is the set of vertices (leaves

included). We write V the set of non-leaf nodes, and N the
set of leaves (as each leaf corresponds to a native criterion),
with thus M = V ∪ N . r ∈ V is the root node (the top
aggregation node) and Ch : M → 2V is the set of children
of every node.

For k ∈ V , let Lf(k) denote the set of leaves in the subtree
of T rooted at k. We also write xk (resp. Xk) the restriction
of x (resp X) to the attributes in Lf(k).

For k ∈ V , let d(k) denote the number of children nodes
of k: d(k) = |Ch(k)|. We suppose the children to be or-
dered, and we write Ch(k) = {k1, ..., kd(k)}. Each non-leaf
node k ∈ V has an associated FM µk on the set Ch(k). A hi-
erarchical Choquet integral (HCI) on T is the set of hierar-
chical functions A = {Ak}k∈M where Ak : Y |Lf(k)| → Y
is computed recursively as:

Ak(a) = Cµk
(
Ak1(ak1), . . . ,Akd(k)(akd(k))

)
if k ∈ V , and Ak ≡ Id if k ∈ N .
Example 7. In Figure 2, nodes 1 to 7 are native criteria,
and nodes 8 to 12 are aggregation nodes. Their values is
computed as a CI of their respective children in the tree,
which can be either criteria or aggregation nodes. In par-
ticular, Accessibility (node 10) will aggregate the proximity
to a large road, to downtown and to public transportation
systems (respectively nodes 4, 5, and 6).

HCIs are more general than CIs (a CI being an HCI with
a 1-node hierarchy). HCIs, while preserving all CI proper-
ties, bring along additional benefits. Essentially, the hierar-
chical decomposition involves many small, and thus highly
interpretable, aggregations (as opposed to a single, big one).
This decomposition is most appreciated for large n values
to avoid cognitive fatigue, as humans can hardly keep more
than 7 elements in mind at the same time, according to
Miller’s law (Miller 1956). The reduced number of parame-
ters also helps to learn such models, by limiting overfitting.

This also allows for a local analysis of only the necessary
parameters. In Example 1, if two houses have similar eval-
uations, the DM might wish to look at the direct nodes, and
see that one offers more ease of access, while the other is
much more comfortable. Nonetheless, if two artificial cri-
teria still have similar values, the DM can ”focus” on the
associated node, and get a finer explanation, and so on, go-
ing as deep as they want into the hierarchy.

A hierarchical version of the Shapley value was also es-
tablished for analyzing such models (Labreuche and Fos-
sier 2018). Finally, the normalization and monotonicity con-
straints are still valid, as a composition of CIs.

Due to the compensatoriness property, a CI on a single
criterion is the identity function. We thus impose that every
non-leaf node k has at least two children (d(k) ≥ 2).
Definition 4. Let T be a hierarchy with root r on the set of
criteria N . Let
• U : X → U be a function, composed by n marginal

utilities {u1, · · · , un}, one on each native attribute i.e.
only on the leaves. With the above notation, U(x) =
(u1(x1), · · · , un(xn)), thus, U maps an alternative x to
the vector corresponding to x’s criteria-wise satisfaction
in the utility space.
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• A : U → Y be an HCI.

Function F : X → Y defined by F = A ◦ U is called a
Utilitaristic Hierarchical Choquet Integral (UHCI).

The utilities are computed recursively from the leaves to
the root node. Given xN ∈ X , we first compute the utili-
ties on the criteria: ai = ui(xi), for i ∈ N on the leaves.
Then the utility at node k ∈ V is given by ak = Fk(xk) =
Ak(aCh(k)), where it aggregates the utility values of its chil-
dren. Finally the overall utility is the utility ar at the root
node: ar = Fr(xN ) = F(xN ).

Example 8. [Ex. 5 cont.] The recursive computation of the
utility values in the tree of Fig. 2 is done as follows:

• a1 = u1(x1), . . . , a7 = u7(x7),
• a8 = Cµ8(a2, a3),
• a9 = Cµ9

(a1, a8),
• a10 = Cµ10

(a4, a5, a6),
• a11 = Cµ11(a9, a10, a7).

Note that Ex. 5 gives an illustration of the computation of
a10 given the value of its children a4, a5, a6. Here µ10 is the
FM given in Ex. 4. The overall score is then the score a11 of
the root node 11.

4 Identifiability of a UHCI Model with a
Fixed Hierarchy

As said, the main contribution of the paper is establishing
the identifiability of UHCI models. The identifiability of a
model is the uniqueness of its parameterization. That is, let
C = {Fθ, θ ∈ Θ} be a family of functions defined on X ,
and with parameters in the parameter space Θ. Let Fθ (resp.
Fθ′ )∈ C parameterized by θ (resp. θ′). Then C is identifiable
if and only if: ∀x ∈ X,Fθ(x) = Fθ′(x)⇒ θ = θ′.

This section focuses on the case where the hierarchy of
the HCI is fixed, and establishes the identifiability property
under this assumption. Let us consider two UHCIs that are
equal everywhere on the input space, and which are assumed
to have the same hierarchy denoted by T . Proving Identifia-
bility of a UHCI model with fixed hierarchy means that:

(A) the marginal utilities are equal on both models for each
criterion;

(B) the fuzzy measures of each of the aggregators are equal
between both models.

Under some mild assumptions Section 4.1 and 4.2 estab-
lishes (A) and (B).

4.1 Assumptions
To represent information on the local preferences restricted
to single features (attributes), it is usual to impose some as-
sumptions on the marginal utilities. Note that the marginal
utilities used in practice are either monotonic or bitonic (ei-
ther single-peaked or single-valleyed). In Ex. 1, it is increas-
ing w.r.t. criterion 1 and single-peaked w.r.t. criterion 4.

The continuity of ui is desirable to avoid a non-stable
behavior of the local and hence the global utility. To have
meaningful relative importance degrees among criteria, one

also imposes the marginal utilities to be normalized. More-
over, a very common assumption is that the smallest possible
utility is 0 (a value suggesting that the corresponding crite-
rion is not met at all), and the largest one is 1 (the criterion
is satisfied). For convenience, we impose that these extreme
values be reached (possibly asymptotically) for a given value
on attribute i. Overall, the assumptions are summarized as
follows:

∀i ∈ N ui is continuous on R (9)
∀i ∈ N inf

xi∈R
ui(xi) = 0 (10)

∀i ∈ N sup
xi∈R

ui(xi) = 1 (11)

All marginal utilities evoked in the remainder of this paper
are assumed to respect (9), (10) and (11).

Assume in Fig. 2 that node 9 has no effect in the aggre-
gation 11. Then one can modify the parameters of aggrega-
tions 8 and 9, with no consequence on the global score. This
illustrates that identifiability cannot be obtained if there are
useless criteria. We formalize this in the following way. We
say that no criterion in N is useless if

∀i ∈ N ∃xi, yi ∈ Xi, z ∈ X,
F(xi, z−i) 6= F(yi, z−i) (12)

where (xi, z−i) is the alternative whose value is xi on
attribute i, and zj on all other attributes j 6= i. We introduce
the following definition on FMs.
Definition 5. Consider a FM µ on N . A criterion i ∈ N
is said to be degenerate if µ(S ∪ {i}) = µ(S) for every
S ⊆ N \ {i}. A fuzzy-measure is said to be non-degenerate
if there is no degenerate criterion.

A first result (inspired from (Labreuche 2018)) is:
Lemma 1. Relation (12) holds for F with marginal utility
functions if and only all aggregators Ak for k ∈ V have a
non-degenerate measure.

4.2 Main Result
The uniqueness of the representation of the HCI model on a
fixed hierarchy follows from Lemma 1:
Theorem 1. Let F and F ′ be two UHCIs with same hierar-
chy T = 〈r,M,Ch〉, and assume that they involve different
fuzzy measures and utilities. Assuming that (12) holds for F
and F ′, and that the following relation is satisfied

∀x ∈ X, F(x) = F ′(x), (13)

then F and F ′ have the same parameterization, that is:
• ∀i ∈ N , ∀xi ∈ Xi, ui(xi) = u′i(xi)

• ∀k ∈ V , µk = µ′k
The proof is organized as follows (see the detailed proof

in Section A.1): First, F and F ′ can be written:

F : x 7→ Cµr (Fr1(xr1), . . . ,Frd(r)(xrd(r))),
F ′ : x 7→ Cµ′r (F

′
r1(xr1), . . . ,F ′rd(r)(xrd(r))),

with Ch(r) = {r1, ..., rd(r)}. Using this form, it is enough
to show these two properties:
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(*) µr = µ′r,

(**) ∀k ∈ Ch(r), ∀x ∈ Xk, Fk(x) = F ′k(x).

Indeed, if we prove this for the root, then the proof ap-
plies on the children as well, as they are all UHCI. We can
then propagate the result from the root to the children. We
distinguish three cases, represented each by a lemma below.

Lemma 2. If ∀k ∈ Ch(r), ∀x ∈ Xk, Fk(x) = F ′k(x), then
we have µr = µ′r.

Lemma 2 means that (**)⇒ (*).
LetBk = {xk ∈ Xk : Fk(x) = 1} andBk = {xk ∈ Xk :
Fk(x) = 0}. The next two steps depend on the intersections
of Bk ∩B′k and Bk ∩B′k of all children k ∈ Ch(r).

Lemma 3. If, ∀k ∈ Ch(r),[
(Bk ∩B′k 6= ∅) and (Bk ∩B′k 6= ∅)

]
, then we have (**).

Lemma 3, shows that if all Fk and F ′k have non-disjoint
support for 0 and for 1, then we have (**); by Lemma 2, we
also have (*). We thus have identifiability.

Lemma 4. Assume there exists k in Ch(r) such that
Bk ∩B′k = ∅ or Bk ∩B′k = ∅. Then, F 6= F ′.

Lemma 4 shows that, should the assumptions of Lemma 3
be violated, then F is necessarily different from F ′. As a
consequence, we have an equivalence between the assump-
tions of Lemma 3 and that of Theorem 1; we have thus
shown that, given two equal UHCIs with the same hierar-
chy, they have necessarily the same marginal utilities, and
the same aggregations.

5 Full Identifiability
The aim of this section is to show the identifiability of the
UHCI model in the general case, that is, when the hierarchy,
the aggregation functions and the marginal utility functions
are unknown. Let us start with an example to give the intu-
ition of the approach.

Example 9. Consider three criteria organized as in Fig.
3. We assume the models a4 = a1+min(a1,a2)

2 and a5 =
a3+min(a3,a4)

2 and identity marginal utility functions. As we
will see in this section, a5 is piecewise affine with respect to
a1, a2, a3 and is composed of the following affine parts a3,
a1
2 + a3

2 and a3
2 + a1+a2

4 which are separated by the frontiers

a1 = a2 , a1 = a3 and
a1 + a2

2
= a3. (14)

We note that these criteria are partitioned as {1, 2} and {3}
in Fig. 3, and this is exactly the structure of the last frontier
in (14) (criteria {1, 2} appear in the left hand side while {3}
appear in the right hand side).

5

4 3

1 2

Figure 3: Example of a tree.

As illustrated in this example, the tree structure can be
recovered from the expression of the separation frontiers.
Theorem 1 can then be applied, and yields the uniqueness
of both the aggregator weights and the marginal utility func-
tions. So the major ingredient to show identifiability of the
UHCI model is to have a good characterization of the sepa-
ration frontiers (Section 5.1). In Section 5.2, we present an
algorithm Alg1 which, given a UHCI under the form of its
marginal utilities, hierarchy and set of fuzzy measures on its
non-leaf nodes, yields the set of separation frontiers. In Sec-
tion 5.3, we present an algorithm Alg2 which, given a set
of separation frontiers of a UHCI model, constructs a tree
compatible with these frontiers. Finally, in Section 5.4, we
exhibit two conditions on the hierarchy T and aggregation of
a UHCI F . Under those conditions, Alg2(Alg1(F)) = T ;
that is, T is the only hierarchy that can parameterize F .

5.1 Structure of the UHCI
From (7), we see that the CI (and thus the HCI) is a contin-
uous, piecewise-linear function w.r.t. its inputs. It is, more
precisely, a piecewise-convex combination, as the weights
in all regions sum to one and are non-negative.

We consider here a UHCI modelF characterized by a tree
T = 〈r,M,Ch〉, a set of FM {µk}k∈V for its aggregations,
and a set of marginal utility functions U = {u1, · · · , un}.
In order to propagate the property of piecewise linearity of a
HCI model to a UHCI model, we need to make a regularity
assumption on the marginal utility functions:

∀i ∈ N, ui is piecewise C1. (15)
This is a reasonable assumption, as it encompasses most
used models such as sigmoids or piecewise affine func-
tions. We also assume (9), (10), (11), as in Section 4. F
can thus be described by a finite number of C1 functions
G = {g1, . . . , gm}. It is, in particular, a piecewise convex
combination of the output of the marginal utilities:

∀g ∈ G, g(x) =
n∑
i=0

wgi ui(xi),

with non-negative weights that sum to one.
Space X can thus be split into a finite number of regions

R1, ..., Rm, such that ∀x ∈ Ri, F(x) = gi(x). F is thus C1

on each of these regions, and we call H the set of frontiers
between each of these regions.

For a node k ∈ M , we call Gk the set of C1 functions
that Fk can take, where these C1 functions depend only on
xk, and Hk the set of separation frontiers between the C1

regions of Fk that are induced by node k.
Note that G = Gr, butH =

⋃
k∈M
Hk.

Lemma 5. For a leaf node i ∈ N , the separation frontiers
ofHi are of the form xi = θ with θ ∈ Xi.

For an aggregation node k ∈ V , the separa-
tion frontiers of Hk take the form of linear equa-
tions of the marginal utility functions of the attributes:∑
l∈K wl ul(xl) = 0 with K ⊆ Lf(k) and wl 6= 0

for all l ∈ K. Then there exist k′, k′′ ∈ Ch(k) with
k′ 6= k′′ such that we have {l ∈ K : wl > 0} ⊆ Lf(k′) and
{l ∈ K : wl < 0} ⊆ Lf(k′′).
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H thus contains separation frontiers of two forms. We
call form 1 those of the type xi = θ, i.e. induced by a leaf.
We call form 2 those of the type

∑
l∈K wl ul(xl) = 0, i.e.

induced by an aggregation node.

5.2 Construction of the Set of Separation
Frontiers from the UHCI Model

We have just seen that a HCI model is a piecewise linear
function. As the marginal utility functions are piecewiseC1,
we conclude that a UHCI model is a piecewise C1 function.

We present Algorithm 1 in this section. This algorithm
takes as an input a UHCI, characterized by its hierarchy
T = 〈r,M,Ch〉, its set of the fuzzy measures of all of its
aggregators and its marginal utility functions. It then com-
putes H. Note that this algorithm also computes G as an
internal variable. The approach is constructive, building the
two sets Gk andHk for every k ∈M in a bottom up manner
from the leaves to the root.

Let k ∈ V . For FM µk, we write Sk the set of subsets
having a non-zero Möbius coefficient in Eq. (8). As stated
ak is a piecewise linear function of the ui(xi) for i ∈ Lf(k).

Function Alg1(T , {µk}k∈M , {uk}k∈N )
1 While some nodes remain untreated
2 Let k ∈M s.t. k has no untreated children
3 If k is a leaf
4 Gk := set of C1 expressions of uk
5 Hk := set of constraints xk = θ where θ is a

transition between two C1 domains of uk
6 Else
7 Ek := {(l, l′) : ∃S ∈ Sk with {l, l′} ⊆ S}
8 For all C connected components

of the graph 〈Ch(k), Ek〉:
9 Compute the linear model of ak as a function

of the aCh(k), by transforming terms mini∈A ai
into ai for an index i ∈ A depending on the order
among the variables. This yields∑
l∈K wl al with K ⊆ Ch(k)

10 For all term al, with l ∈ K
11 For all expression

∑
j∈Lf(l) w

l
j aj(xj) in Gl

12 Add
∑
l∈K

∑
j∈Lf(l) wl w

l
j aj(xj) to Gk

13 For all (l, l′) ∈ Ch(k)2 s.t. ∃S ∈ Sk : {l, l′} ⊆ S
14 For all

∑
j∈Lf(l) w

l
j aj(xj) ∈ Gl

15 For all
∑
j∈Lf(l′) w

l′

j aj(xj) ∈ Gl′
16 Hk ← Hk ∪

{
x ∈ X :∑

j∈Lf(l) w
l
j aj(xj) =

∑
j∈Lf(l′) w

l′

j aj(xj)
}

17 AddHk toH
18 ReturnH

Algorithm 1: ObtainingH (and also G) from a UHCI

We now illustrate Alg1 in an example.

Example 10. Consider the tree given by Fig. 4 and a UHCI
model defined by a6 = 1

2 min(a3, a5) + 1
2 min(a4, a5),

a5 = 1
2a1+ 1

2 min(a1, a2), uk(xk) = xk
k+1 for k = 1, 2, 3,

and u4(x4) =
√
x4 if x4 ≤ 1

4 and u4(x4) = 2 x4+1
3 other-

wise, with X1 = · · · = X4 = [0, 1]. Utility function u4 is
continuous and has two C1 segments.

6

5 3 4

1 2

Figure 4: Example of a tree.

The execution of Algorithm 1 gives:
• At k = 1, 2, 3: Gk = {xkk+1} andHk = ∅.
• At k = 4: G4 = {√x4; 2 x4+1

3 } andH4 = {x4 = 1
4}.

• At k = 5: E5 = {(1, 2)} so that the connected com-
ponent is {1, 2}. Then a5 can take the expressions a1
and a1+a2

2 depending on whether a1 ≤ a2. Hence
G5 = {x12 ; x1

2+x2
3

2 } andH5 = {x12 = x2
3}.

• At k = 6: E6 = {(3, 5), (4, 5)} so that the connected
component is {3, 4, 5}. Then a6 can take the expressions
a5, a3+a52 , a5+a42 and a3+a4

2 depending on whether a5 ≤
a3 and a5 ≤ a4. Hence G6 is composed of
– x1

2 [for a1 < a2, a5 < a3, a5 < a4]

– x1
2+x2

3

2 [for a1 > a2, a5 < a3, a5 < a4]

– x1
2

2 + x3
4

2 [for a1 < a2, a5 > a3, a5 < a4]

– x1
2+x2

3

4 + x3
4

2 [for a1 > a2, a5 > a3, a5 < a4]

– x1
2

2 +
√
x4

2 [for a1 < a2, a5 < a3, a5 > a4, a4 <
1
4 ]

– x1
2+x2

3

4 +
√
x4

2 [for a1 > a2, a5 < a3, a5 > a4, a4 <
1
4 ]

– x1
2

2 + 2 x4+1
6 [for a1 < a2, a5 < a3, a5 > a4, a4 >

1
4 ]

– x1
2+x2

3

4 + 2 x4+1
6 [for a1 > a2, a5 < a3, a5 > a4, a4 >

1
4 ]

– x3
4

2 +
√
x4

2 [for a5 > a3, a5 > a4, a4 <
1
4 ]

– x3
4

2 + 2 x4+1
6 [for a5 > a3, a5 > a4, a4 >

1
4 ]

and H6 = {x12 = x3
4 ; x1

2+x2
3

2 = x3
4 ; x1

2 =
√
x4 ; x1

2 = 2 x4+1
3 ; x1

2+x2
3

2 =
√
x4 ; x1

2+x2
3

2 =
2 x4+1

3 }.
FinallyH = H4 ∪H5 ∪H6.

The next result shows that Algorithm 1 computes the set
G of C1 functions that F takes, and returns the set of sepa-
ration frontiersH between these functions.
Lemma 6. Algorithm 1 computes the correct values of the
set of piecewise C1 functions Gk and returns the correct set
of separation frontiersHk, for each k ∈M .

Lemma 6 states, in particular, that the output of Alg1 de-
pends only on the values of the UHCI as a piecewise-C1

function. The following corollary is a simple rewriting.
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Corollary 1. Let F (resp. F ′) be a UHCI defined on
hierarchy T (resp. T ′), a set of FMs ν (resp. ν′)
and a set of marginal utility functions U (resp. U ′). If
F(x) = F ′(x) ∀x ∈ X , then both UHCIs are the same
piecewise C1 function. Thus, we have Alg1(T , ν,U) =
Alg1(T ′, ν′,U ′).

5.3 Construction of the Hierarchy from the Set of
Separation Frontiers

Assume that we are given the set of separation frontiers H
between the C1 functions. We would like to be able to re-
cover the hierarchy from this.

The idea is that, from Lemma 5, each term mini∈A ai
(with A ⊆ Ch(k)) in the expression of Ak yields the sepa-
ration frontier al = al′

1 for any {l, l′} ⊆ A. In other words,
the positive and negative values of the weights correspond
to two separate sub-trees in the tree. Given the separation
frontiersH (e.g. x1

2+x2
3

2 −√x4 = 0 in Ex. 10), the idea is
that the set of nodes having positive weights (e.g. {1, 2} in
the ex.) and the set of nodes having negative weights (e.g.
{4} in the ex.) correspond to separate subsets of criteria in
the tree (e.g. {1, 2} and {4} belong to separate branches in
Fig. 4).

We consider the set of separation frontiers of the 2nd

form and we look at the indices of the positive and negative
weights – see Lemma 5:

K =
{

(K+,K−) : {x ∈ X :
∑
l∈K

wl ul(xl) = 0} ∈ H,

K+ = {l ∈ K,wl > 0} and K− = {l ∈ K,wl < 0}
}
.

Algorithm 2 provides the construction of the tree T only
from K, following the previous idea that K+ and K− shall
belong to separate parts of the tree.

Function Partition(N,K):
1 R = {(i, j) ∈ N ×N, i 6= j : ∃(K+,K−) ∈ K,

[{i, j} ⊆ K+ or {i, j} ⊆ K−]}
2 {N1, . . . , Nq} = connected components of 〈N,R〉
3 For l ∈ {1, . . . , q}
4 If |Nl| > 1
5 Kl = {(K+,K−) ∈ K : K+ ∪K− ⊆ Nl}
6 Nl = Partition(Nl,Kl)
7 Else
8 Nl = {Nl}
9 Return (N1, . . . ,Nq)

Function Alg2(H):
10 Compute K fromH
11 Return Partition(N,K)

Algorithm 2: Obtaining the hierarchy fromH. N is
either given by the problem, or trivially retrieved fromH.

We assume we are given a UHCI model F , from which
we know the separation frontiersH. The following example

1Terms al and al′ can be moved independently so that we can
reach al < al′ and al > al′ . For instance, we can have al = 0, 1
or al′ = 0, 1.

illustrates the reconstruction of the hierarchy from H. The
correctness of Alg2 directly derives from Lemma 5.
Example 11. Let us consider a UHCI model over four at-
tributes 1, 2, 3, 4, with the following separation frontiers:

H =
{
x1

2 +
3x2

3

7
=

10
√
x4

7
; x1

2 +
3x3

4

7
=

10
√
x4

7
;

x1
2 +

3x2
3

7
=

20x4 + 10

21
; x1

2 +
3x3

4

7
=

20x4 + 10

21
;

x1
2 = x3

4; x2
3 = x3

4; x4 =
1

4
;

x1
2 +

x2
3

2
+
x3

4

6
=

5
√
x4

3
; x1

2 +
2x3

4

3
=

5
√
x4

3
;

x1
2 +

x2
3

2
+
x3

4

6
=

10x4+5

9
;x1

2 +
2x3

4

3
=

10x4+5

9

}
.

We apply Alg2 to H. We compute K =
{

({1, 2}, {4}),

({1, 3}, {4}), ({1}, {3}), ({1, 2, 3}, {4}, ({1, 3}, {4}),

({2}, {3})
}

. Then we compute the partitions:

• Partition(N,K): R = {(1, 2), (1, 3), (2, 3)}. Hence the
connected components of 〈N,R〉 are {1, 2, 3} and {4}.
For the first set, we haveK1 =

{
({1}, {3}), ({2}, {3})

}
.

• Partition({1, 2, 3},K1): R = ∅. Hence the connected
components of 〈{1, 2, 3}, ∅〉 are {1}, {2} and {3}.

The algorithm thus returns the tree of Fig. 5.

6

5

3 41 2

Figure 5: Tree constructed by Algorithm 2 from the separation
frontiers from example 11.

5.4 Main Result
In order to get uniqueness properties, we need to introduce
some assumptions on the HCI model.

Assumption H1: At every aggregation node k ∈ V ,
Ch(k) is the only connected component of graph
〈Ch(k), {(i, j) , i 6= j s.t. ∃S ∈ Sk : {i, j} ⊆ S}〉
H1 forbids to have a model Cµk that is (even only

partly) additive. For instance, a5 = Cµk(a1, a2, a3, a4) =
1
2 min(a1, a2) + 1

2 min(a3, a4) (see Fig. 6-Left) violates
H1 as groups {1, 2} and {3, 4} of variables are discon-
nected. In this example, we could obtain the same func-
tion with the tree of Fig. 6-Right having two new aggre-
gation nodes: a6 = min(a1, a2), a7 = min(a3, a4) and
thus a5 = a6+a7

2 . Hence the hierarchy is clearly not unique
in this example. On the other hand, Cµk(a1, a2, a3, a4) =
1
3 min(a1, a2) + 1

3 min(a2, a3) + 1
3 min(a3, a4) satisfies H1

as the four variables are connected, and one cannot decom-
pose Cµk with sub-aggregation nodes.
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5

1 2 3 4

⇒

5

6 7

1 2 3 4

Figure 6: Illustration of H1.

Assumption H2: For all nodes k ∈ V :

|Sk| ≥ 2. (16)

H2 (combined with H1) forbids from having a simple min
between two variables. Intuitively, a simple min between
two variables can be collapsed at the higher level. Consider
the example of Fig. 7-left, where a4 = min(a1, a2) (vi-
olating H2) and a5 = a3

2 + min(a3,a4)
2 . Then we can re-

move node 4 and directly write a5 in terms on a1, a2, a3:
a5 = a3

2 + min(a1,a2,a3)
2 , which is a valid Choquet integral.

Hence we can also represent this model with the tree of Fig.
7-right.

5

1 2

34

min

⇒

5

1 2 3

Figure 7: Illustration of H2.

The following lemma shows that under H1 and H2, apply-
ing successively Algorithm 2 on the set of separation fron-
tiers produced by Algorithm 1 yields the same tree.
Lemma 7. Let F a UHCI on tree T = 〈r,M,Ch〉, with
a set of FM ν = {µk, k ∈ V } and marginal utility func-
tions U = {u1, . . . , un}. If F satisfies (12), T and ν satisfy
H1 and H2, and U satisfies (9), (10), (11) and (15), then
Alg2(Alg1(T , ν,U)) = T .

The next result shows that the hierarchy of a UHCI model
can be uniquely constructed from F .
Theorem 2. Under assumptions H1, H2, (9), (10), (11),
(12) and (15), there is a single tree that represents a UHCI
model.

Combining Theorems 1 and 2, we obtain our main result.
Theorem 3. Let F and F ′ be two UHCI satisfying (13),
with potentially different hierarchies, fuzzy measures and
marginal utility functions. Assume that both models fulfill
H1, H2, (9), (10), (11), (12), (13) and (15). Then, both mod-
els have the same hierarchy, fuzzy measures and marginal
utilities.

It is interesting to notice that the necessary conditions are
very easily understandable, and make sense to a human DM;
they hence do not conflict with readability.

6 Conclusion and Perspectives
This paper studies a class of multi-criteria decision aid
(MCDA) models. Such models are expected to satisfy cer-
tain requirements, notably interpretability and reliability.
These requirements are key to establishing and maintaining
the user’s trust in the model, as they are aimed at supporting
human decisions in safety-critical domains. This paper fo-
cuses on the class of hierarchical Choquet integral models,
retaining the desirable properties of Choquet integrals while
being more scalable w.r.t. the number of criteria involved.

Traditionally, such models are built by hand through an
interaction with a domain expert. It would be suitable to free
the experts from such a long and tedious manual crafting of
the models, and to learn them from suitable data whenever
available. A first step was made in this direction, by learn-
ing the marginal utilities and weights of a UHCI with an
expert-given hierarchy. An empirical approach was made in
(Bresson et al. 2020a), which showed that there seems to be
a single attractor in this model search-space. Further theoret-
ical work could extend the present contribution to reinforce
these results, and guarantee that an expert only needs to in-
spect and interpret the unique HCI model fitting the data in
order to validate it.

The second contribution of the paper, namely, the identifi-
ability of the hierarchy along with the other parameters, is to
our knowledge a new result in the field of decision support.
This result opens two perspectives for further research. A
first algorithmic perspective is to learn the hierarchy itself.
The key question then concerns the sample complexity of
the hierarchy learned. Another theoretical perspective con-
cerns the HCI approximation. The question is to which ex-
tent two close models (in the functional space) are close in
the parametric space. This could nicely extend similar work
assuming a fixed hierarchy.

A Proofs
A.1 Proof of Identifiability - Fixed Hierarchy
Proof of Lemma 2: Let S ⊆ M a set of nodes, we write
Lf(S) =

⋃
k∈S

Lf(k). We use the following compound

notation. Let x, x′ be two vectors in X , and let S, S′ ⊆ M
so that (Lf(S),Lf(S′)) is a partition of N . Then we write

z = (xS , x′S′) the vector s.t. zi =

{
xi if i ∈ Lf(S)
x′i if i ∈ Lf(S′)

Let Z ∈
∏

k∈Ch(r)

Bk, and O ∈
∏

k∈Ch(r)

Bk.

Let S be an arbitrary subset of Ch(r). By definition,
we have F(OS ,ZCh(r)\S) = Cµr (1S , 0Ch(r)\S). Thus
F(OS ,ZCh(r)\S) = µr(S). In the same way, we obtain
F ′(OS ,ZCh(r)\S) = µ′r(S).

As the values of F and F ′ are equal for any x ∈ X , we
have µr(S) = µ′r(S). This applies for all S ⊆ Ch(r), thus
Property (*) holds.

Proof of Lemma 3: Let k ∈ Ch(r). By the assump-
tion of the lemma, we can construct Z ∈

∏
k∈Ch(r)

Bk ∩B′k,
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and O ∈
∏

k∈Ch(r)

Bk ∩B′k. Since µr is by hypothesis

non-degenerate, we have that ∃Sk ⊆ Ch(r) \ {k} s.t.
µr(Sk ∪ {k})− µr(Sk) > 0. Thus, we have: ∀xk ∈ Xk

F(OSk ,ZCh(r)\(Sk∪{k}), xk)

= Cµr (1Sk , 0Ch(r)\(Sk∪{k}),Fk(xk))

= Fk(xk)(µr(Sk ∪ {k})− µr(Sk)) + µr(Sk)

Likewise for F ′, thus, we have the following equality:

Fk(xk)(µr(Sk ∪ {k})− µr(Sk)) + µr(Sk)

= F ′k(xk)(µ′r(Sk ∪ {k})− µ′r(Sk)) + µ′r(Sk)

Since µr(Sk∪{k})−µr(Sk) > 0 by definition of Sk, we
obtain:

∃α ∈ R+, β ∈ R, ∀xk ∈ Xk,Fk(xk) = αF ′k(xk) + β

Applying this equality in Zk and Ok, we get α = 1 and
β = 0.

Fk(Zj) = αF ′k(Zj) + β ⇒ 0 = 0 + β ⇒ β = 0

Fk(Oj) = αF ′k(Ok) + β ⇒ 1 = 1α⇒ α = 1

We have thus shown that the assumption on this case im-
plies that ∀k ∈ Ch(r),Fk = F ′k.

We define ui and ui to the marginal utility. For i ∈ N ,
we write ui = {xi ∈ Xi : ui(xi) = 0} and ui = {xi ∈
Xi : ui(xi) = 1}. Note that, in some cases, these values can
be reached asymptotically. In these cases, ui (resp ui) might
only contain −∞ or +∞.

Property 1. Let k ∈ Ch(r), such that Bk ∩B′k = ∅ (resp.
Bk ∩B′k = ∅). Then there exists a leaf i ∈ Lf(k) such that
ui ∩ u′i = ∅ (resp. ui ∩ u′i = ∅).
Proof : We show the first result by contradiction. Let k ∈
Ch(r), such thatBk∩B′k = ∅. We assume that ∀i ∈ Lf(k),
∃ xi ∈ ui ∩ u′i. Then there exists xk = (x1, · · · , x|Lf(k)|).
Thus Fk(xk) = Ak(1, . . . , 1) = 1. Using the same argu-
ment, we can obtain : F ′k(xk) = 1. Thus, xk ∈ Bk ∩ B′k,
hence the contradiction.

The very same reasoning can be applied for the caseBk∩
B′k = ∅.

Proof of Lemma 4: We prove this lemma by contradiction,
by assuming F = F ′. Then, let i ∈ Lf(k) such that
ui ∩ u′i = ∅ or ui ∩ u′i = ∅, which exists by Property
1. There is thus an interval I = [αi, βi] ⊆ Xi such that
ui and u′i have opposite monotonicity on I . This can
easily be verified by enumerating the cases. WLOG, we
assume that ui is decreasing on I while u′i is non-decreasing.

Let S ⊆ N \ {i}. Let zS ∈
∏
j∈S

uj ×
∏

i∈N\S
uj . Then, by

monotonicity of HCIs, ui(αi) < ui(βi) implies:

Fk(αi, zSLf(k)\{i}) ≤ Fk(βi, zSLf(k)\{i})

⇒ F(αi, zSN\{i}) ≤ F(βi, zSN\{i})

Likewise, we have: F ′(αi, zSN\{i}) ≥ F
′(βi, zSN\{i}) as u′i

is non-decreasing on [αi, βi]. Since F and F ′ are equal ev-
erywhere, we thus have:

∀S ⊆ N \ {i},

F
(
αi, zSN\{i}

)
= F

(
βi, zSN\{i}

)
We show that this equation leads to a contradiction, by build-
ing an S ⊆ N such that we do not have the equality.

We denote by π = {π1, . . . , πt} the unique path from root
r to leaf i, with t the depth of i in the tree. We order them
so that π1 = r and ∀j ∈ {2, . . . , t}, πj ∈ Ch(πj−1). This
means that πt = i.

For each j in {1, . . . , t−1}, let Sj be a subset of nodes in
Ch(πj) \ {πj+1} such that µπj (Sj) > µπj (Sj ∪ {πj+1}).
The non-degenerateness property implies that such sets ex-

ist. We denote by Sk =
t−1⋃
j=1

Sj .

Now, let vα be a vector in X such that : vα = αi
vαi ∈ ui if ∃g ∈ Sk, i ∈ Lf(g)
vαi ∈ ui otherwise

and vβ = (vαN\k, βi).
We write dj = Ch(πj) \ (Sj ∪ {πj+1}) . Then, at node

πj , we have:

Fπj (vαπj ) = Cµπj (Fπj+1
(vαπj+1

), 1Sj , 0dj )

= Fπj+1

(
vαπj+1

)
γj + δj

with γj = µπj (Sj∪{πj+1})−µπj (Sj) and δj = µπj (Sj).
when j = t− 1, we have:

Fπt−1
(vαπt−1

) = γt−1ui(αi) + δt−1

Fπt−2(vαπt−2
) = γt−2Fπt−1

(
vαπt−1

)
+ δt−2

= γt−2(γt−1ui(αi) + δt−1) + δt−2

And so on. Since ∀j ∈ {1, ..., t}, γj > 0 by construction
of Sj , and δj ≥ 0, we have Fπ1

(vαπt) = Γui(αi) + ∆ with
Γ > 0 and ∆ ≥ 0 by composition of affine functions with
a strictly increasing coefficient. Likewise, for vβ , we obtain
Fπ1(vβπt) = Γui(βi) + ∆. Nonetheless:

ui(αi) < ui(βi)⇒ Γui(αi) + ∆ < Γui(βi) + ∆

⇒ F(vαπt) < Fr(vβπt)

We have built a set S ⊆ N such that Eq. (13) does not hold.
Thus F 6= F ′ and this yields to the contradiction.

Proof of Theorem 1:
F = F ′ ⇒ ∀k ∈ Ch(r),[

(Bk ∩B′k 6= ∅) and (Bk ∩B′k 6= ∅)
]

by Lemma 4

⇒ ∀k ∈ Ch(r),Fk = F ′k by Lemma 3

⇒ µr = µ′r by Lemma 2

The proof is completed.
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A.2 Proof of Identifiability - Free Hierarchy
Lemma 8. ∀

∑
j∈S(k) w

k
j uj(xj) ∈ Gk, where S(k) ⊆

Lf(k), we have wkj > 0 for every j ∈ S(k).

Proof : If there exists j ∈ S(k) with wkj < 0, then the score
ak would be locally decreasing w.r.t. this variable, which
contradicts monotonicity of A w.r.t. its inputs.

Proof of Lemma 5: The result is clear for i ∈ N .
For k ∈ V , the separation frontiers in Hk corresponds

to an equation gi(x) = gj(x). Nodes i and j corresponds
to two distinct sub-trees with roots k′ and k′′ respectively.
Hence by Lemma 8, all coefficients of gi and gj are positive.
Hence the result.

Proof of Lemma 6: The proof is done by induction. For
leaves, the separation frontiers are the points of separation of
the piecewise C1 segments of the marginal utility functions.
For the other nodes, the recursive construction of Gk andHk
is clear by Lemma 5. There is no required property on the
HCI model to have this result.

Notation: Set Gk is written as a set of linear models of the
marginal utility functions. Each g ∈ Gk has a support, i.e. a
set of leaves with non-zero weights; we call Tk the set of the
supports of all g ∈ Gk.

Gk =
{∑
l∈T

wTl ul(xl) , T ∈ Tk
}
. (17)

We denote by G′k the set of linear models of the marginal
utility functions of ak as a function of aCh(k).
Lemma 9. Under assumptions (12) and H2, for every k ∈
M , the graph 〈Lf(k), {(i, j), i, j ∈ T with T ∈ Tk}〉 is
connected, where set Tk in Gk is given by Eq. (17).
Proof : The proof is done by backward induction.

For a leaf k ∈ N : Gk is the set of C1 expressions that ak
can take,Hk is the set of xk = θ for all θ where function uk
has a discontinuity of its derivative, and thus the assumption
is proven at this node.

For an aggregation node k ∈ V : Let `, `′ ∈ Ch(k) with
` 6= `′. We need to show that `, `′ are connected in the graph
Gr := 〈Ch(k), {(i, j), i, j ∈ T with T ∈ T ′k}〉 where T ′k is
the set of coalitions appearing in G′k. By assumption H2 and
the non degeneracy of the capacities (see Lemma 1 derived
from (12)), we have |Sk| ≥ 2 and there exist S1, S2 ∈ Sk
such that `, `′ ∈ S1 ∪ S2 and S1 6= S2. The CI Cµk(aCh(k))
at node k takes the form

mk(S1) min
i∈S1

ai +mk(S2) min
i∈S2

ai + · · · (18)

Two cases (the other cases are obtained by symmetry):
• 1st case: ` ∈ S1, `′ ∈ S2 and ` 6∈ S2. Hence by an

appropriate ordering of the utilities, (18) can take the form
mk(S1) a`+mk(S2) a`′+· · · , so that ` and `′ are directly
connected in Gr.

• 2nd case: {`, `′} ⊆ S1 and ∃`′′ ∈ S2 with `′′ 6∈ S1.
Hence by an appropriate ordering of the utilities, (18) can
take the two forms mk(S1) a` + mk(S2) a`′′ + · · · and

mk(S1) a`′ + mk(S2) a`′′ + · · · . Therefore ` and `′ are
directly connected in Gr through `′′.

Replacing in the linear equation w.r.t. marginal utilities of
G′k, terms a` (` ∈ Ch(k)) by any element of G`, we obtain
Gk and we easily see, by the induction assumption, that any
pair `, `′ ∈ Lf(k) is connected in Gk.

Proof of Lemma 7: Consider a UHCI model F =
〈T , ν,U〉, and let us apply Algorithms 1 and 2. Let us show
that the hierarchy obtained by Alg2(Alg1(F)) is exactly T .
More precisely, we show by induction starting from root
down to the leaves that Algorithm 2 progressively produces
hierarchy T . We use below the sets T` as defined in Eq. (17).

At the root node k = r,Hk is composed of the separation
frontiers

∑
`∈T w

T
` a` =

∑
`∈T ′ w

T ′

` a` for every T ∈ T`
and T ′ ∈ T`′ , where {`, `′} ∈ Sk. In Algorithm 2, such a
pair (T, T ′) is an element of K. The leaves of two separate
subtrees Lf(`) and Lf(`′) are clearly separated.

Let ` ∈ Ch(k). By H1, ` is necessarily connected to
another node `′ through Sk. Hence, a separation frontier at
node k takes the form a` = a`′ . By Lemma 9, all leaves
are connected through 〈Lf(k), {(i, j), i, j ∈ T with T ∈
Tk}〉. Therefore all leaves of a child ` ∈ Ch(k) form a
connected component of 〈Lf(k),R〉. Hence we obtain the
right grouping of the elementary criteria at the top level.

We finally reproduce the previous reasoning recursively
on any aggregation node k.

Proof of Theorem 2: Consider two UHCI models F =
〈T , ν,U〉 and F ′ = 〈T ′, ν′,U ′〉 that both satisfy assump-
tions H1, H2, (9), (10), (11), (12), (13) and (15). Assume
that these models are different and in particular T 6= T ′.

Assume by contradiction that these two UHCI models
yield exactly the same overall utility model. By Lemma 6,
Algorithm 1 to F and F ′ yields the piecewise C1 functions
and separating frontiers underlying F and F ′. By corollary
1 of Lemma 6, set H obtained by Algorithm 1 is identical.
That is Alg1(T , ν,U) = Alg1(T ′, ν′,U) = H.

This equality yields that Alg2(Alg1(T , ν,U)) =
Alg2(Alg1(T ′, ν′,U ′)) = T ′′. Lemma 7 says that T = T ′′
and T ′ = T ′′, as both F and F ′ satisfy H1, H2, (9), (10),
(11), (12), (13) and (15). We conclude that T and T ′ are
identical. We raise a contradiction.

Proof of Theorem 3: Consider two UHCI models F =
〈T , ν,U〉 and F ′ = 〈T ′, ν′,U ′〉 that both satisfy assump-
tions H1, H2, (9), (10), (11), (12), (13) and (15).

By Theorem 2, we have T = T ′. As we are now in a
setting where both UHCIs have the same hierarchy, we can
apply Theorem 1, which gives us that ν = ν′ and U = U ′,
concluding the proof.

References
Angilella, S.; Corrente, S.; Greco, S.; and Slowinski, R.
2013. Multiple criteria hierarchy process for the Choquet
integral. In 7th International Conference on Evolutionary
Multi-Criterion Optimization, 475–489.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

161



Bishop, C. M. 2006. Pattern recognition and machine learn-
ing. Information science and statistics. Springer.
Bouyssou, D., and Marchant, T. 2010. Additive conjoint
measurement with ordered categories. Eur. J. of Operational
Research 203:194–204.
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