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Abstract

Enforcement, adjusting an argumentation framework such
that a certain set of arguments becomes acceptable, is an im-
portant research topic within the study of dynamic argumen-
tation, but one that has been little studied for structured argu-
mentation. In this paper we study enforcement in a general
structured argumentation setting. In particular, we study con-
ditions on the argumentation setting and the knowledge base
that ensure (or prevent) the acceptability of sets of formulas
for structured argumentation frameworks.

1 Introduction
Argumentation is a dynamic process, in which derived con-
clusions have to be revised in view of new information.
However, basic abstract Argumentation Frameworks (AFs)
– arguments and the attacks between them (Dung 1995)
– and their conclusions – set(s) of arguments (extensions)
that can collectively be accepted – are static. Dynamic ap-
proaches to abstract argumentation have been studied, such
as enforcement (Baumann and Brewka 2010): given a set of
arguments that we want to accept, how to change the argu-
mentation framework in such a way that this set becomes
(part of) an extension in the resulting framework?

Although enforcement has been extensively studied for
abstract argumentation (see (Doutre and Mailly 2018) for
an overview), not much research has been conducted on en-
forcement for structured argumentation, where arguments
can be constructed by inferring conclusions (formulas) from
a knowledge base (a set of formulas). In abstract ar-
gumentation, dynamics is often modeled by adding argu-
ments/attacks, but in structured argumentation it is not possi-
ble to simply add specific arguments/attacks without directly
influencing other arguments/attacks in the framework. The
structure of individual arguments means that there is a sub-
argument relation, for example, when an argument is based
on a subset of the premises (formulas) of another argument.
Thus, adding an argument means that its sub-arguments have
to be added as well. Similarly, because attacks are dependent
on the formulas in the arguments, adding an attack could
mean that we have to add an argument as well. Hence, in a
structured setting we should define enforcement in terms of
formulas instead of in terms of arguments: given a set of for-
mulas that you want to accept, how to change the framework

in such a way that this set becomes (part of) the conclusions
of an extension in the resulting framework?

For our study of enforcement of sets of formulas, we take
a general approach to structured argumentation (Borg and
Straßer 2018) so the results hold for many of the well-known
approaches (Besnard et al. 2014). We allow formulas to be
added to the knowledge base, and show under which con-
ditions on the attack relation and on the new information in
the knowledge base a set of formulas can be enforced. We
see that a set of formulas can always be enforced if it can be
derived from a consistent set of formulas and either (i) that
set is maximally consistent; or (ii) the acceptance relation
is monotonic; or (iii) the acceptance relation satisfies non-
interference and the set does not share any information with
the already existing information. To the best of our knowl-
edge, this is the first study on enforcement of sets of formu-
las in a general structured argumentation setting.

Our study of enforcement in a structured argumentation
setting is not only interesting from a theoretical perspec-
tive. There are many real-world applications of structured
argumentation, including those in legal reasoning (Prakken
2020), crime and forensics (Bex, Testerink, and Peters 2016;
Odekerken and Bex 2020), medicine (Čyras et al. 2020;
Zeng et al. 2020), technologies for behaviour change (Cha-
laguine et al. 2018) and debunking fake news (Visser,
Lawrence, and Reed 2020). In these application domains,
dynamics and specifically enforcement for structured argu-
mentation is imperative. For example, when reasoning in
legal or medical cases we want to know whether new ob-
servations can enforce a new (legal/medical) conclusion or
whether we can stop looking for more evidence. Similarly,
in persuasive dialogues for behaviour change or about fake
news, it makes sense to enforce one’s conclusion in as short
a dialogue as possible, since in the case of long dialogues
the user will simply disengage.

We start our paper by further illustrating the need for en-
forcement in a real-life application of structured argumenta-
tion (Section 2). The setting from (Borg and Straßer 2018)
and enforcement for abstract argumentation (Baumann and
Brewka 2010) are recalled in Section 3. Then, in Section 4,
enforcement in a structured setting are introduced. Finally,
we discuss the implications of some of the assumptions and
restrictions made in the paper in Section 5 and related work
in Section 6. We conclude in Section 7.
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2 Enforcement in Real-world Applications
At the Dutch National Police several argumentation-based
applications are being deployed (Bex, Testerink, and Peters
2016). These applications are aimed at assisting the police
at working through high volume tasks, leaving more time for
tasks that require human attention. For example, there is an
application that helps Dutch citizens to file a complaint on
online trade fraud and can then determine whether it is a case
of fraud (Odekerken, Borg, and Bex 2020), and an applica-
tion helps the police to identify malafide webshops (Odek-
erken and Bex 2020). Each of these applications is based
on an inquiry process in which the system gathers informa-
tion until the argumentation component (which is based on
a variation of ASPIC+ (Prakken 2010)) determines that the
derived conclusion will not change if more information is
added (i.e., the conclusion is stable).

Take, for example, the application for online trade fraud.
This system tries to determine whether, given the informa-
tion that the citizen has provided, the conclusion for fraud
can be stably accepted (i.e., it is currently accepted and will
remain so with any future expansion of the knowledge base),
or not (e.g., no (accepted) argument for fraud is possible
given the current knowledge base, or the acceptance of fraud
might still change when new information is obtained). Es-
sentially, the question is whether the conclusion fraud can be
enforced for all possible expansions of the knowledge base,
and if so, what information is necessary for this enforce-
ment. The application contains a rule-base (based on Dutch
fraud law) and a set of queryables, formulas that can be
added to the knowledge base and from which (given the rule-
base) it might be possible to build arguments for the conclu-
sion fraud. These queryables are observations that can be
gathered by, for example, asking the citizen more questions
(e.g., ‘how much did you pay to the suspected fraudster?’) or
querying a database (e.g., ‘is the suspected fraudster known
to the police?’). The question of enforcement becomes then:
which of these queryables should be added to the knowledge
base to enforce the conclusion fraud? Since the application
(and the other applications mentioned here and in Section 1)
are based on structured argumentation frameworks (in the
case of the trade fraud application a variation of ASPIC+),
the existing literature on enforcement does not help to an-
swer this question. In this paper we therefore study enforce-
ment for structured argumentation in a general setting, the
results of which are general enough to be implemented in
the police applications as well.

3 Preliminaries
In this paper it is assumed that there is a formal language L.
Sets of formulas are denoted by S,T, finite sets of formulas
are denoted by Γ,∆,Θ, formulas are denoted by γ, δ, φ, ψ
and atoms are denoted by p, q, r, all of which can be primed
or indexed if needed. Furthermore, it is assumed that there is
a deducability relation `⊆ ℘fin(L)× L (where ℘fin denotes
the set of finite subsets).

For the results in this paper it is not necessary to assume
all the Tarskian conditions on ` (i.e., reflexivity, transitivity
and monotonicity). Given a language L, a set of L-formulas

S and a deducability relation `, we denote the closure of S
w.r.t. ` by CN`(S) = {φ | ∃Γ ⊆ S s.t. Γ ` φ}. When ` is
clear from the context it will be omitted.

3.1 General Argumentation Setting
Abstract argumentation frameworks (Dung 1995) are pairs
AF = 〈Args,A〉, where Args is a set of arguments and
A ⊆ Args× Args is an attack relation on those arguments –
in such frameworks, the arguments are abstract entities with
no internal content or structure. In structured argumenta-
tion the arguments in an argumentation framework are con-
structed from a knowledge base and a set of rules and the
attack relation is based on the structure of these arguments.

Rather than choosing one of the well-known approaches
to structured argumentation (see e.g., (Besnard et al. 2014))
as the framework for this paper, the general argumentation
setting from (Borg and Straßer 2018) is taken as the ar-
gumentation approach. This allows us to keep the results
of the current paper as general as possible and does not
require to introduce all the specifics of one particular ap-
proach. Moreover, the results apply to some (e.g., ASPIC+,
ABA and logic-based argumentation) of the approaches dis-
cussed in (Besnard et al. 2014), since it was shown in (Borg
and Straßer 2018) that these can be translated into the gen-
eral setting. We recall here the most important definitions
from (Borg and Straßer 2018).
Definition 1 (Argument). Given a set of L-formulas S, the
set of S-based arguments is denoted by Args`(S), such that
(Γ, γ) ∈ Args`(S) iff Γ ` γ for some Γ ⊆ S. Given an
argument a = (Γ, γ) ∈ Args`(S), Conc(a) = γ denotes the
conclusion of a and Supp(a) = Γ denotes the support set of
a. Where S is a set of arguments, Supps(S) =

⋃
{Supp(a) |

a ∈ S} and Concs(S) = {Conc(a) | a ∈ S}.
To accommodate argumentative attacks two types of func-

tions are introduced: a contrariness function · : L → ℘(L)
that associates each formula with a set of conflicting for-
mulas and a target function ·̂ : ℘fin(L) \ ∅ → ℘fin(L) that
associates the support set of each argument with the sets of
formulas in which the argument can be attacked.
Example 1. Let L be a formal language and `CL the con-
sequence relation from classical logic (CL). Some examples
of the contrariness and target function are:

negation (¬): φ = {¬φ} conflict: φ = {ψ | ψ, φ ` ⊥}
identity (id): Γ̂ = Γ conjunction: Γ̂ = {

∧
Γ′ | Γ′ ⊆ Γ}.

An argumentation setting is based on the deducability re-
lation, the contrariness function and the target function.
Definition 2 (Setting). An (argumentation) setting is a triple
AS` = (`, ·, ·̂). A setting based on S ⊆ L is given by
AS`(S) = (S,`, ·, ·̂).

Attacks between arguments in a setting are based on the
contrariness function and the target function:
Definition 3 (Attacks). Let AS`(S) be a setting and let a =
(Γ, γ) ∈ Args`(S) and b = (∆, δ) ∈ Args`(S). Then a
attacks b (in φ) iff there is a φ ∈ ∆̂ such that γ ∈ φ.

Given a setting the corresponding argumentation frame-
work can be defined.
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Figure 1: Graphical representation of part of the argumentation
framework from Example 2.

Definition 4 (Argumentation framework). Given a setting
AS`(S), the corresponding argumentation framework is the
pair AF(AS`(S)) = 〈Args`(S),A〉, where Args`(S) is the
set of S-based arguments and (a, b) ∈ A iff a, b,∈ Args`(S)
and a attacks b.
Example 2. Let ASCL(S) = (S,`CL,¬, id) be an argu-
mentation setting, based on classical logic, negation (¬) as
the contrariness function and id as the target function, for
S = {p, q,¬p ∨ ¬q}. Then some of the arguments are:
a = ({p}, p) d = ({p, q},¬(¬p ∨ ¬q))
b = ({q}, q) e = ({p,¬p ∨ ¬q},¬q)
c = ({¬p ∨ ¬q},¬p ∨ ¬q) f = ({q,¬p ∨ ¬q},¬p)
Here, for example, f attacks a, d and e since p ∈
̂Supp(a) ∩ ̂Supp(d) ∩ ̂Supp(e) and ¬p ∈ p. Also, d attacks
c since Supp(c) = {¬p ∨ ¬q} and ¬(¬p ∨ ¬q) ∈ ¬p ∨ ¬q.
See Figure 1 for a graphical representation of part of the
induced argumentation framework.

To determine which arguments can collectively be con-
sidered as accepted, Dung-style argumentation seman-
tics (Dung 1995) can be applied to an argumentation frame-
work.
Definition 5 (Argumentation semantics). Let AF(AS`(S))
be an argumentation framework for a setting AS`(S) and
let S ⊆ Args`(S) be a set of arguments. Then:
• S is conflict-free iff there are no a, b ∈ S such that a at-

tacks b;
• S defends a ∈ Args`(S) iff for each attacker b ∈

Args`(S) of a there is a c ∈ S that attacks b;
• S is admissible (Adm) iff it is conflict-free and it defends

every a ∈ S; and
• S is complete (Cmp) iff it is admissible and it contains

every a ∈ Args`(S) it defends.
Some specific complete extensions are:

• S is preferred (Prf) iff it is ⊆-maximal complete;
• S is grounded (Grd) iff it is ⊆-minimal complete;
• S is stable (Stb) iff it is admissible and for all a ∈

Args`(S) \ S there is a b ∈ S that attacks a.
Extensions will be denoted by E , the set of all Sem-
extensions will be denoted by Sem(AF(AS`(S))) for Sem ∈
{Adm,Cmp,Prf,Grd, Stb}.1

In this paper two types of acceptance relations are con-
sidered. These relations are functions with which sets of
accepted formulas can be derived from an argumentation
framework, given a semantics.

1In what follows we will sometimes identify Grd(AF(AS`(S)))
with its single element.

d
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Figure 2: Graphical representation of the argumentation framework
from Example 4.

Definition 6 (Acceptance relations). Let AF(AS`(S)) be an
argumentation framework and let Sem ∈ {Grd,Cmp,Prf,
Stb}. A non-empty set T of L-formulas is:

• skeptically accepted iff for all E ∈ Sem(AF(AS`(S))),
T ⊆ Concs(E);

• credulously accepted iff there is some E ∈
Sem(AF(AS`(S))), T ⊆ Concs(E).

Example 3. In the argumentation framework for ASCL(S),
with S = {p, q,¬p ∨ ¬q} from Example 2, it can be shown
that Args({p, q}), Args({p,¬p ∨ ¬q}) and Args({q,¬p ∨
¬q}) are the extensions for Sem ∈ {Prf, Stb}.

It follows that a formula φ is only skeptically accepted for
Sem ∈ {Grd,Cmp} if it is a tautology in classical logic, p∨q
is skeptically accepted for Sem ∈ {Prf, Stb}, since at least
p or q is part of each extension and from either p ∨ q can be
derived in classical logic and all formulas ψ ∈ {p, q,¬p ∨
¬q} are credulously accepted for Sem ∈ {Prf, Stb}.

3.2 Enforcement for Abstract Argumentation
In this section, we recall three types of expansions (adding
arguments/attacks) and enforcement as introduced in (Bau-
mann and Brewka 2010).

Definition 7. (Expansion, (Baumann and Brewka 2010,
Definition 5)) An argumentation framework AF? is an ex-
pansion of the framework AF = 〈Args,A〉 iff AF? =
〈Args ∪ Args?,A ∪ A?〉, such that Args? 6= ∅ and Args ∩
Args? = ∅. Such an expansion is:

• normal iff for all a and b, if (a, b) ∈ A? then a ∈ Args? or
b ∈ Args?;

• strong iff it is normal and for all a and b, if (a, b) ∈ A?

then it is not the case that a ∈ Args and b ∈ Args?;
• weak iff it is normal and for all a and b if (a, b) ∈ A? then

it is not the case that a ∈ Args? and b ∈ Args.

Definition 8. (Enforcement, (Baumann and Brewka 2010,
Definition 6)) Let AF = 〈Args,A〉 be an argumentation
framework, Sem a semantics and let S be a set of arguments,
such that S /∈ Sem(AF). An enforcement of S is a frame-
work AF? such that (1) AF? is AF or a normal expansion of
it and (2) S ∈ Sem(AF?).

Example 4. Consider the argumentation framework AF =
〈Args,A〉, where Args = {a, b, c} and A = {(a, b), (b, a)}
shown as the solid part in Figure 2. Now suppose that AF is
expanded: AF′ =

〈
Args′,A′〉, where Args′ = Args ∪ {d, e}

and A′ = A ∪ {(a, d), (b, d), (d, c), (e, d)}. The resulting
graphical representation is the full graph of Figure 2. AF′ is
a normal expansion of AF, since no new attacks are added
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between the arguments of Args. It would be a strong expan-
sion if (a, d) and (b, d) would not be part of A′ and it would
be a weak expansion if (d, c) would not be part of A′.

4 Enforcement for Structured
Argumentation

Enforcement in structured argumentation differs from en-
forcement for abstract argumentation. While in abstract
argumentation enforcement is often based on the addition
of arguments or attacks, in structured argumentation it is
usually not possible to add one specific argument without
adding others as well, viz.
Example 5 (Example 2 continued). Consider again the
argumentation setting ASCL(S), with S = {p, q,¬p ∨
¬q}. If one would want to add the argument ({r}, r) to
AF(ASCL(S)), r has to be added to S: S′ = S ∪ {r}. How-
ever, then arguments such as ({p, r}, p∧ r) and ({r}, p∨ r)
are added to Args`(S′) as well.

Therefore, the notion of an expansion has to be redefined
for a structured setting: rather than changing the argumenta-
tion framework directly, the argumentation setting on which
the framework is based is expanded.
Definition 9 (Expansion, structured argumentation). Let
AF(AS`(S)) be an argumentation framework, for an argu-
mentation setting AS`(S) and some set of formulas S ⊆ L.
An expansion for AF(AS`(S)) is a set of formulas S′ ⊆ L,
such that S′ 6= ∅ and S′ ∩ S = ∅, and the resulting frame-
work is AF(AS`(S ∪ S′)) = 〈Args`(S ∪ S′),A′〉, where
(a, b) ∈ A′ iff a, b ∈ Args`(S∪S′) and a attacks b as defined
in Definition 3.

Now enforcement is not about (sets of) arguments, but
about (sets of) formulas. Before defining enforcement in
terms of sets of formulas, first some useful notions.
Definition 10 ((Strong) (in)consistency). Given an argu-
mentation setting AS` = 〈`, ·, ·̂〉 a set of formulas S and
a set of formulas Θ ⊆ S. Then:
• Θ is AS`-inconsistent iff there is a γ ∈ Θ for which

Θ \ {γ} ` γ′ where γ′ ∈ γ. Θ is strongly AS`(S)-
inconsistent if Θ ⊆ Θ′ ⊆ S implies that Θ′ is incon-
sistent.

• Θ is AS`-consistent iff it is not AS`-inconsistent and Θ
is strongly AS`-consistent if Θ′ ⊆ Θ implies that Θ′ is
AS`-consistent.
• Θ is maximal AS`-consistent iff there is no AS`-

consistent Θ′ ⊆ S such that Θ ⊂ Θ′ and Θ is maximal
strongly AS`(S)-consistent if Θ ( Θ′ ⊆ S implies that
Θ′ is not strongly AS`(S)-consistent.

We denote CS(AS`(S)) [MCS(AS`(S))] for all [maximal]
strongly AS`(S)-consistent sets of S. If the argumentation
setting is clear from the context we will write CS(S) [resp.
MCS(S)].
Remark 1. Since ` is not assumed to be monotonic, we use
the definition of strong inconsistency from (Brewka, Thimm,
and Ulbricht 2019). Note that, when ` is monotonic, this
definition coincides with the definition of (in)consistency
from (Borg and Straßer 2018).

Example 6 (Example 3 continued). In the argumentation
framework from the previous subsection, where ASCL =
〈`CL,¬, id〉 and S = {p, q,¬p ∨ ¬q}, the set S is ASCL-
inconsistent. However, every S′ ⊂ S is ASCL-consistent.
In particular, there are three maximally consistent subsets:
MCS(S) = {{p, q}, {p,¬p ∨ ¬q}, {q,¬p ∨ ¬q}}.

In what follows we will assume that the set of formulas
to be enforced is strongly AS`(S)-consistent, since other-
wise the consistency postulate from (Caminada and Amgoud
2007) could be violated.

Next, we define enforcement for structured argumenta-
tion. Enforcing a set of formulas can be done strictly, where
the conclusions are exactly that set of formulas, or non-
strictly, where the set of formulas has to be part of the con-
clusions (cf. (Baumann and Brewka 2010)).

Definition 11 (Enforcement, structured argumentation). Let
AF(AS`(S)) be an argumentation framework and let T ⊆ L
be the set of formulas to be enforced. Then:

• T is [strictly] credulously enforced by the expansion S′ ⊆
L if there is some extension E ∈ Sem(AF(AS`(S ∪ S′))
such that [Concs(E) = CN(T)] Concs(E) ⊇ T.

• T is [strictly] skeptically enforced by the expansion S′ ⊆
L if for all extensions E ∈ Sem(AF(AS`(S∪S′)) it holds
that [Concs(E) = CN(T)] Concs(E) ⊇ T.

Enforcement of a single formula φ means that T = {φ}
in the definition above. The definition is kept general in
that S′ ⊆ L. Depending on the application S′ might be re-
stricted. For example, in the online trade fraud example from
Section 2 S′ would be restricted to the set of queryables,
since these are the only formulas that can be added to the
knowledge base.

Example 7 (Example 2 continued). Consider again the
framework AF(ASCL(S)) for S = {p, q,¬p ∨ ¬q}. Sup-
pose that S′ = S ∪ {r} as in Example 5. For this expanded
set it holds that Prf(AF(AS`(S′))) = {ArgsCL({p, q, r}),
ArgsCL({p,¬p ∨ ¬q, r}),ArgsCL({q,¬p ∨ ¬q, r})}. There-
fore r is both credulously and skeptically enforced by {r}.

In the next sections formal results on whether enforcing a
set of formulas is possible are shown. The question of how
such a set of formulas should be enforced is left for future
work. We start by introducing some useful properties.

4.1 Relating Sets of Formulas and Sets of
Arguments

Since enforcement is about extensions (sets of arguments)
and in the structured setting defined for sets of formulas,
sets of formulas and sets of arguments have to be related. In
this section results for this relation for static argumentation
are presented.2

Most of the results in the remainder of the paper will be
shown for argumentation settings with the identity (id) target

2Due to space restrictions we cannot provide proofs in
this section. For full proofs we refer to the online
technical appendix at: https://nationaal-politielab.sites.uu.nl/
enforcement-structured-argumentation/.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

133

https://nationaal-politielab.sites.uu.nl/enforcement-structured-argumentation/
https://nationaal-politielab.sites.uu.nl/enforcement-structured-argumentation/


function.3 In such settings, when the set of formulas is AS`-
consistent, there is only one extension and all conclusions of
that extension are skeptically accepted.

Lemma 1. Let AS` = 〈`, ·, id〉 be an argumentation set-
ting and let S be a strongly AS`(S)-consistent set of L-
formulas. Then: Sem(AF(AS`(S))) = {Args`(S)} for
Sem ∈ {Grd,Cmp,Prf, Stb}, and CN(S) is skeptically ac-
cepted in AF(AS`(S)).

The next proposition shows how extensions of argumenta-
tion frameworks and sets of formulas are related. While the
relation between formal argumentation and reasoning with
consistent subsets is well-known (Arieli, Borg, and Heyn-
inck 2019), our result here (i.e., Proposition 1) is more gen-
eral than the existing results. This is the case since we em-
ploy the general setting from (Borg and Straßer 2018), but
we restrict the setting less than is done in that paper (e.g., it
is not assumed that the support set of an argument is consis-
tent, nor that ` is transitive). Moreover, we apply the more
general notion of inconsistency from (Brewka, Thimm, and
Ulbricht 2019), which is also applicable to nonmonotonic
`. It is, however, assumed that the setting is contrapositable
(see also Footnote 3):

Definition 12. (Contrapositable settings (Borg and Straßer
2018, Definition 18)) A setting (`, ·) is contrapositable iff for
all Θ ∈ ℘fin(L), if Θ ` γ′ where γ′ ∈ γ then for all δ ∈ Θ,
(Θ ∪ {γ}) \ {δ} ` δ′ for some δ′ ∈ δ. By extension we call
AS` = 〈`, ·, ·̂〉 contrapositable if (`, ·) is contrapositable.

Proposition 1. Let AF(AS`(S)) be such that AS`(S) =
〈`, ·, id〉 is contrapositable and let Sem ∈ {Cmp,Prf, Stb}:

1. if T ∈ CS(S), then there is some T′ ⊇ T such that
Args`(T′) ∈ Sem(AF(AS`(S)));

2. if T ∈ MCS(S), then Args`(T) ∈ Sem(AF(AS`(S)));
3. if E ∈ Sem(AF(AS`(S))) then Supps(E) ∈ CS(S);
4. if E ∈ Prf(AF(AS`(S))) then Supps(E) ∈ MCS(S) .

The first item states that for any consistent subset there is a
superset from which an extension can be constructed and the
second item shows that arguments constructed from a max-
imally consistent subset form an extension. The third item
shows that the union of the support set of all arguments in
an extension is always consistent and the fourth shows that
the support set of the arguments of a preferred extension is
a maximally consistent subset. Since enforcement in struc-
tured argumentation is defined for sets of formulas, these
results show how sets of formulas that should be enforced
and extensions can be related.

4.2 Enforcing Formulas
Throughout this section we will consider several conditions
that make enforcement of sets of formulas (im)possible. In
addition to general conditions on, for example, the set of for-
mulas that should be enforced and the acceptance relation,
we will discuss the expansion types and the notion of mono-
tonicity from (Baumann and Brewka 2010).

3See Section 5 for a discussion on this assumption.

Skeptical enforcement. The type of acceptance (i.e.,
skeptical or credulous) determines, partially, the possibil-
ity of enforcing a set of formulas. Intuitively, it is easier
to enforce a set of formulas credulously, since then only one
extension has to be considered, while for skeptical enforce-
ment all extensions have to be considered. Indeed, when the
set of formulas that should be enforced can only be derived
from sets of formulas that are conflicting with the current
knowledge base, the set cannot be skeptically enforced. Be-
fore we show this, we introduce the next lemma:4

Lemma 2. Let AS` = 〈`, ·, id〉 be an argumentation set-
ting that is contrapositable and let S be a set of L-formulas.
Then: Grd(AF(AS`(S))) ⊆ Args`(Free(S)).5

Proposition 2. Let AS` = 〈`, ·, id〉 such that (`, ·) is
contrapositable, let S be a set of L-formulas and suppose
that T ⊆ L has to be skeptically enforced for Sem ∈
{Grd,Cmp}. Then T cannot be enforced if there is no min-
imal strongly AS`(S)-consistent S′ ⊆ L such that T ⊆
CN(S?), where S? ⊆ S′∪S and S′∪S′′ is strongly AS`(S)-
consistent for each AS`-consistent S′′ ⊆ S.

Proof. Let AS` = 〈`, ·, id〉 such that (`, ·) is contra-
positable, let S ⊆ L and suppose that T ⊆ L has to be
skeptically enforced. Moreover, suppose that for each mini-
mal S′ ⊆ L such that there is some minimal S? ⊆ S∪S′ for
which T ⊆ CN(S?), there is some AS`-consistent S′′ ⊆ S
such that S′∪S′′ is AS`-inconsistent. It follows that for each
S′, there is some γ ∈ S′ such that γ /∈ Free(S ∪ S′). By as-
sumption S′ is minimal, from which it follows that γ ∈ S?

as well. Since Grd(AF(AS`(S ∪ S′))) ⊆ Args`(Free(S ∪
S′)), it follows that γ /∈ Supps(Grd(AF(AS`(S ∪ S′)))).
Since S? is minimal to obtain T, it follows that T 6⊆
Concs(Grd(AF(AS`(S ∪ S′)))).

The next example illustrates what happens when T is in-
consistent with the current set of formulas S.
Example 8. Consider the setting ASCL = 〈`CL,¬, id〉, let
S = {p} and suppose that T = {¬p} has to be en-
forced. Note that S ∪ T is ASCL-inconsistent. We have that
Grd(AF(ASCL(S ∪ T))) = ∅ and that Sem(AF(ASCL(S ∪
T))) = {{ArgsCL(S)}, {ArgsCL(T)}} for Sem ∈ {Prf, Stb}.
Therefore, while T is credulously enforced, it is not skepti-
cally enforced.

Consistent sets. Now we consider the relation between
extensions and sets of formulas as shown in Proposition 1.
In particular, any set of formulas T can be skeptically [resp.
credulously] enforced if there is some set of L-formulas S′

such that T is part of the consequences of all [resp. some]
maximal strongly AS`(S)-consistent subsets of S ∪ S′:
Theorem 1. Let AF(AS`(S)) be such that AS` = 〈`, ·, id〉
is contrapositable and let T ⊆ L be the set that should be
enforced. Then:

4In this section, where space allows we provide proof sketches
of (parts of) the proofs. Full proofs can be found in the online
technical appendix.

5Free(S) is the set of L-formulas from S that is part of every
T ∈ MCS(S): Free(S) =

⋂
T∈MCS(S) T.
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1. If T can be skeptically enforced then there is some S′ ⊆ L
such that T ⊆ CN(S?) and S? ⊆ Free(S ∪ S′) for Sem ∈
{Grd,Cmp};

2. T can be skeptically enforced iff there is some S′ ⊆ L
such that for every S? ∈ MCS(S ∪ S′), T ⊆ CN(S?) for
Sem ∈ {Prf, Stb};

3. T can be strictly skeptically enforced iff there is some
S′ ⊆ L such that for every S? ∈ MCS(S ∪ S′), CN(T) =
CN(S?) for Sem ∈ {Prf, Stb};

4. T can be credulously enforced iff there is some S′ ⊆ L
and some S? ∈ CS(S ∪ S′) such that T ⊆ CN(S?) for
Sem ∈ {Cmp,Prf, Stb};

5. T can be strictly credulously enforced iff there is some
S′ ⊆ L such that there is some S? ∈ MCS(S ∪ S′) such
that CN(T) = CN(S?) for Sem ∈ {Prf, Stb}.

Proof. Let AF(AS`(S)) be such that AS` = 〈`, ·, id〉 is con-
trapositable and let T ⊆ L be a set of formulas. We show
Items 2 and 4:

2. (⇒) Suppose that T can be skeptically enforced by
expanding S with S′. Then, for each extension
E ∈ Sem(AF(AS`(S ∪ S′))), T ⊆ Concs(E).
By Proposition 1.2 it follows immediately that for
any S? ∈ MCS(S ∪ S′), T ⊆ CN(S?), since
Args`(S?) ∈ Sem(AF(AS`(S ∪ S′))) and Concs(E) ⊆
CN(Args`(S?)).
(⇐) Suppose that T cannot be skeptically enforced, then
for each S′ ⊆ L there is some E ∈ Sem(AF(AS`(S∪S′)))
such that for some φ ∈ T, φ /∈ Concs(E). By Propo-
sition 1.4 Supps(E) ∈ MCS(S ∪ S′). Hence, for any
S′ ⊆ L, there is some S? ∈ MCS(S ∪ S′) such that for
some φ ∈ T, φ /∈ CN(S?).

4. (⇒) Suppose that T can be credulously enforced. Then
there is some S′ ⊆ L, such that there is an extension E ∈
Sem(AF(AS`(S ∪ S′))) for which T ⊆ Concs(E). Note
that T ⊆ CN(Supps(E)). By Proposition 1.3 it follows
that Supps(E) is consistent.
(⇐) Suppose that there is some S′ ⊆ L and some
S? ∈ CS(S ∪ S′) such that T ⊆ CN(S?). By Proposi-
tion 1.1 there is some S? ⊆ S# such that Args`(S#) ∈
Sem(AF(AS`(S ∪ S′))). Since T ⊆ CN(S?), for each
φ ∈ T there is some Γ ⊆ S? ⊆ S# such that Γ `
φ. Therefore (Γ, φ) ∈ Args`(S#) and hence T ⊆
Concs(Args`(S#)).

Example 9. (Example 7 continued) With the results from
Theorem 1, the skeptical enforcement of r in Example 7 is
not surprising: r ∈

⋂
MCS({p, q,¬p ∨ ¬q, r}). This also

explains why r cannot be strictly enforced: there is no maxi-
mally consistent subset of S∪{r} with r as the only member.

Remark 2. In the proof for skeptical enforcement, the re-
sults from Items 2 and 4 of Proposition 1 were used, while
for credulous enforcement, the results from Items 1 and 3 of
Proposition 1 were used. Note that in Proposition 1, Items 1
and 3 are implied by Items 2 and 4 respectively. This means
that the results for credulous enforcement are more gener-
ally applicable, but also that these results hold when only
Items 2 and 4 of Proposition 1 are known for a setting.

Remark 3. In view of this theorem, one might suspect that
enforcement in structured argumentation comes down to
finding maximally consistent subsets of which the desired set
is a consequence. However, some remarks are in order.
• As was shown in (Vesic and van der Torre 2012), it is

possible to instantiate abstract argumentation with clas-
sical logic and obtain a meaningful setting (i.e., the ra-
tionality postulates from (Caminada and Amgoud 2007)
are satisfied) of which the conclusions do not correspond
to maximally consistent subsets. Therefore, argumenta-
tion is a richer formalism than reasoning with maximally
consistent subsets and the result from Theorem 1 only il-
lustrates the possibility of enforcement under these condi-
tions. See (Arieli, Borg, and Heyninck 2019) for a more
detailed discussion on and (Arieli, Borg, and Straßer
2021) for a characterization of the relation between struc-
tured argumentation and maximally consistent subsets.

• In this paper the results are about the (im)possibility of
enforcement. When it comes to how a set of formulas
should be enforced the implementation might yield a dif-
ferent result. For example, new information might be ob-
tained over time in a dialogue setting (recall the online
trade fraud example from Section 2). In such a case, the
result of a question might be different from what was nec-
essary to enforce a set of formulas and with that one an-
swer the possibility of enforcement changes.

• Further possibilities to enforce sets of formulas are dis-
cussed in the remainder of the paper. For example, the
results from Proposition 3 and Theorem 2 do not rely on
the results from Proposition 1 nor is it assumed that the
argumentation setup is contrapositable.

Acceptance relation. Next we consider monotonic accep-
tance relations: when new information is added the accep-
tance of the previously derived information does not change.
While argumentation is mainly employed to model non-
monotonic reasoning, as Lemma 3 shows, not all acceptance
relations are nonmonotonic. Proposition 3 is therefore rele-
vant in our setting as well.
Definition 13 (Monotonic acceptance relation). Let
AF(AS`(S)) be an argumentation framework. An accep-
tance relation is called monotonic iff for any set of formulas
T, if T is accepted in the framework, then T is accepted in
any expansion of that framework.

The next proposition shows that a (set of) formula(s) that
can be derived from a consistent set of formulas can be en-
forced in an argumentation framework in which the accep-
tance relation is monotonic. We give an example of such a
relation in Lemma 3.
Proposition 3. Let AF(AS`(S)) be an argumentation
framework for AS` = 〈`, ·, id〉 and suppose that the con-
sidered acceptance relation is monotonic. Then:
• Any φ ∈ L, such that Γ ` φ for an AS`-consistent Γ ⊆ L,

can be enforced by expanding S with Γ; and
• Let S′ be an AS`-consistent set of L-formulas, such that
T ⊆ CN(S′). Then T can be enforced by expanding the
framework with S′.
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Proof. Let AF(AS`(S)) be an argumentation framework for
AS` = 〈`, ·, id〉 with a monotonic acceptance relation. We
show the first item, the proof of the second item is similar.
Suppose that Γ ` φ for some strongly AS`-consistent Γ ⊆ L
and that φ should be enforced. By Lemma 1 it follows that
φ is accepted in AF(AS`(Γ)). Since acceptance is assumed
to be monotonic, φ is accepted in AF(AS`(S ∪ Γ)).

The above results hold for contrapositable frameworks
and credulous acceptance:

Lemma 3. If AF(AS`(S)) is an argumentation framework
for a contrapositable setting AS` = 〈`, ·, id〉 then credulous
acceptance is monotonic for Sem ∈ {Cmp,Prf, Stb}.

Proof. Let AF(AS`(S)) be such that AS` = 〈`, ·, id〉 is con-
trapositable, let Sem ∈ {Cmp,Prf, Stb} and suppose that
T is credulously accepted in AF(AS`(S)). Moreover, let
S′ ⊆ L be arbitrary. Since T is credulously accepted in
AF(AS`(S)), there is some E ∈ Sem(AF(AS`(S))) such
that T ⊆ Concs(E). By Proposition 1.3 Supps(E) is strongly
AS`(S)-consistent (i.e., Supps(E) ∈ CS(S)) and thus, by
Proposition 1.1 there is some Supps(E) ⊆ T′ ⊆ S ∪ S′

such that Args`(T′) ∈ Sem(AF(AS`(S ∪ S′))). Note that
T ⊆ Concs(Args`(T′)). Therefore T is credulously ac-
cepted in AF(AS`(S ∪ S′))), for any S′.

The next examples are counterexamples of acceptance re-
lations that are not monotonic. The first shows that skeptical
acceptance is non-monotonic.

Example 10. Consider the setting ASCL = 〈`CL,¬, id〉 and
let S = {p}. Note that p is a credulous consequence in
AF(ASCL(S)) and since credulous acceptance is monotonic
(Lemma 3) p will remain a credulous consequence. Let ¬p
be the formula that should be skeptically enforced. Note
that, by Proposition 3, ¬p is credulously enforced by ex-
panding the framework with S′ = {¬p}. However, then both
p and ¬p will be credulously accepted in AF(ASCL(S∪S′)).
Therefore, ¬p will never be skeptically accepted.

The second example considers argumentation frameworks
in which a preference relation is defined on arguments.
Adding a preference relation is a common tool in the argu-
mentation literature to refine conclusions, see e.g., (Amgoud
and Cayrol 2002; Modgil and Prakken 2013). However, as
the example will show, the credulous acceptance relation is
no longer monotonic when preferences are added. In this
paper we use the following notion of preferences among for-
mulas and sets of formulas:

Definition 14 (Preference relation). Let L be a formal lan-
guage, v : L → N a preference relation on formulas in L
and let φ, ψ ∈ L. We denote that φ is [strictly] preferred
over ψ w.r.t. v by [ψ ≺v φ] ψ �v φ.

The preference relation can be lifted to sets of formulas,
such that S ⊆ L is [strictly] preferred over T ⊆ L w.r.t. v is
denoted by [T ≺v S] T �v S. The formal definition of the
lifting of the preference relation to sets of formulas is left ab-
stract in this paper. Examples can be found in, e.g., (Modgil
and Prakken 2013). An argument a is preferred over an ar-
gument b if Supp(a) is preferred over Supp(b), given some

preference relation v. We accommodate preferences in the
attack relation in the usual way (Amgoud and Cayrol 2002;
Modgil and Prakken 2013): for a, b,∈ Args`(S), a �-
attacks b iff a attacks b and Supp(b) is not strictly preferred
over Supp(a).

Example 11. Let ASCL = 〈`CL,¬, id〉 and S = {p} as
in the previous example and suppose that there is a pref-
erence relation v defined such that p ≺v ¬p. In the flat case,
both ¬p and p are credulously accepted in the framework ex-
panded with {¬p}, since there was an argument ({¬p},¬p)
which attacks and is attacked by ({p}, p). However, in the
prioritized case ({p}, p) can no longer attack ({¬p},¬p):
there is no defense for the�-attack from ({¬p},¬p). Hence
p is no longer accepted given this v.

Relevance. The results in (Borg and Straßer 2018), on
non-interference (Caminada, Carnielli, and Dunne 2011),
can also be used to say something about the possibility to
enforce a (set of) formula(s). Intuitively, non-interference is
a helpful property to have, since it indicates that adding ir-
relevant information does not change the acceptability of the
already derived conclusions. In what follows let Atoms(S)
denote the set of atoms that occur in the formulas of S. It is
said that two sets of formulas S1 and S2 are syntactically dis-
joint (denoted by S1 | S2) if Atoms(S1) ∩ Atoms(S2) = ∅.
Definition 15. (Non-interference, (Caminada, Carnielli,
and Dunne 2011)) An acceptance relation satisfies non-
interference iff for all S1 ∪ {φ} ∪ S2 ⊆ L such that
(S1 ∪ {φ}) | S2 it holds that: φ is a consequence of S1

iff φ is a consequence of S1 ∪ S2.

In (Borg and Straßer 2018) an extensive discussion can
be found on the requirements on the elements of an argu-
mentation setting in order for the acceptability relations to
satisfy non-interference (e.g., the deducability relation is as-
sumed to satisfy the basic relevance criterion from relevance
logic (Avron 2014) and the target function is assumed to be
monotonic (id is monotonic)). In a dynamic setting, we have
the following result:

Theorem 2. Let AF(AS`(S)) be such that AS` = 〈`, ·, id〉
and that the acceptance relation satisfies non-interference.
A set of formulas T can be credulously and skeptically en-
forced if there is some AS`-consistent S′ ⊆ L such that
T ⊆ CN(S′) and S′ | S.

Proof. Let AF(AS`(S)) be an argumentation framework
such that the considered acceptance relation satisfies non-
interference. Moreover, let S′ be a strongly AS`-consistent
set of L-formulas, such that S′ | S and let T ⊆
CN(S′). Since S′ is strongly AS`-consistent, it follows by
Lemma 1 that T is credulously and skeptically accepted in
AF(AS`(S′)). Since S′ | S and the acceptance relation sat-
isfies non-interference, it follows that T is credulously and
skeptically accepted in AF(AS`(S ∪ S′)) as well.

Expansion types. Although enforcement in structured ar-
gumentation is different from enforcement in abstract argu-
mentation, the expansion types from (Baumann and Brewka
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2010) (recall Definition 7) are available in structured argu-
mentation as well. Intuitively, the next proposition follows
since the structure of the existing arguments does not change
when an argumentation framework is expanded, hence there
are no new attacks between the existing arguments after the
expansion.

Proposition 4. Any expansion of an argumentation frame-
work is normal.

Proof. Let AF(AS`(S)) = 〈Args`(S),A〉 be an argumen-
tation framework and suppose that S is expanded by S′.
Let the result be AF(AS`(S ∪ S′)) = 〈Args?,A?〉, where
Args? = Args`(S∪S′) and A? = {(a, b) ∈ Args?×Args? |
a attacks b}. Now suppose that S′ is such that the expan-
sion is not normal. Then there are a, b ∈ Args`(S) such that
(a, b) ∈ A? \A. However, since a, b ∈ Args`(S), by the def-
inition of attack (Definition 3) it follows immediately that a
attacks b in AF(AS`(S)) as well. A contradiction.

The next two remarks discuss conditions on the argumen-
tation setting and framework which ensure that an expansion
is not only normal, but also weak or strong.

Remark 4. In some structured argumentation approaches
(e.g., ABA (Bondarenko et al. 1997) and ASPIC+ (Modgil
and Prakken 2013)) it is possible to construct arguments that
cannot be attacked since these are derived from strict rules
and/or premises. On the one hand, if the framework before
the expansion consists of such arguments, the expansion is
weak: the existing arguments are not attacked. On the other
hand, if the new arguments that can be created with the ex-
pansion cannot be attacked, the expansion is strong: only
the existing arguments can be attacked.

Remark 5. Consider a language L and a preference rela-
tion v for it. If an argumentation framework AF(AS`(S)) is
expanded in such a way that the new arguments are strictly
stronger than the existing ones, the expansion is strong. If
the framework is expanded such that the existing arguments
are strictly stronger, the expansion is weak.

Monotonicity. In (Baumann and Brewka 2010) conditions
on the semantics and the expansion type are studied to en-
sure that the expansion is monotonic, i.e., that the number
of extensions does not decrease and the acceptance status
of the already existing arguments does not change when a
framework is expanded. In view of Proposition 1 and Theo-
rem 1 we can show the structured counterpart of (Baumann
and Brewka 2010, Theorem 5).

Proposition 5. Let AF(AS`(S)) be an argumentation
framework for a contrapositable AS` = 〈`, ·, id〉 and let
S′ be an expansion. Then, for Sem ∈ {Prf, Stb}:
• |Sem(AF(AS`(S)))| ≤ |Sem(AF(AS`(S ∪ S′)))|;
• ∀E ∈ Sem(AF(AS`(S))), ∃E ′ ∈ Sem(AF(AS`(S ∪ S′)))

such that E ⊆ E ′.
Proof sketch. Let AF(AS`(S)) be an argumentation frame-
work for a contrapositable AS` and let S′ be an expansion.
Note that MCS is monotonic: for every T ∈ MCS(S), there
is some T ⊆ T′ ∈ MCS(S ∪ S′).

• This follows since |Stb(AF(AS`(T)))| ≤
|Prf(AF(AS`(T)))| for any set of formulas T (i.e.,
every stable extension is a preferred extension (Dung
1995)). Since, |MCS(S)| ≤ |MCS(S ∪ S′)|,
|Prf(AF(AS`(S)))| ≤ |MCS(S)| (Proposition 1.4)
and |MCS(S ∪ S′)| ≤ |Stb(AF(AS`(S ∪ S′)))| (Proposi-
tion 1.2).

• Let E ∈ Sem(AF(AS`(S))). Then, by Proposition 1.4 it
follows that Supps(E) ∈ MCS(S). Hence, there is some
T ∈ MCS(S ∪ S′) such that Supps(E) ⊆ T. By Propo-
sition 1.2 it follows that Args`(T) ∈ Sem(AF(AS`(S ∪
S′))) (recall that every stable extension is also preferred).
Since Supps(E) ⊆ T, E ⊆ Args`(T). Because E was
arbitrary, this holds for all Prf- and Stb-extensions. �

Remark 6. (Baumann and Brewka 2010, Theorem 5) con-
tains a third item (which serves as the converse of the sec-
ond item) that in a structured setting does not hold with-
out further restrictions. Consider again Example 10, we
have that Prf(AF(ASCL({p}))) = {Args`({p})}, while
Prf(AF(ASCL({p,¬p}))) = {Args`({p}),Args`({¬p})}.
Note that the extension Args`({¬p}) does not extend an ex-
tension in the framework before the expansion.

5 Discussion
Throughout the paper some assumptions were made to show
the results. We will discuss some of these in this section, to
illustrate that such restrictions are common in the literature.

In many of the results it was assumed that the target func-
tion is id. When looking at well-known approaches to struc-
tured argumentation (Besnard et al. 2014) and the translation
of these approaches as provided by (Borg and Straßer 2018)
it can be seen that the target function is often id. In ABA and
ASPIC+ this is always the case, because of the translation,
and in logic-based argumentation attack rules such as direct
defeat and direct undercut are covered by id.

The first formal results required that the argumentation
setting was contrapositive. In, e.g., (Heyninck and Arieli
2018; Modgil and Prakken 2013) the same assumption is
made to show, e.g., the rationality postulates from (Cami-
nada and Amgoud 2007) and the relation to reasoning with
maximally consistent subsets. As we consider it essential
that these rationality postulates are satisfied, the argumenta-
tion setting would be contrapositive in most settings anyway.

Like in (Borg and Straßer 2018), we do not consider a
preference ordering on the arguments. However, throughout
the paper some remarks were already made about preference
orderings; we plan to formally investigate the use of prefer-
ences in future work.

6 Related Work
Enforcement is an important research direction in the study
of dynamics in formal argumentation (Doutre and Mailly
2018). In (Baumann and Brewka 2010) (im)possibility re-
sults are shown for the enforcement of extensions, based on
abstract principles of semantics, rather than specific Dung-
style semantics. Moreover, conditions under which the ad-
dition of new arguments and attacks between them does
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not change the acceptance status of already existing argu-
ments are investigated as well. Other, related questions
have been investigated such as extension removal (Bau-
mann and Brewka 2019), enforcement by changing the se-
mantics (Doutre and Mailly 2017) and the minimal change
necessary to enforce an extension (Baumann 2012; Coste-
Marquis et al. 2014; Wallner, Niskanen, and Järvisalo 2017),
all for abstract argumentation frameworks (Dung 1995).

An enforcement operator for structured argumentation is
introduced in (Wallner 2020). However, the question of en-
forcement is still at the argument level: how to adjust the
knowledge base such that a certain (set of) argument(s) be-
comes a part of some extension. In our paper we are inter-
ested in enforcement on the formula level. This might lead
to different conclusion, since, for example, there might be
more than one argument for a certain formula.

In a structured argumentation setting we are not aware
of any further research on enforcement. There is, how-
ever, some work on other aspects of dynamics. In (Al-
fano et al. 2018), an incremental approach to efficiently
recalculating the acceptability status of literals in updated
DeLP programs is introduced, in (Modgil and Prakken
2012) resolutions of attacks are studied in the context of
ASPIC+, and in (Testerink, Odekerken, and Bex 2019;
Odekerken, Borg, and Bex 2020) the stability of the accept-
ability status of a certain formula is investigated. Finally,
(Booth et al. 2014) study concepts related to enforcement
in (abstract) abductive argumentation frameworks and show
that these frameworks can be instantiated by abductive logic
programming.

By definition, enforcement is related to belief revi-
sion (Alchourrón, Gärdenfors, and Makinson 1985; Kat-
suno and Mendelzon 1991). This relation has been sur-
veyed in, e.g., (Falappa, Kern-Isberner, and Simari 2009;
Falappa et al. 2011) where it is argued that formal argumen-
tation and belief revision model two complementary aspects
of human commonsense reasoning. In particular, where be-
lief revision concerns how an agent’s beliefs can be updated
consistently, argumentation is concerned with the process of
inferring beliefs, and the reasons for and against these be-
liefs (Falappa, Kern-Isberner, and Simari 2009, p. 355).

In the dynamic argumentation literature, belief revision (-
like) postulates have been employed to handle changes in
formal argumentation. We mention some general trends.
Many dynamic argumentation approaches that are com-
bined with belief revision postulates are based on a trans-
lation of the argumentation framework and notions such
as acceptance and Dung-style semantics into logical for-
mulas. For example, (de Saint-Cyr et al. 2016) intro-
duce a new logical language called YALLA, (Doutre,
Herzig, and Perrussel 2014; Doutre, Maffre, and McBur-
ney 2017) use the Dynamic Logic of Propositional Assign-
ments and (Baumann and Brewka 2015) introduce so-called
Dung-logics (see (Doutre and Mailly 2018) for a more de-
tailed overview). Belief revision has also been combined
with existing structured argumentation approaches. For
example, (Snaith and Reed 2016) adjust the belief revi-
sion postulates to account for the structure of ASPIC+-
elements, thus modelling dynamic ASPIC+. Furthermore,

non-prioritized belief revision is modelled in (Shakarian et
al. 2016) for a probabilistic variation of DeLP, and revision
in logic-based argumentation is modeled in (Krümpelmann
et al. 2012). Each of these examples studies the question
how to revise the argumentation framework to obtain good
conclusions, which is the central question in belief revi-
sion. In contrast, enforcement as studied in this paper is
useful for structured argumentation applications based on
dialogues, which are exactly the kind of applications that
have been implemented at the Dutch National Police and in
other application domains, see e.g., (Chalaguine et al. 2018;
Visser, Lawrence, and Reed 2020).

7 Conclusion and Future Work
In this paper we have formulated enforcement for a struc-
tured setting: given a set of formulas T, is it possible to
expand the knowledge base such that T becomes credu-
lously or skeptically accepted? We discussed a real-life ap-
plication where this question is relevant (Section 2) and ar-
gued why enforcement in structured argumentation should
be about formulas (Example 5). For the general approach
to structured argumentation from (Borg and Straßer 2018),
we have studied a variety of conditions under which a set
of formulas T can be (strictly) credulously/skeptically en-
forced: (maximal) consistency of the expansion, relevance,
and monotonicity of the acceptance relation. Moreover, we
have shown that, although the setting and the notion of en-
forcement is different from (Baumann and Brewka 2010),
any expansion is normal and satisfies some monotonicity
properties. While some of our results build on existing lit-
erature, we have shown that the existing studies on static
argumentation settings can be employed in dynamic settings
as well. This suggests that the extensive research on static
structured argumentation can be generalized to dynamic set-
ting, which makes the research better applicable.

As far as we know, this is the first study on enforcement
of sets of formulas in a general structured argumentation set-
ting. This opens up the possibility to further investigate dy-
namics for specific structured settings (Besnard et al. 2014;
Bondarenko et al. 1997; Modgil and Prakken 2013), and to
extend the investigation of other notions of dynamics from
knowledge representation in formal argumentation.

In addition to extending the current setting with pref-
erences, in future work we will also look into other ap-
proaches to structured argumentation that are not covered
by the general setting from (Borg and Straßer 2018) (e.g.,
DeLP (Garcı́a and Simari 2004) and claim-augmented argu-
mentation frameworks (Dvořák and Woltran 2020)). More-
over, we will study how a set of formulas can be enforced.
To this end, we will study different aspects of enforcement
for structured argumentation, such as the minimal change
necessary to enforce a set of formulas, efficient enforcement,
removal of formulas for enforcement, and enforcing the re-
moval of sets of formulas from the conclusion. While some
of these more computational aspects of enforcement can be
studied in the general setting, for others (e.g., efficient al-
gorithms or complexity studies), we will have to look into
specific approaches to structured argumentation.
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