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Chapter 1

Introduction and design rationale

This document presents a detailed description of MAYO, a multivariate quadratic signature scheme,
which was introduced by Beullens in [Beu22]. It is a variant of the Oil and Vinegar signature scheme
proposed in 1997 by Patarin [Pat97].

Oil and Vinegar. Since 1985, various authors have proposed building public key schemes where the
public key is a set of multivariate quadratic equations over a small finite field K. The general problem
of solving such a set of equations is NP-hard and considered a good basis for post-quantum cryptogra-
phy. The Oil and Vinegar scheme (sometimes referred to as unbalanced Oil and Vinegar) [KPG99, Pat97]
is one of the earliest signature schemes in this framework, and has withstood the test of time remark-
ably well, despite considerable cryptanalytic efforts. It has very small signature sizes and good per-
formance but suffers from somewhat larger public keys.

In the Oil and Vinegar scheme, the public key represents a trapdoored homogeneous multivariate map
P(x) = (p1,---,pm) : Fy — F* which consists of a sequence of m multivariate quadratic polynomials
p1(X),- -+ ,pm(x) in n variables x = (x4, -+ ,x,). The trapdoor information is a secret subspace O C
[y of dimension m, on which P(x) evaluates to zero. Given a salted hash digest t € F;" of a message
M, the trapdoor information allows sampling a signature s such that P(s) = t.

To do this, the signer first picks a random vector v € F?”, and then solves for a vector o in the oil
space O such that P(v + o) = t. In general, for a quadratic maps P we can define its differential P’
as P'(x,y) := P(x +y) — P(x) — P(y), which is a bilinear map. Using P’, it becomes apparent that
solving for o is easy, because

P(v+o) =P (v,0) + Pd]+P(v) = ¢

Linearin o =0 fixed

is a system of m linear equations in m variables (since O has dimension m). The signer outputs the
signature s = v + o. To verify a signature, the verifier simply recomputes P(s) and the hash digest t,
and verifies that they are equal.

One practical drawback of the scheme is that the public map P consists of approximately mn? /2 coef-
ficients. We can sample P such that approximately m(n? —m?)/2 of the coefficients can be expanded
publicly from a short seed, but the remaining m?/2 coefficient still make for a relatively large public
key size. (e. g., 66 KB for 128 bits of security). This problem is solved by the scheme we present in this
document: MAYO.

MAYO rationale. MAYO is a variant of the Oil and Vinegar scheme whose public keys are smaller. A
MAYO public key P has the same structure as an Oil and Vinegar public key, except that the dimension
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of the space O on which P evaluates to zero is “too small”, i.e., dim(O) = o, with o less than m. The
advantage of this is that the problem of recovering O from P becomes much harder, which allows for
smaller parameters. The reader can imagine O as being a needle that sits in the haystack Fy. If the
needle becomes smaller, then the haystack is allowed to be smaller as well, and the search problem
remains difficult. However, since O is “too small”, the algorithm to sample a signature s such that
P(s) = t breaks down: the system P(v + o) = t is now a system of m linear equations in only o vari-
ables, so it is very unlikely to have any solutions. We need a new way to produce and verify signatures.

The solution is to publicly “whip up” the oil and vinegar map P(x) : Fy — Fy" into a k-fold larger
map P*(x1,...,Xk) : F(’j" — Fy', where k is a parameter of the scheme. The whipped map P~ is
constructed in such a way that it evaluates to zero on the subspace O* = {(oy,...,0;)|Vi : 0, € O}
which has dimension ko. Concretely, we define:

k ko k
Pr(x1,...,Xg) = ZEzzP(Xz) + Z Z E;; P (xi,x;)
ol

i=1j=i+1

where the E;; € IE‘;"XW are fixed public matrices® (referred to as E-matrices), and P’(x, y), the differ-
ential of P, isdefined as P’ (x,y) := P(x+y)—P(x)—P(y). We choose parameters such that ko > mto
make sure that the space O is large enough so that the signer can sample signaturess = (s, , sy)
such that P*(s) = t with the usual Oil and Vinegar approach. The signer first samples (vy,...,vg) € IF’;"
at random, and then solves for (o1, ... 0;) € O such that

P*(vi+o01,...,vg+o) =t

which is a system of m linear equations in ko variables.

This approach drastically reduces the public key size, since all but approximately mo? /2 coefficients
of P can be expanded publicly from a short seed. For example, one of the parameter sets we propose
for NIST security level 1 is (n,m, 0, k,q) = (66,64,8,9,16), which results in a public key of just 1168
bytes, and a signature size of 321 bytes (297 bytes for s and 24 bytes for the salt). Compared to the
compressed Oil and Vinegar scheme at the same security level, this is a 58-fold reduction in public key
size at the cost of a 3-fold increase in signature size.

Changes with respect to [Beu22].

— New parameter choices. We propose new parameter choices that allow for simple and optimized
implementations of MAYO. In particular, we choose the m parameter to be a multiple of 32.

— Bitsliced encoding of the private and public key. We store and sample the coefficients of P(x)
in a bitsliced form, which allows doing most of the F,-arithmetic in MAYO using a bitsliced ap-
proach, which is particularly efficient on low-end devices where powerful SIMD instructions are
not available.

1For security reasons, we choose these matrices to have the property that all their non-trivial linear combinations have rank
m.



Chapter 2

The MAYO protocol specification

2.1

Written specification

This section specifies the MAYO protocol. The set of public parameters for MAYO is defined in 2.1.7.
The necessary notation and preliminaries are defined in 2.1.2. The encoding functionality is defined
in 2.1.4. The signature functionality is defined in 2.1.5.

2.1.1 Parameters

The MAYO digital signature algorithm is parameterized by the following values:

g, the size of a finite field IF,. In this specification, we fix ¢ = 16.

m, the number of multivariate quadratic polynomials in the public key. We choose it to be a
multiple of 32.

n, the number of variables in the multivariate quadratic polynomials in the public key.
o, the dimension of the oil space O.

k, the whipping parameter, satisfying k < n — o.

salt_bytes, the number of bytes in salt.

digest_bytes, the number of bytes in the hash digest of a message.

pk_seed_bytes, the number of bytes in seedy.

f(z) € Fy|z], an irreducible polynomial of degree m that does not divide the determinant of:

k=1 k=2 5 1
k-2 2k-2 s S
7, (kxk) _ € T [z]"*F.
o kL L E(1)/2-2  k(k+1)/2-3
1 Sk Gk(kHD)/2=3  k(k+1)/2-1

The matrix Z(***) is symmetric, and the upper diagonal part contains the first k(k+1)/2 powers
of z, ordered from left to right, top to bottom.

These parameters define the following values:

sk_seed_bytes = R_bytes = salt_bytes: The length of R and of seeds,, which are the same as that of
salt.



— O_bytes = [(n — 0)o/2]: The number of bytes to represent the O matrix.
— v_bytes = [(n — 0)/2]: The number of bytes to store vinegar variables.

— P1.bytes = m("~J*")/2: The number of bytes to represent the {P}},c(,,) matrices.

- P2_bytes = m(n — 0)o/2: The number of bytes to represent the {P?},c[,,,) matrices.

— P3_bytes = m(°}") /2: The number of bytes to represent the {P?},c(,,) matrices.

— L_bytes = m(n — 0)o/2: The number of bytes to represent the {L; };c[,) matrices.
— csk_bytes = sk_seed_bytes: The number of bytes in the compact representation of a secret key.

— esk_bytes = sk_seed_bytes + O_bytes + P1_bytes + L_bytes: The number of bytes in the expanded
representation of a secret key.

— cpk_bytes = pk_seed_bytes + P3_bytes: The number of bytes in the compact representation of a
public key.

— epk_bytes = P1_bytes + P2_bytes + P3_bytes: The number of bytes in the expanded representation
of a public key.

— sig_bytes = [nk/2] + salt_bytes: The number of bytes in a signature.

- E € F;»*™, the matrix that corresponds to multiplication by z mod f(Z).

2.1.2 Preliminaries and notation

Notation If X is a finite set, we write z & X to denote that = is assigned a value chosen from X
uniformly at random. If A is an algorithm, we write x < A(y) to denote that x is assigned the output
of running A on input y. If  is an integer, we denote by [k] the set {0, ...,k —1}. We denote by {z; }ic[x)
a sequence of objects zy, . . ., x;_1 indexed by elements of [k]. We denote the base-2 logarithm by log,
and we denote binomial coefficients by (}), i.e., (}) = n!/k!(n — k).

Bytes and byte strings. Inputs and outputs to all MAYO API functions are byte strings. We denote by
B = [256] = {0,...,255} the set of all bytes, i.e. 8-bit unsigned integers. By B* we denote the set of
zero-indexed byte strings of length k, and by B* the set of byte strings of arbitrary length. For a € B"=
and b € B™, we denote by a || b the concatenation of the strings, which result is an element of B+,
If a is a byte string, we denote by a[x : y] the substring starting with the z-th byte and ending with the
(y — 1)-th byte (inclusive), e. g., a[0 : 10] consists of the first 10 bytes of a.

The field 15 and vectors over F1;. We denote by Fy4 a finite field with 16 elements, which we repre-
sent concretely as Zs[z]/(z* + 2+ 1). We denote the addition and multiplication of field elements a and
basa+band abrespectively, and we denote the multiplicative inverse of a as a~!. We denote by F,; the
set of vectors of length n over Fyg, i.e. lists of field elements of length n. If x € F{y,y € F7s, and a € Fyg,
we denote by x[i] or x; the i-th entry of x, i.e. x = {z[i]}ie[n] = {Zi}ie[n)- For 0 < i < j < n, we denote
by x[i : j] € F}," the vector whose j — i elements are x;, . . ., x;_1. We define the component-wise sum
as X +y := {x; + ¥i }ic[n], and the scalar multiplication as ax := {ax;};c[n]-

Matrices and Matrix arithmetic. We denote by F7;*" the set of (zero-indexed) matrices over ;s with
m rows and n columns. We denote by I, € Fy** the identity matrix of size a-by-a. If A € F"*"™ and
b € F7", we denote by A[i, j] the entry in the i-th row and the j-th column of A, by A[:,i] € Fy" the i-th

column of A, and by A[i,:] € F? the i-th row of A. We denote by (Ab) € Fy'~ *1 the matrix whose
nXxXn

first n columns are the columns of A, and whose last column is b. We say a matrix A € {5 " is upper
triangular if Afi,j] =0forall0 < j <i < n.



If A € F7{*" and B € F{*" are matrices of the same size, then we denote their (entry-wise) sum by
A +B.IfA € F/*" and B € F};**, then we denote the matrix product by AB, i.e. AB € F7* is the
matrix whose entry in row i and column j isequalto Y, , A[i, [|B[l, j]. We denote by AT the transpose
of A, i.e. the matrix in F};"" such that AT[i, j] = A[j,4] forall0 < j <mand0<i < n.

We define the function Upper : Fy*™ — Fj*" that takes a square matrix M as input, and outputs the
upper triangular matrix Upper(M), defined as Upper(M);; = M;; and Upper(M);; = M,; + M; for
i < j.

Sequences of m (upper triangular) matrices. The public keys and secret keys of MAYO contain sets
of m (sometimes upper triangular) matrices. Concretely, we will encounter:

- PO = {Pgl)}ie[m], a sequence of m upper triangular matrices P{" ¢ F{n—/*(n=2),
- P@ = {PZ(.Q)},-G[m], a sequence of m matrices P\? ¢ F{n=)%°,

- PG = {Pl(-g)}ie[m], a sequence of m upper triangular matrices P ¢ Fog°.

i

(n—o) ><o.

L = {L;};cm), a sequence of m matrices L; € Fy

Sampling a solution to a system of linear equations. For A € IFZI”X’“’ a matrix of rank m with ko > m,
fory € Fj'andr € IE";O, the function SampleSolution(A,y,r) (see Algorithm 2) outputs a solution x
such that Ax = y. The solution space has dimension ko — m, and the random vector r € ]F’q“’ is
used to pick each of the ¢*°~™ solutions with equal probability. This is done by solving the related
system Ax’ = y — Ar with the usual Gaussian Elimination approach, and outputting x = x’ + r.
If the input matrix A does not have rank m, then SampleSolution(A,y,r) outputs L. SampleSolution
uses a subroutine EF (see Algorithm 1) that performs elementary row operations on an input matrix
B ey~ (D) 4o put it in echelon form with leading terms equal to one. That is, the output of EF(B) is
a matrix where all the zero rows are at the bottom, the first non-zero element of each row is 1, and for
all ¢ > 0 the first non-zero element of row i is strictly to the right of the first non-zero element of row
i—1.

Algorithm 1 EF(B)

Input: A matrix B € Fj"* ("ot
mx (ko+1

Output: A matrix B’ € Fy ), the echelon form with leading ones of B.

1: pivot_row < 0, pivot_column < 0
2: while pivot_row < m and pivot_column < ko + 1 do

3:  possible_pivots < {i | pivot_row < i < m and BJ[i, pivot_column] # 0})
4:  if possible_pivots = () then
5 pivot_column < pivot_column + 1 // Move to next column if there is no pivot.
6: continue
7: next_pivot_row < min(possible_pivots)
8 Swap(B|[pivot_row, :], B[next_pivot_row, :])
9:
10:  //Make the leading entry a “1”.
11: B|pivot_row, :] < B[pivot_row, pivot_column] ~!B|[pivot_row, :]
12:
13:  //Eliminate entries below the pivot.
14: for row from next_pivot_row + 1tom — 1 do
15: Bjrow, :] + Blrow, :] — B[row, pivot_column]|B [pivot_row, :]
16:
17: pivot_row <— pivot_row + 1
18: pivot_column < pivot_column + 1

19: return B

[~}



Algorithm 2 SampleSolution(A,y,r)

Input: Matrix A € F<k°

Require: ko > m

Input: Target vectory € F*

Input: Randomness r € F°

Output: Solution x € Iy that satisfies Ax = y if rank(A) = m; otherwise, output L.

: //Randomize the system using r.
IX<4TE ]F’;(’
y+y—Ar

: //Put (Ay) in echelon form with leading 1’s.
: (Ay) < EF((Ay))

: //Check if A has rank m.
: if Ajm —1,:] =0,, then
return |

© ® N U A WN R
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iy 5 &

: //Back-substitution

: for r fromm — 1to 0 do

//Let ¢ be the index of first non-zero element of A[r, :].
Xe & X+ Yr

y <y —yrAld

: return x

e
o 5

[any
~J

2.1.3 Hashing and randomness expansion

SHAKE256. We use the SHAKE256 extended output function for the purpose of hashing and sampling
secret material. We denote by SHAKE256( X, ) the function that takes a byte string X € B* and outputs
[ bytes of output, as specified in the SHA-3 standard [SHA15].

AES-128-CTR-based seed expansion. MAYO uses an AES-128-CTR-based seed expansion function
to generate a large part of the coefficients of the multivariate quadratic map P. We define the function
AES-128-CTR(seed, 1), which takes a 16-byte seed seed, and produces [ bytes of output. The output
is the concatenation of the AES-128-CTR encryptions of the blocks 0,1,---,1/16 — 1 (the blocks are
16-byte counter values starting with zero, and counting up to [/16 — 1), using seed as the key in the
AES-128-CTR block cipher [AESO1]. The implementation of the AES-128-CTR block cipher does not
need to be constant-time or side-channel secure, because the key, the input, and the output are all
public.

2.1.4 Datatypes and conversions

The MAYO protocol specified in this document involves operations using several data types. This sec-
tion lists the different data types and describes how to convert one data type to another.

2.1.4.1 Field element to nibble: Encodeg, (a) € [16]

We encode a field element a = ag + a1z + asz? + azx? as a nibble Encodey,(a) € [16], whose four bits
are (from least significant bit to most significant bit) (ao, a1, as, as).

2.1.4.2 Nibble to field element: Decodey, , (nibble)

The operation Decodey,, is the inverse of Encodep,,. It takes a nibble as input and outputs the corre-
sponding field element.



2.1.4.3 Vector to byte-string: Encode,..(x)

We encode a vector x € F7, as a string of [n/2] bytes by concatenating the encodings of the field
elements Encoder, (x1), ..., Encoder,, (2, ), and padding with the zero nibble if n is odd.

2.1.4.4 Byte-string to vector: Decode,..(n, bytestring)

The operation Decode,..(n, bytestring) takes a vector length n and a byte-string bytestring € BI"/?1
as input and outputs a vector in F7,, such that Decode,.(n, Encode,..(x)) = x for alln € N and all
x € F7.

2.1.4.5 Matrix to byte-string: Encodep (O)

We define the encoding function Encodeg (O) that encodes a matrix O € IE‘YGL_O) " in row-major order

to a byte-string. More precisely, Encodeg first concatenates the n — o rows of O to make a single vector
v = (0][0,:]O[1,:] ... O[n — o — 1,:]) of length (n — 0)o, and then it outputs Encode,c.(v).

2.1.4.6 Byte-string to Matrix: Decodeq (bytestring)

The operation Decodeo (bytestring) takes a byte-string bytestring as input and outputs a matrix in Fé”fo) o

such that Decodeo (Encodeo (0)) = O for all matrices O € Fy"~*°.

2.1.4.7 Bitsliced encodings of m (upper triangular) matrices.

Algorithm 3 defines a bitsliced encoding function EncodeBitslicedMatrices for the sets of m matrices
that can be used in implementations that use efficient bitsliced arithmetic. This function encodes a
sequence of Matrices Ao, ..., A,,—1 € F{*“.

It starts by encoding the m field elements A[0,0], A;[0,0],...,A,,_1[0,0] in a bitsliced format, us-
ing EncodeBitslicedVector (as defined in Algorithm 4). Then, it encodes the A;[0, 1] entries up to the
A,;[0, c — 1] entries, after which we encode the A;[1, 0] entries until, we finish with the encoding of the
A;[r —1,c — 1] entries.

If the A; matrices are upper triangular, then EncodeBitslicedMatrices works in the same way except that
it skips all the field elements A [i, j] with 0 < j <i <r.

Algorithm 3 EncodeBitslicedMatrices(r, ¢, { A };c[, is-triangular)

Input: r, ¢, the number of rows and columns of the matrices

Input: m matrices A; € F{°

Input: is_triangular € {0, 1}, a bit to indicate if the A; are upper triangular or not.

Output: A byte string bytestring € B¢/ if is_triangular = false, bytestring € B”"("+1)/4 otherwise.

1: bytestring = ()

2: for ifromOtor —1 do

3 for jfromOtoc—1 do

4: if i < joris_triangular = false then

5 bytestring = bytestring||EncodeBitslicedVector({ Ay [i, j] } ke[m])
6: return bytestring.

We define the encoding function for the sequences of matrices P, P(?) P(3) and L as:
1. Encodep()(+) := EncodeBitslicedMatrices(n — o,n — o, -, true)
2. Encodep(2) ) := EncodeBitslicedMatrices(n — o, o, -, false)

3. Encodeps) () := EncodeBitslicedMatrices(o, o, -, true)

(-0



Algorithm 4 EncodeBitslicedVector(v)
Input: A vector v ¢ [F{§
Output: A byte string bytestring € 8™/2 that encodes v in a bitsliced format.

1: bytestring < 0,--- ,0 € B™/?
2: for i fromOto (m/8) — 1 do
3: //Encode 8 elements of v into 4 bytes.
4: bop 0,61 + 0,b5 + 0,3+ 0
5: for j from 7 to O do
6: Let v[i * 8 + j] = ap + a17 + azz? + azz®
7: bo < bp %2+ ag
8: by < b1 x2+ay
9: by < by %2+ aq
10: b3 < b3 2+ a3
11:
12: //Write the 4 bytes to their position in the byte-string.
13:  bytestring[i] < b

14: bytestring[m/8 + i] < by

15: bytestring[2 * m /8 + 7] +— by
16:  bytestring[3 x m/8 + i] + b3
17: return bytestring.

4. Encodey,(-) := Encodep) (+) ,

and we define Decodep 1), Decodep 2), Decodep sy, and Decodey, to be the inverses of Encodep 1), Encodep2),
Encodeps), and Encodey,, respectively.

2.1.5 The Basic MAYO functionalities
We define five functionalities:

— MAYO.CompactKeyGen (Algorithm 5): outputs a pair (csk, cpk) € Besk-bytes . gepk-bytes ywhere csk
and cpk are compact representations of a MAYO secret key and public key respectively.

— MAYO.ExpandSK (Algorithm 6): takes as input csk, the compact representation of a MAYO secret
key, and outputs esk € Be*-?tes an expanded representation of the secret key.

— MAYO.ExpandPK (Algorithm 7): takes as input cpk, the compact representation of a MAYO public
key, and outputs epk € BePk-btes an expanded representation of the public key.

- MAYO.Sign (Algorithm 8): takes an expanded secret key esk, a message M € B*, and outputs a
signature sig € Bsig-bytes,

— MAYO.Verify (Algorithm 9): takes as input a message M, an expanded public key epk, a signature
sig, and salt, and outputs 1 or 0 if the signature is deemed valid or invalid, respectively.

Remark. Inlines 31,32, and 34 of the MAYO.Sign algorithm and line 25 of the MAYO.Verify algorithm we accu-
mulate values of the form E'y, where E € [yt is a matrix that represent multiplication by z in a finite field
F,[z]/ f(2). Rather than computing the matrix multiplications explicitly, it could be more efficient to accumulate
the values in a single polynomial and do a single reduction mod f(z).

pl) p®

Remark. Line 24 of the MAYO.Verify algorithm repeatedly uses the values s| “ P(3)> . To get an efficient

implementation, these values can be computed only once and reused, as opposed to recomputing them in every
iteration of the for-loop. The same holds for the values vlTPfll) on line 30 of MAYQ.Sign.

B



Algorithm 5 MAYO.CompactKeyGen()

Output: Compact representation of a secret key csk € Besk-bytes
Output: Compact representation of a public key cpk € 3ePk-bytes

e e T = T = Sy Y
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: //Pick seedg at random.
. seedsk i Bskjeed,bytes

: //Derive seed,k and O from seed.
: S <+ SHAKE256(seedsy, pk_seed_bytes + O_bytes)
: seedpk <— S[0 : pk_seed_bytes]

O <+ Decodeq (S[pk_seed_bytes : pk_seed_bytes + O _bytes]|)

: //Derive the Pgl) and PZ(?) from seedy.

: P < AES-128-CTR(seed,, P1_bytes + P2_bytes)
3 {Pgl)}ie[m] < Decodep) (P[0 : P1_bytes]) // Pgl)
2 {P§2>},-€[m] <+ Decodep(2) (P[P1_bytes : P1_bytes + P2_bytes])

: //Compute the ng).
: for ifromOtom — 1do

P'® « Upper(—O"P"0O — O"P?)

: //Encode the PE?’).
: cpk < seedp || Encodep(3>({PE3)}iE[7,L})
: csk < seedg

: //Output keys.
: return (cpk, csk).

// seedpy € [BPk-seed-bytes
// O € F{moxe

€ Fé"io)x(”fo) upper triangular

// P§2) c ]Fénfo)xo

// PE3) € Fg*° upper triangular

Algorithm 6 MAYO.ExpandSK(csk)

Input: Compacted secret key csk € [3esk-bytes
Output: Expanded secret key esk € [3esk-bytes

I T S S G Y
g h w N PO

N R R e
Q@ Y % N

© XN WA WN R

=
1

: //Parse csk
: seedgy < csk[0 : sk_seed_bytes]

: //Derive seed,k and O from seedy.

: S «+ SHAKE256(seedgy, pk_seed_bytes + O_bytes)

: seedpk <= S[0 : pk_seed_bytes]

: O_bytestring + S[pk_seed_bytes : pk_seed_bytes + O_bytes]
: O < Decodep (O_bytestring)

: //Derive the PV and PZ(-2) from seedy.

9

: P < AES-128-CTR(seed,k, P1_bytes + P2_bytes)
3 {Pgl)}ie[m] <+ Decodep) (P[0 : P1_bytes]) // Pgl)
2 {P§2)}i€[m] <+ Decodep(2) (P[P1_bytes : P1_bytes + P2_bytes])

: //Compute the L,.
: for ifromOtom — 1do

L, =P +PMHo +p?

: //Encode the L; and output esk.
: return esk = seedyy || O_bytestring || P[0 : P1_bytes] || Encoder, ({L; }ic[m))-

/ / Seedpk ¢ J3pk-seed.bytes
// O—byteStl’ing c Bofbytes
// O € F{moxe

€ Fé"fo)x(”fo) upper triangular

// P§2) c ]Fénfo)xo

// L, € IF((]n—o)xo




Algorithm 7 MAYO.ExpandPK(cpk)
Input: Compact public key cpk € [ePk-btes
Output: Expanded public key epk € [3ePk-bytes

. //Parse cpk.
: seedpy <— cpk[0 : pk_seed_bytes]

: //Expand seed, and return.
: epk = AES-128-CTR(seedpk, P1_bytes + P2_bytes) || cpk[pk_seed_bytes : pk_seed_bytes 4+ P3_bytes]

1
2
3-
4
5
6: return epk.

2.1.6 Implementing the NIST API
Using the five basic functionalities, we implement the NIST API with the following three algorithms:

— MAYO.APILkeypair (Algorithm 5): Outputs a pair (sk, pk) € Besk-bvtes . Bepk-bytes ywhere sk and pk
are compact representations of a MAYO secret key and public key respectively. This algorithm
is identical to MAYO.CompactKeyGen.

- MAYO.APLsign (Algorithm 10): Takes as input a secretkey sk € Bt and amessage M € B™e",
It first calls MAYO.ExpandSK to expand the secret key, and then calls MAYO.Sign with the expanded
public key to produce the signature. It outputs a signed message sm € [Bsig-bytestmlen \which is the
concatenation of the signature and the message.

— MAYO.APILsign_open (Algorithm 11): Takes as input a signed message sm € B* and a public key
pk € BePk-bytes Tt first calls MAYO.ExpandPK to expand the public key, and then it calls MAYO Verify
with the expanded public key to check if the signature is valid. It outputs the result of MAYO.Verify
and if the signature is valid it also outputs the original message.
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Algorithm 8 MAYO.Sign(esk, M)

Input: Expanded secret key esk € [3esk-bytes

Input: Message M € B*

Constant: E ¢ anxm # Represents multiplication by z in Fy[2]/(f(2))
Output: Signature sig € 35i&-bytes
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31:
32:
33:
34:
35:
36:
37:
38:
39:

40:
41:

42:
43:
44:
45:
46:

)
e &

)
S IO NNC

: //Decode esk.

: seedgy < esk[0 : sk_seed_bytes]

: O + Decodeg (esk[sk_seed_bytes : sk_seed_bytes + O_bytes])

2 {Pgl)}iem < Decodep ) (esk[sk_seed_bytes + O_bytes : sk_seed_bytes + O_bytes + P1_bytes])

{L;}iem < Decoder, (esk[sk_seed_bytes + O_bytes + P1_bytes : esk_bytes]) //L; € ]FEI"_O)XO
//Hash message and derive salt and t.
: M_digest +— SHAKE256( M, digest_bytes) // M_digest € Bdigest-bytes
R < Or.bytes Or R & pRbyes // Optional randomization
. salt + SHAKE256(M _digest || R || seeds, salt_bytes) // salt € Bsalt-bytes
: t « Decode,.(m, SHAKE256(M digest || salt, [m1og(q)/8])) /[t €T

: //Attempt to find a preimage for t.
: for ctr from O to 255 do

//Derive v; and r.
V + SHAKE256(M _digest || salt || seedsk || ctr, k& * v_bytes + [kolog(q)/8])
forifromOtok —1do
v; < Decodeyec(n — 0, V[i * v_bytes : (i + 1) * v_bytes]) [/ vi € Fy=°

r < Decode,.(ko, V[k x v_bytes : k * v_bytes + [kolog(q)/8]])

//Build linear system Ax =y.
A < Opxio € F;nXko
y«t, 4«0
forifromOtok —1 do

Mi < Omxo € ]F;TXO

for j from Otom — 1 do

M;[j, ] = vi L, // Set j-th row of M;

forifromOtok —1 do

for jfromk — 1toi do

VTP((ll)vi o ifi=y4
={{; e -y ffueEy
{(ViPe'v; + ViPo 'Vilagim ifi#j
y «+y —Efu
Alyixo:(i+1)*0] < Alsyixo: (i +1) xo] + E‘M;
if i # j then
Al j*0:(j+1) %0« A[;,j%0: (j +1)*o0] +EM;
L+ 10+1
//Try to solve the system.
x < SampleSolution(A,y,r) //x € F’;O U{Ll}
if x # | then
break

//Finish and output the signature.
s < Oxp //S EF(l;"
for ifrom0Otok —1 do
slixn:(i+1)*xn]+ (v;+Ox[ixo: (i+1)*o0])||x[i*xo:(i+1)%*0]
return sig = Encode,..(s) || salt.
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gorithm 9 MAYO.Verify(epk, M, sig)

Input: Expanded public key epk & [3epk-bytes
Input: Message M € B*
Input: Signature sig € [3&-bytes

Constant: E € IF;"*™ # Represents multiplication by z in Fy[2]/(f(2))

Output: An integer result to indicate if sig is valid (result = 0) or invalid (result < 0).

T
w N PO
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: //Decode epk.
: P1_bytestring + epk|0 : P1_bytes]
: P2_bytestring < epk[P1_bytes : P1_bytes 4+ P2_bytes]

t
{Pgly}ie[m] < Decodep) (P1_bytestring)
{P§2)}i€[m] < Decodep2) (P2_bytestring)
. (PP}, c(m) < Decodeps) (P3_bytestring)

: //Decode sig.

. salt < sig|[[nk/2]| : [nk/2] + salt_bytes]
: s < Decodeye.(kn,sig)

: for ifromOtok —1do

si<s[ixn: (i+1)x*n]

e N Y
N o o oA

: //Hash message and derive t.
: M_digest «+— SHAKE256(M, digest_bytes)
: t « Decodeye.(m, SHAKE256 (M _digest || salt, [m log(q)/8]))

NN N R e
W NP O VY ®

24:

25:
26:

: //Compute P*(s).

LYy & OT)'L

00

: for ifromOtok — 1do
for jfromk —1toido

. Pl(ll) P¢(12) . Pc(zl) Pz(z2)
Silo p@)¥ %\ o pw)®
@ @ a€[m]

l+—(+1

27:

28

29:
30:
31:

: //Accept signature if y = t.
if y = t then

return 0
return —1

: P3_bytestring < epk[P1_bytes + P2_bytes : P1_bytes + P2_bytes + P3_bytes]
/) PY e T2 (=9 ypper triangular

// Pz@) c an*O)XO
/PP € Foxe upper triangular

// M_digest € Bdigest-bytes

//t € Fr

/|y e Fp
ifi=j

/JueFy
ifi # j




Algorithm 10 MAYO.APL.sign(M, sk)

Input: Secret key sk € [3esk-bytes
Input: A message M € Bmlen
Output: A signed message sm € [3sig-bytestmlen

: //Expand sk.
: esk «— MAYO.ExpandSK(pk)

: sig < MAYO.Sign(esk, M)

: //Return signed message.

1
2
33
4: //Produce signature.
5
6
7
8: returnsig | M

Algorithm 11 MAYO.APL.sign_open(pk, M, sig)

Input: Public key pk € BePk-bytes

Input: Signed message sm € 35"

Output: An integer result to indicate if sm is valid (result = 0) of invalid (result < 0) for pk
Output: The original message M € [Zsmlen—sig-bytes if m s valid.

: //Expand pk.

: epk <— MAYO.ExpandPK(pk)

: //Parse signed message.
. sig < sm|0 : sig_bytes]
M < smisig_bytes : smlen]

: //Verify signature.
: result <+ MAYO.Verify(epk, M, sig)

© ® N U R W R

_ e
2 e

: //Return result and message.
: if result < 0 then

M« L

: return (result, M)

— R
A ow N




Table 2.1: Our selection of parameter sets for MAYO. All sizes are reported in bytes (B) or kilobytes
(KB).

Parameter set MAYO, MAYO, MAYO3 MAYO5
security level 1 1 3 5
n 66 78 99 133
m 64 64 96 128
0 8 18 10 12
k 9 4 11 12
q 16 16 16 16
salt_bytes 24 24 32 40
digest_bytes 32 32 48 64
pk_seed_bytes 16 16 16 16
f(z) fea(2) fea(2) foe(2) f128(2)
secret key size 24 B 24 B 32B 40B
public key size 1168 B 5488 B 2656 B 5008 B
signature size 321B 180B 577B 838 B
expanded sk size 69 KB 92 KB 230 KB 553 KB
expanded pk size 70 KB 97 KB 233 KB 557 KB

2.1.7 Parameter sets
2.1.7.1 Chosen parameter sets.

We select and implement four parameter sets: For NIST security level 1, we select two parameter
sets: MAYO; and MAYO,, where MAYO; has smaller public keys but larger signatures and conversely
MAYOQ, has smaller signatures but larger public keys. For NIST security level 3 and NIST security
level 5, we select one parameter set each, which we refer to as MAYO3 and MAYOs, respectively. The
parameter sets and the corresponding key and signature sizes are displayed in Table 2.1.

Our chosen parameter sets use the following three irreducible polynomials in Fy¢[z]. (the first one is
used both in MAYO; and MAYO,):

foa(z) = 2% +a323  +x2? +a3
fos(z) = 2% +xz3 +zz
fi2s(z) = 212 4zt 42223 +x3z 42

2.1.7.2 Additional parameter sets.

Table 2.2 gives some additional parameters for NIST security levels 1, 3, and 5 to showcase the possi-
ble trade-offs between public key size and signature size for the MAYO signature scheme. Our imple-
mentations only cover parameter sets where the value of the m parameter set is divisible by 32, which
includes most, but not all of the additional parameter sets. The m-values not divisible by 32 are shown
in blue.
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Table 2.2: Additional parameter sets for MAYO. The salt_bytes, pk_seed_bytes, and digest_bytes parame-
ters are the same as those for the main parameter sets for the same security levels respectively. This
implies that the secret key size is 24, 32, or 40 bytes for parameter sets targetting security levels 1,3,
and 5 respectively. All sizes are reported in bytes (B) or kilobytes (KB).

Security Parameter set . I . .
pk size sig size esk size epk size
level (n,m,o0,k,q)

(66,65,7,11,16) 926 B 387B 70 KB 71 KB
(66,64,8,9,16) 1168 B 321B 68 KB 70 KB
(67,64,9,8,16) 1456 B 292 B 70 KB 72 KB

(69,64,11,7,16) 2128 B 265 B 74 KB 76 KB

1 (70,64,12,6,16) 2512 B 234B 76 KB 78 KB

(73,64,15,5,16) 3856 B 206 B 81 KB 85 KB

(76,64,18,4,16) 5488 B 176 B 87 KB 92 KB

(82,64,24,3,16) 9616 B 147 B 97 KB 107 KB

(106, 64, 36, 2, 16) 21 KB 130B 157 KB 178 KB

(99,97,9,12,16) 2198 B 626 B 233 KB 235 KB

(99,96,10,11,16) 2656 B 576 B 230 KB 233 KB

(100, 96,11, 10, 16) 3184 B 532 B 234 KB 237 KB

(101, 96,12, 9, 16) 3760 B 486 B 238 KB 242 KB

(102, 96,13, 8,16) 4384 B 440B 242 KB 247 KB

3 (104, 96,15, 7,16) 5776 B 396 B 251 KB 256 KB

(107,96, 18, 6, 16) 8224 B 353B 263 KB 271 KB

(110, 96, 21, 5, 16) 11 KB 307 B 276 KB 287 KB

(115, 96, 26, 4, 16) 17 KB 262 B 297 KB 313 KB

(124, 96, 35, 3, 16) 30KB 218B 334KB 364 KB

(156, 96, 52,2,16) 65 KB 188 B 510 KB 575 KB

(131,130,10, 14, 16) 3591 B 957 B 546 KB 549 KB
(132,129,11,13,16) 4273 B 898 B 549 KB 553 KB
(133,128,12,12,16) 5008 B 838B 553 KB 557 KB
(134,128,13,11,16) 5840 B 777 B 560 KB 566 KB
(135,128,14,10, 16) 6736 B 715 B 568 KB 574 KB
(137,128,16,9,16) 8720 B 656 B 583 KB 591 KB
5 (138,128,17, 8,16) 9808 B 592 B 590 KB 600 KB
(141,128, 20, 7,16) 14 KB 533B 613 KB 626 KB
(144,128, 23, 6,16) 18 KB 472 B 636 KB 653 KB
(149,128, 28, 5, 16) 26 KB 412 B 674 KB 699 KB
(155,128, 34, 4,16) 38 KB 350B 719 KB 756 KB
(167,128, 46, 3,16) 68 KB 290B 810 KB 877 KB
(208,128, 68, 2, 16) 147 KB 248 B 1212 KB 1359 KB




Chapter 3

Detailed performance analysis

The submission package includes:
1. A generic reference implementation written only in portable C (C99), described in Section 3.1.
2. An optimized implementation written only in portable C (C99), described in Section 3.2.

3. Anadditional, Intel AVX2 optimized implementation written in C (C99) and using assembly com-
piler intrinsics, described in Section 3.3.

4. An additional, simple textbook implementation written exclusively in Sage, described in Sec-
tion 3.4.

The implementations 1-3 are delivered in a common code package, where each implementation can
be compiled and built by providing the respective cmake options. For portability purposes, the code
package does not make use of dynamic memory allocation or variable length arrays. Libraries sup-
porting the NIST Signature API are built for each parameter set, along with a test harness to verify the
Known Answer Tests (KAT) and applications to generate the KAT. For a detailed overview of the build
options and built artifacts, we refer to the “README.md” file in the source code package submitted
along with the specification.

All implementations except the Sage textbook implementation are protected against side-channel at-
tacks on the software level: they avoid secret-dependent data indexing and secret-dependent control
flow.

3.1 Reference implementation

The reference implementation uses generic functions applicable for all parameter sets, which allows
to build the implementation in a single library supporting all parameter sets at run-time. This option
leads to a smaller library size and makes it easier for the consumer to use the different MAYO variants
in a single library.

Matrix-matrix and matrix-vector multiplications are, in the majority of the cases, implemented in bit-
sliced representation. With m being a multiple of 32, we can perform 32 parallel additions or multi-
plications in ¢ using four 32-bit variables.

The reference implementation is built with CMake option -DMAYO_BUILD TYPE=ref . It is found at
https://github.com/PQCMayo/MAYO-C.
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3.2 Optimized implementation

The optimized C implementation differs in two points from the reference implementation. First, the
MAYO parameters are set at compile-time, resulting in separate libraries for each parameter set. Mod-
ern compilers are highly able to efficiently unroll matrix arithmetic operations which leads to being
able to avoid manually unrolling the loops. Second, specialized bit-sliced arithmetic functions are im-
plemented for the values of m. Bit-sliced arithmetic with m = 64 can process 64 parallel operations
using four 64-bit variables; with m = 96, we can process 96 parallel operations using twelve 32-bit
variables; with m = 128, we can process 128 parallel operations using eight 64-bit variables.

A big part of the key expansion computational time is dominated by AES, which allows us to signif-
icantly speed up the performance by using an AES implementation that uses AES-NI. However, this
speedup may differ depending on the AES software implementation used and the Intel CPU genera-
tion.

The optimized implementation is built with CMake option -DMAYO_BUILD_TYPE=opt. AES-NIis used
by default, if available. It is found at https://github.com/PQCMayo/MAYO-C.

3.3 Intel AVX2 optimized implementation

The AVX2 implementation targets Intel Haswell architectures or later. The implementation utilizes
compiler assembly intrinsics for the SSE2, SSSE3, AVX and AVX2 instruction sets. Optimizing bit-
sliced arithmetic uses a slightly different strategies for each value of m. For m = 64, 64 parallel multi-
plications are performed on data represented in one 256-bit vector register using vector permute and
shuffle instructions. For m = 96, 96 parallel multiplications are performed on data represented in
three 128-bit vector registers. For m = 128, 128 parallel multiplications are performed on data repre-
sented in two 256-bit registers. Further optimizations are applied by unrolling the matrix multiplica-
tion loops for each operation involved in MAYO, interleaving several bit-sliced arithmetic operations
and by re-using intermediate values.

The echelon computation is optimized using AVX2 shuffle instructions for more efficient multiplica-
tions.

The AVX2 implementation is built with CMake option -DMAYO_BUILD_TYPE=avx2. AES-NI is used by
default, if available. It is found at https://github.com/PQCMayo/MAYO-C.

3.3.1 Performance evaluation on Intel x86-64

We ran the performance evaluation procedure on Intel x86-64 CPU’s of three architectures: Haswell,
Skylake, and Ice Lake. The library was compiled with the following CMake compile options:

— Reference implementation: -DMAYO_BUILD TYPE=ref -DENABLE_AESNI=0FF

— Optimized implementation (using AES-NI): -DMAYO_BUILD_TYPE=opt -DENABLE_AESNI=ON

— Optimized implementation (without AES-NI): -DMAYO_BUILD_TYPE=opt -DENABLE_AESNI=0FF
- AVX2 implementation (using AES-NI): -DMAYO_BUILD TYPE=avx2 -DENABLE_AESNI=0N

All builds use -03 compiler optimization level and -march=native build architecture. Turbo Boost
was deactivated to achieve consistent timings. In Tables 3.1, 3.2, and 3.3, we list the performance
using the four configurations. We see that the use of AES-NI significantly speeds up the overall per-
formance in operations using key expansion. Using AVX2 optimizations leads to a speed-up factor
between approx. 2x-6x in KeyGen, 2x-5x in Signing (+ExpandSK) and 1.3x-2.4x in Verifying (+Ex-
pandPK).
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Table 3.1: MAYO performance in CPU cycles on an Intel Xeon E3-1225 v3 CPU (Haswell) at 3.20GHz.
The library was compiled on Ubuntu with clang version 12.0.0-3ubuntul 20.04.5. Results are the me-
dian of 1000 benchmark runs.

ExpandSK ExpandPK
Scheme KeyGen ExpandSK ExpandPK . .

+Sign +Verify

Reference Implementation Generic portable C code, no AES-NI
MAYO, 2,964,948 3,865,364 1,526,032 6,787,356 2,996,968
MAYO, 6,348,792 7,512,512 2,031,976 9,290,400 2,813,708
MAYOg3 10,670,888 14,403,980 5,166,728 23,816,456 9,619,732
MAYO5 27,467,616 38,061,916 12,344,572 59,571,696 21,619,600

Optimized Implementation

C code, using AES-NI

(1st row), no AES-NI (2nd row)

MAYO, 515,168 766,324 63,448 1,947,392 397,464
1,978,448 2,231,480 1,526,420 3,415,896 1,858,496
MAYO, 1,444,244 1,670,148 85,380 2,505,584 212,264
3,417,724 3,637,624 2,054,972 4,470,152 2,172,764
MAYO 4,314,644 7,057,268 213,712 13,179,744 1,982,160
9,280,488 12,013,332 5,141,692 18,136,112 6,919,956
MAYOs 6,096,148 10,282,620 512,600 19,609,280 2,705,800
17,965,956 21,846,212 12,374,164 31,158,140 14,566,548

AVX2 Optimized Implementation

AVX2 compiler intrinsics and using AES-NI

MAYO, 184,116 237,424 63,356 652,052 283,228
MAYO, 487,032 465,908 85,444 789,020 178,276
MAYOs3 956,696 1,594,572 213,032 3,249,120 1,160,552
MAYOs5 2,153,280 3,654,404 512,824 6,606,208 1,984,424

The fastest results on the 2.9 GHz Skylake platform perform KeyGen in 53 us, Signing (+ExpandSK) in
201 ps, and Verifying (+ExpandPK) in 44 us with MAYO,. Batch signing (without expandSK) is fastest
with 93 us and MAYO,. Batch verification (without expandPK) is fastest with 24 ps and MAYOs.

3.4 Sage textbook implementation

The Sage textbook implementation is provided as an easy way to understand the scheme, and to test
the KAT values generated by the C code. It is not protected against side-channel attacks on the soft-
ware level, and should only be used as a reference. It is found at https://github.com/PQCMayo/
MAYO-sage.

3.5 Arm Cortex-M4 implementation

We are working on an Arm Cortex-M4 implementation based on the techniques described in [CKY21].
Preliminary results are shown in Table 3.4. We will publish an implementation supporting all param-
eter sets under the same license as the remaining MAYO code soon. We use the ST NUCLEO-L4R5ZI
development board which comes with a STM32L4R5ZI Cortex-M4 CPU with 2 MB of flash memory and
640 KB of SRAM. We make use of the benchmarking framework PQM4 [KPR "] and use their implemen-
tations of Keccak and AES, i.e., we use the Armv7 -M Keccak implementation from the XKCP [DHP ] and
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Table 3.2: MAYO performance in CPU cycles on an Intel Xeon E3-1260L v5 CPU (Skylake) at 2.90GHz.
The library was compiled on Ubuntu with clang version 14.0.0-1ubuntul 20.04.5. Results are the me-

dian of 1000 benchmark runs.

ExpandSK ExpandPK
Scheme KeyGen ExpandSK ExpandPK . .

+Sign +Verify

Reference Implementation Generic portable C code, no AES-NI
MAYO, 2,579,188 3,241,021 1,539,173 5,510,453 2,703,716
MAYO, 5,212,735 6,098,160 2,068,265 7,455,052 2,720,520
MAYOg3 9,429,436 12,431,116 5,185,043 19,672,365 8,727,014
MAYOs 24,584,060 | 33,189,057 12,488,714 | 50,208,488 | 20,593,825

Optimized Implementation

C code, using AES-NI

(1st row), no AES-NI (2nd row)

MAYO, 313,438 466,279 43,830 1,496,786 283,366
1,816,787 1,970,163 1,546,951 3,002,270 1,787,775
MAYO, 921,052 1,107,113 59,130 1,826,460 159,714
2,932,189 3,108,004 2,058,621 3,838,513 2,742,116
MAYO; 4,016,744 6,566,440 147,589 12,324,612 1,637,394
9,077,007 11,635,068 5,185,078 17,385,631 6,714,363
MAYO: 4,465,717 6,764,297 355,032 16,203,574 2,244,080
16,599,845 19,193,180 12,489,543 28,196,576 14,463,564

AVX2 Optimized Implementation

AVX2 compiler intrinsics and using AES-NI

MAYO, 155,568 207,497 43,832 584,906 208,973
MAYO, 419,778 427,100 59,129 697,946 129,863
MAYOs3 831,339 1,347,527 147,733 2,804,104 904,918
MAYOs5 1,727,943 2,624,093 355,030 5,148,078 1,478,483




Table 3.3: MAYO performance in CPU cycles on an Intel Xeon Gold 6338 CPU (Ice Lake) with 2.0 GHz.
The library was compiled with Ubuntu clang version 12.0.1-19ubuntu3. Results are the median of

1000 benchmark runs.
ExpandSK ExpandPK
Scheme KeyGen ExpandSK ExpandPK . .
+Sign +Verify
Reference Implementation Generic portable C code, no AES-NI
MAYO, 2,507,492 3,350,884 1,373,774 5,569,740 2,472,986
MAYO, 5,256,656 6,116,216 1,836,172 7,494,964 2,424,594
MAYO3 9,063,206 11,708,292 4,628,324 19,164,488 9,687,716
MAYOs 23,216,914 31,509,636 11,085,626 48,646,392 18,818,812

Optimized Implementation

C code, using AES-NI

(1st row), no AES-NI (2nd row)

MAYO, 222,666 295,314 22,392 1,087,794 205,692
1,581,826 1,655,868 1,367,922 2,446,282 1,568,260
MAYO, 613,636 695,602 30,642 1,269,250 118,534
2,427,978 2,503,810 1,838,024 3,074,318 1,938,786
MAYO; 2,917,294 4,682,590 76,164 8,839,058 1,470,684
7,489,044 9,266,120 4,635,632 13,391,284 6,057,506
MAYO: 4,263,490 7,038,500 180,620 13,928,986 1,783,626
15,343,002 18,150,200 11,142,462 25,033,320 12,876,828

AVX2 Optimized Implementation

AVX2 compiler intrinsics and using AES-NI

MAYO, 110,112 161,988 22,518 460,978 175,158
MAYO, 309,422 342,270 30,314 563,900 91,512

MAYO; 508,608 633,954 75,038 1,663,666 610,010
MAYOs5 1,210,154 2,139,058 180,744 4,149,954 1,186,132




Table 3.4: MAYO performance in CPU cycles on the Arm Cortex-M4 (STM32L4R5ZI). The library was
compiled with the Arm GNU toolchain (axm-none-eabi-gcc 12.2.1). Results are the average of 1000

benchmark runs.

ExpandSK ExpandPK

Scheme KeyGen ExpandSK ExpandPK . .
+Sign +Verify
MAYO, 5,245,606 5,293,826 3,098,812 9,183,088 4,886,583
MAYO, 11,925,130 9,418,745 4,149,236 12,033,879 5,103,238

the T-table AES implementation of Stoffelen and Schwabe [SS16]. Note that AES is only used for ex-
panding public values and, hence, using the T-table implementation (instead of the slower constant-
time bit-sliced implementation) is acceptable even on Arm Cortex-M4 platforms with a data cache.
All implementations were compiled with -03 using the Arm GNU toolchain (arm-none-eabi-gcc,
version 12.2.1).
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Chapter 4

Known Answer Test values

The submission includes KAT files that contain tuples of secret keys (sk), public keys (pk), signatures
(sm), messages (msg), and seeds (seed) for our implementations of MAYO;, MAYO,, MAYO3, and MAYOs.

The KAT files can be found in the media folder of the submission: KAT.
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Chapter 5

Security Analysis

This chapter is largely based on the security analysis of [Beu22], but is slightly more detailed. We de-
fine two hardness assumptions based on which we tightly prove the MAYO signature scheme to be
EUF-CMA secure in the random oracle model (ROM). Since one of the assumptions is relatively new,
the security reduction in this chapter does not provide a hard guarantee for the security of the scheme
by itself. Still, we hope the security reduction is valuable for cryptanalysts to understand what is nec-
essary to attack our scheme.

5.1 Hard Problems underlying MAYO

The first assumption that we use underlies the security of the Oil and Vinegar signature scheme.

Definition 1 (OV problem). For O € Fé"fo)xo, let MQ,, 1 ,(O) denote the set of multivariate maps P €
MQy,,m,q that vanish on the rowspace of (OT Io). The OV problem asks to distinguish a random multivariate

quadratic map P € MQ,, ., from a random multivariate quadratic map in MQ,, ., ,(O) for a random O €
F((Info) X o

Let A be an OV distinguisher algorithm. We say the distinguishing advantage of A is:

AdVY,, o.o(A) = |Pr [A(P) = 1|P  MQy 0] —Pr [A(P) =1

n,m,o,q

P~ MQ,, 1m,4(0)

o P F5(17L70)X0 ‘| '

The OV problem has been studied since the invention of the Oil and Vinegar signature scheme in 1997
and seems relatively well understood.

Our second hardness assumption is tailored to the MAYO signature scheme and is, therefore, a more
recent assumption. This assumption states that picking a random multivariate quadratic map P €
MQ, m,q and whippingitup to alarger map P* € MQgy, ., 4 Tesults in a multi-target preimage resistant
function on average.

Definition 2 (Multi-Target Whipped MQ problem). For some matrices {E;; }1<i< <k € Fqm, given random
P € MQy,m,q and access to an unbounded number of random targets t; € ¥y for i € N, the multi-target
whipped MQ problem asks to compute (I,s1, .. .,sk), Such that

k
ZEiiP(Si) + Z Eij’P’(si, Sj) =t7.
=1

1<i<j<k

(0



Let A be an adversary. We say that the advantage of A against the multi-target whipped MQ problem is:

k P+ MQn,m,q
Adv‘?ﬂ;\;\?’ﬂrgm’hq(/l) =Pr Z E”/P(Sz) =+ Z EijP/(Si, Sj) = t] {tl} < IE“ZALXN
i=1 i<j (I,s1,...,8,) + A% (P)

5.2 Security Proof

In this section, we prove the following theorem:

Theorem 1. Let A be an EUF-CMA adversary that runs in time T against the MAYO signature in the random
oracle model with parameters as in Section 2.1.1, and which makes at most Qs signing queries and at most Qp,
queries totherandom oracle. Let B = qk;(j; ? + q:%fo bethe bound on the failing probability from Lemma 1 and
suppose QB < 1, then there exist adversaries B and B'* against the OV, ,, , 4 and MTWMQ(E,;},n,m.kq
problems respectively, that run in time T + (Qs + Qn + 1) - poly(n, m, k, q) such that:

AdVEUF-CMA ( 4y < (Advov (BA) + AdyMTWMQ (B/.A)) (1-Q,B)™"

n,m,o0,k,q n,m,0,q {Eij}n,m k.q

+ (Qh + QS)QSQ—&aILbytes + 3Qh2—85k5eed,bytes + (Qs + Qh + 2)22—8digest,bytes )

Before we give the proof, which is an adaptation of the proof strategy for PSS [BR98], we recall alemma
from [Beu22], that gives an upper bound for the probability that the signing algorithm needs to restart
because the matrix A does not have rank m.

Lemmal. For0 <i<j<klettheE;; € IE‘;”X’” be matrices such that

Ell E12 “ee Elk
E= E12 E22
Eir. ... ... Egg

is nonsingular. If O € IFE]”_O)XO, P € MQpm,q(O) and {vi}icip in =™ x {0}™ are chosen uniformly at
random, then as a function of {0; }ic(x) € O the affine map

k
P*(v+o) = ZEu‘P(Vi +0;) + Z Ei;P'(vi +04,V; + o)

i=1 1<i<j<k

n—o) m—ko

. . k=
has full rank except with probability bounded by < 1 T 1

q—1 "

Let f(z) be an irreducible polynomial and let Z € F,[2]*** be a matrix as in Section 2.1.1. We instanti-
ated the matrices E;; € F;**™ for 1 <4,j < k as the matrix that corresponds to multiplication by Z;;
inF,[z]/f(z). The requirement that f(z) does not divide the determinant of Z implies that the matrix
E is non-singular, so Lemma 1 indeed applies to our instantiation of MAYO.

We prove the theorem with two lemmas. The first lemma tightly reduces the EUF-CMA security of the
MAYO signature scheme to the EUF-KOA security, by showing that we can simulate a signing oracle if
B is sufficiently small. The second lemma concludes the proof by giving a tight reduction from the OV
and MTWMQ problems to the EUF-KOA security game.

Lemma 2. Suppose there exists an adversary A that runs in time T against the EUF-CMA security of the MAYO
signature in the random oracle model with parameters as in Section 2.1.1, and which makes @y, queries to the

q 0 . k—(n—o) m—ko
random oracle and Q) queries to the signing oracle. Let B = 4 ) qq71 and suppose Q:B < 1, then,
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there exists an adversary BB against the EUF-KOA security of the MAYO signature scheme that runs in time T +
O((Qh + Qs)pal.y(n7 m, k7 q)) with:

AdVEUCHA (A) < AQVESTROA(B) (1— Q,B) ™" + (Qu + Q,)Q,27 tbres

n,m,0,k,q n,m,o0,q

+ 3Qh2—85k5eed,bytes + (Qs + Qh + 2)22—8digest,bytes ]

Proof. The EUF-KOA adversary B works as follows:

When B is given a public key pk, it starts simulating adversary .4 on input pk. 5 maintains a list L,
which is initially empty. When A queries the random oracle at input M, B responds with t if there is
anentry (M, t,x) € L; otherwise, B forwards the query to the SHAKE256 oracle, receives the response
t from it, adds (M, t, L) to L and responds to .4 with t.

B chooses a random seedy, € Bs<=seed-bvtes When 4 makes a query to sign a message M, B queries the
SHAKE256 oracle on input M to get the digest M _digest and adds (M, M_digest, L) to L. Then, B chooses
a randomizer R like in the real signing algorithm (either at random or as R = Or_pytes) and sets salt <
SHAKE256(M digest || R || seed.,, salt_bytes). B aborts if there is an existing entry (M _digest||salt, t, 1) in
L. If there is an entry (M_digest || salt, t,s) in L, then B answers with the signature Encode,.(s) || salt.
Otherwise, B samples s € F}", and sets t = P*(s). Then, B adds (M_digest||salt, t, s) to L and outputs
the signature (Encode,..(s) | salt). Finally, when .4 outputs a message-forgery pair (M, o), B outputs
the same pair.

The EUF-KOA adversary B runs in time 7' 4+ O((Qn + Qs + 1)poly(n,m, k,q)), and, hence, we only
need to show that B succeeds in the EUF-KOA game with a sufficiently large probability. We prove this
with a sequence of games starting with the EUF-CMA game played by .4 and ending with the EUF-KOA
game played by BA.

1. Let Gameg be A’s EUF-CMA game against the MAYO signature scheme. By definition, we have
that Pr[Gameo() = 1] = AdvEUFCMA (1),

n,m,o,k,q

2. Let Game, be the same as Game, except that the game picks a second seed., € Bsk-seed-bytes which
is used instead of seedy to derive salt when answering signing queries. If .4 does not make any
random oracle queries of the form M || R || seedg or M || R || seed.,, which happens with prob-
ability at most 22~ 8sk-seed-bytes (seed has 8sk_seed_bytes bits on min-entropy), then its view

in Gamey and Game; is identical. Therefore, we have Pr[Game;() = 1] > Pr[Gamey() = 1] —
QQh278sk5eed,bytes‘

3. Game, is the same as Gamey, but it simulates the random oracle SHAKE256 differently. Games
simulates the random oracle by maintaining a list L. When .A makes a query on a message M, if
there is an entry (M, t, x) in L, the game answers with t; otherwise, it forwards the query to the
SHAKE256 oracle of the EUF-CMA game to receive t, inserts (M, t, 1) in L and answers with t.
When a signing query is made, Game, derives M_digest and salt. It then:

- Aborts if there is an entry (M_digest || salt, t, L) in L.

- Ifthereisanentry (M_digest||salt, t, s), it answers the query with the signature Encode,..(s)||
salt (a signature derived from the found entry).

— If there is no such entry in L, the game picks t uniformly at random, runs the signing algo-
rithm for t to get a new s, inserts (M_digest || salt, t, s) in L, and outputs Encode,.(s) || salt.

Since there are at most @)}, + Qs entries of the form (M, t, 1) in L and there are at most Q,
signing queries, the probability of an abort is at most Q, Q2 8%"t-b¥tes_[fthe game does not abort,
then it simulates the random oracle perfectly, and we have: Pr[Gamey() = 1] > Pr[Game;() =

1] _ (Qh + QS)QSQ—SsaIt,bytes.

4. Games is the same as Games, except that it answers signing queries differently. Each time a fresh
signing query is made the game repeatedly picks uniformly random v; € ;= fori € [k, until

L)
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it finds a set of v; such that P*(v + ) : O — [Fy" has full rank. Then, instead of picking t at
random and sampling a random solution o to P*(v + o) = t, Game; picks o € O uniformly
at random and sets t < P*(v + o). Since P*(v + -) is a full-rank affine map, it does not affect
the distribution of the signatures. The only difference is that, in Game,, v and o are determined
by the output of the SHAKE256 random oracle on input M || salt || seedg || ctr, whereas in Games
they are chosen at random. If the adversary does not make a random oracle query of the form
M || salt || seedg || ctr (which it can do with at most a probability @2~ 8sk-seed-brtes gince seedq
has 8sk_seed_bytes bits of min-entropy), then its view in both games is the same, and we have
Pr[Games() = 1] > Pr[Gamey() = 1] — Q)27 8sk-seed-bytes,

5. Game, is the same as Gameg, but with a different winning condition. Game,4 outputs O if there are
two queries to the SHAKE256 oracle that result in the same output. During the game, there are
at most Qs + Qp + 2 queries (the +2 comes from the random oracle queries during the signature
verification process) to the SHAKE256 oracle, and for each of the fewer than (Q, + Qy, +2)? pairs
of distinct queries, the probability of a collision is 2 ~8digest-bytes We, therefore, have Pr(Gamey() =
1] > Pr[Gameg() — 1] _ (Qs 4 Qh 4 2)2278digest,bytes_

6. Gamejs is the same as Gamey, but the game picks s = v 4 o uniformly at random instead of o
being random and v being picked uniformly at random from the set of v such that P*(v + -) has
full rank. Let Good_v be the event that arises when, for all the v chosen during the execution of
the EUF-KOA game, the map P*(v + -) happens to have full rank. Then, Games, conditioned on
Good_v happening, is identical to Game4. Lemma 1 states that the probability that P*(v + -) does
not have full rank for a single v is at most B, so, by the union bound, we have:

> Pr[Games() = 1] Pr[Good_v]
> PrlGames() = 1](1 — Q,B).

Pr[Games() = 1] = Pr[Game;() = 1| Good_v] Pr[Good.v]| 4+ Pr[Game;() = 1|-Good_v] Pr[-Good_v|
1

7. The final game is the EUF-KOA game played by B. This is the same as Games, but with a dif-
ferent winning condition. Games is won if the adversary outputs a forgery (M, sig) that is valid
under the SHAKE256 oracle implemented by /5, if the signing oracle was not queried on M and if
there were no collisions found in the SHAKE256 oracle. In contrast, the EUF-KOA game is only
won if the forgery is valid for the SHAKE256 oracle of the EUF-KOA game. The SHAKE256 ora-
cle implemented by B is the same as the oracle of the EUF-KOA game for all messages, except
for the messages M _digest || salt, where M _digest and salt were the message digest and salt used
in one of the queries to the signing oracle. A forgery (M, sig) can only be valid for Game4 but
not for EUF-KOA game if SHAKE256(M) = SHAKE256(M’), where M’ was one of the messages
queries for the signing oracle. Moreover, we must have M # M’, because otherwise the forgery
(M, sig) is not considered valid for Gamey, so (M, M’) is a collision for the SHAKE256 oracle. But
if there was a collision, then the game would have aborted. Therefore, we have determined that
if a forgery is valid for Games, then it must also be valid for the EUF-KOA game. So we have
AdvEUFKOA(B) > Pr[Games() = 1].

n,m,o,q

In case (1 — Q4B) > 0, we can combine the inequalities to get:

AdVEUF—CMA (A) < AdVEUF—KOA(B) (1 o QsB)il + (Qh + QS)Q52—8salt,bytes

n,m,o,k,q n,m,o0,q

+ 3Qh2785kﬁeed,bytes + (Qg + Qh + 2)2278digest,bytes . ]

Lemma 3. Let A be an EUF-KOA adversary that runs in time T against the MAYO signature in the random
oracle model with parameters as in Section 2.1.1. Then, there exists an adversary B against the OV, 1, .4 PT0b-
lem, and an adversary B’ against the MTWMQ,, ,,, 1., o Problem, that both run in time bounded by T + O((1 +
Qr)poly(n, m, k, q)) such that:

AdVEUFKOA ( 4y < AdyOY

n,m,o,k,q n,m,o,q

(B) + AdVYiTWMQ (37

{Eij},n,m,k,q

(>0



Proof. We do the proof as a short sequence of games.

1. We define Gameg to be the EUF-KOA game played by A. By definition, we have

Pr[Gameg() = 1] = AdvE%?E%% (A).

2. Game; is the same as Game, except that during key generation, the challenger chooses a uni-
formly random P € MQ,, ,,, 4, instead of a P that vanishes on some oil space O. We construct the
adversary B against the OV assumption as follows: when B is given a multivariate quadratic map
P, it computes the encodings P1_bytestring, P2_bytestring, P3_bytestring of{Pl(.l) Yiepml» {PZ(?) Yiepm)»
and {Pg?’)}ie[m], respectively. B then derives seed as in the normal key generation algorithm,
andruns.4oninput pk = (seed,||P3-bytes), while faithfully simulating a random oracle SHAKE256,
and a oracle AES-128-CTR that outputs P1_bytestring || P2_bytestring on input seed, and that out-
puts random bytes otherwise. We designed B in such a way that, if Bis givena P € MQ,, ,,, ,(O)
for a random O, then B4 is exactly Gameo, and if B is given a random map P € MQ,, ,, 4, then
B4 is Game;. Therefore, we have:

Advyy, . (B*) = [Pr[Gameg() = 1] — Pr[Game; () = 1]| .

3. The next game, Games, is the MTWMQ game played by the adversary 5 that we now define.
When B’ is given a multivariate quadratic map P and oracle access to arbitrarily many random
targets {t; };cn, it does the same thing as Game;, except that instead of simulating a SHAKE256
random oracle honestly, B’ outputs t; in response to the i-th unique random oracle query, trun-
cated or extended with random bits to achieve the requested outputlength. If A outputs a message-
signature pair (M, (salt,s)), then B’ checks if the signature is valid (simulating a random oracle
query in the process). If the signature is valid, then SHAKE256(A/) || salt is one of the random
oracle queries, say the I-th unique random oracle query. Then, B’ outputs (7, s). If the signature
is invalid, B’ aborts. The view of A in this game is the same as the view of 4 in Game;, since B’
simulates the random oracle perfectly. Therefore, A outputs a valid message-signature pair with

probability Pr[Game; () = 1]. Therefore, we have Adv'%/'};\;v}'\)/'fmk)q(B’A) = Pr[Game;() = 1].

EUF-KOA
n,m,o,k,q

We can now finish the proof by combining Pr[Gamey() = 1] = Adv
the two game transitions to get:

(A) with inequalities from

AdVEUFKOA ( 4y < AdyOV

n,m,o,k,q n,m,o,q

(B) + AdViTWMQ (3.

{Ei;};n,m k.q

5.3 Discussion of the advantage loss in the security proof

The security reduction from the previous section loses advantage by three additive terms (Qs + Qr +
2)22~8digest-bytes (), 4 (9,)(Q, 27 8salt-bytes and 3(Y;, 2~ 8sk-seed-bytes and one multiplicative factor (1 —Q,B).

Additive loss. The first two terms correspond to attacks that look for hash collisions, and that try to
guess seedg, respectively. We will discuss these in Section 5.4. The remaining term (Q, +Q ) Q 2~ 8s/t-bytes
corresponds to the event, in the random oracle, where the signer outputs a signature for a message
(M, salt), such that the adversary has already queried the random oracle on input SHAKE256( /) || salt.
To the best of our knowledge, this term is an artifact of the proof and does not lead to an attack. Even

if the salt is completely removed, there seems to be no attack. Nevertheless, to rule out any attack, we
pick salt_bytes to be 24, 32, and 40 for security levels 1, 3, and 5 respectively, in order to make the term
sufficiently small. Besides enabling the security proof, the salt brings some protection against fault
injection and side-channel attacks.
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Multiplicative loss. The security proof has a loss in advantage by a factor (1 — QsB), where Q; is the
number of signatures that the EUF-CMA adversary can request, and where B = qk;_";u) + q;tfo is
an upper bound for the probability that the signer needs to restart the loop on Line 28 of MAYO.Sign.
This factor stems from the fact that the rejection sampling functionality introduces a small amount of

information leakage.

If QsB < 1/2, then the term only results in a loss in advantage by a constant factor, so the leakage
provably does not hurt the security of MAYO by much. If QB > 1, the security proof no longer makes
any guarantees, but there does not seem to be any attack that can take advantage of the information-
theoretic leakage. The 0il and Vinegar signature scheme suffers from the same problem, but with a
bigger leakage due to the larger restarting probability of approximately 1/q. After decades of crypt-
analysis, no attacks are known that can efficiently make use of this leakage. For MAYO; and MAYO,, we
choose parameters such that m < ko — 8, such that B is approximately ¢—? = 2735, which means that
as long as the adversary sees fewer than 23° signatures, the leakage provably does not degrade secu-
rity much. We expect the MAYO signature scheme to remain secure even if the adversary has access
to an unbounded number of signatures. For MAYO5; and MAYOs, the value of B is approximately 2760,
and 2798 respectively.

5.4 Analysis of known attacks

We list the known attacks against the MAYO signature scheme, and we give estimates of their complex-
ity. Given our security proof, we can sort attacks into three categories: attacks that exploit the losses
of the security proof, attacks on the Oil and Vinegar problem, and attacks on the multi-target whipped
MQ problem.

Table 5.1 contains lower bounds for the bit cost of the known attacks against the four proposed param-
eter sets. For the sake of concreteness, we say that the cost of 1 multiplication + 1 addition in Fy4 is 36
bit operations. This choice is arbitrary, but we make it to be consistent with the multivariate literature,
where the bit-cost of one multiplication + addition in small binary fields of order 2" is often chosen to
be 2r2? 4 r when reporting the estimated cost of attacks (see e. g., [DCP*20]). We chose the parameters
such that the estimated bit costs of all the attacks exceed 243, 2297, and 2272 for the parameter sets
aiming for security levels 1, 3, and 5 respectively.

The cost of system-solving algorithms. Some of the attacks use a subroutine that finds a solution
to a system of multivariate quadratic equations. We denote the bit cost of solving a random non-
homogeneous system of m multivariate equations in n variables over F, using the hybrid Wiedemann
XL algorithm [BFP09, YCBCO07] by XL_Costy, ,,, . For (over)determined systems, i.e. n < m, we can
estimate this cost as:

) n—k-i—Dn—k,m ? n_k+2
XL,COStn,m,q — mkm 36-3- qk . ( Do ) c < 9 > y

where k is the number of coefficients of the solution that is guessed and that is chosen to minimize the
cost, and where D,,_y, ,,, is the operating degree of XL, which can be computed as the smallest integer d
for which the coefficient of t¢ in the expansion of

-—e)m
(1 _ t)nfk+1
is non-positive.

For underdetermined systems (i.e., n > m), the best approach is due to Furue, Nakamura, and Tak-
agi [FNT21], which combines the hybrid approach with the work of Thomae and Wolf [TW12]. Their
approach first reduces the underdetermined system to a set of ¢* smaller overdetermined systems

L)
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Table 5.1: Bit-complexity lower bounds for the state-of-the-art attacks against our proposed param-
eter sets. The Kipnis-Shamir, Reconciliation, and Intersection attacks are key-recovery attacks, and
the Claw-finding and Direct attacks are universal forgery attacks. For the attacks that reduce to the

hybrid XL algorithm, we report the operating degree D and the optimal number of guesses k.

Parameter set Kipnis- Reconciliation  Intersection Direct attack Claw-
(n,m,o0,k,q) Shamir (D, k) (D, k) (D, k) finding
MAYO, 143 255 145
222 14
(66,64,8,9,16) (14,9) (7,1) (10, 16) 3
MAYO, 151 202 158
191 143
(78,64,18,4,16) 14,11) (10, 0) (12,16)
MAYO3 209 390 210
4 207
(99,96,10,11,16) 340 (23,10) (10,0) (16,21) 0
MAYO5 276 525 275
(133,128,12,12,16) a6l (27,18) (12,0) (22, 26) 272

n—~k
m—k

algorithm to solve those systems. The total cost of the algorithm for n > m can therefore be estimated
as:

withm/ = m — J — 1 equations and n’ = m/ — k variables, and then apply the Wiedemann XL

XL_Costy,m,q = min ¢" - XL_Costpr 4 -

Note that our methodology for estimating the cost of the XL algorithm only accounts for the cost of the
multiplications and ignores any other overhead such as the cost of memory access. It should there-
fore be interpreted as a loose lower bound for the cost of a realistic attack. For example, as shown in
Table 5.1, the attack with the lowest estimated bit cost against MAYO; is the reconciliation attack, for
which the bit cost of the multiplications is estimated to be approximately 2'43. However, the bottle-
neck of the attack is computing iterated matrix-vector multiplications x;,1 = Mx;, where the vectors
x, are approximately 2° elements long, and where M is very sparse. This means that storing a vector
requires 17.6 Terrabytes, and the cost of accessing the entries of the vector to perform the matrix-
vector multiplication is likely to significantly outweigh the cost of the multiplications themselves.

Attacks exploiting the loss in the security proof.

Finding hash collisions. One can trivially break the EUF-CMA security of MAYO, by finding a collision
for SHAKE256. If the adversary knows two messages M; # M, with SHAKE256(M;) = SHAKE256(Ms),
then it can query the signing algorithm for a signature for M; and output it as a forgery for M>. Our
instantiations targeting security level 1, 3, and 5 use 256, 384 and 512 bits of SHAKE256 output re-
spectively. With these output lengths, the SHAKE256 functionality is widely believed to achieve the
required security levels.

Guessing seed,. The attacker can simply try to guess the secret key, which is a uniformly random
string of sk_seed_bytes bytes. Making a correct guess would take on average approximately 28se¢ds—1
attempts. We set sk_seed_bytes = 24, 32, or 40 for the parameter sets targeting security levels 1, 3, and
5 respectively. The bit length of seed is longer than strictly necessary (by 64 bits) to protect against
attacks that attempt to guess the secret key for one out of a large set of public keys of interest.
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Attacks on the Oil and Vinegar problem

AMAYO public key consists of an Oil and Vinegar map, i.e., a multivariate quadratic map P : F; — F7§
that vanishes on some linear subspace O C F7; of dimension o. The secret key corresponds to the
space O. Therefore, an attacker can break MAYO if he can recover O from P. This problem has been
studied in the literature as it is exactly how a key recovery attack on the Oil and Vinegar signature
scheme works (a MAYO public key is nothing but an Oil and Vinegar key with different parameters).
We list the known attacks against this problem.

Kipnis-Shamir attack. The firstattack on the Oil and Vinegar problem was introduced in 1998 by Kip-
nis and Shamir [KS98]. The attack attempts to find vectors in the oil space O, by exploiting the fact that
these vectors are more likely to be eigenvectors of some publicly-known matrices. The bottleneck of
the attack is computing the eigenvectors of on average ¢~ 2° matrices of size n-by-n. Asymptotically,
the cost of computing the eigenvectors is the same as that of matrix multiplication. To construct Ta-
ble 5.1, we use 36¢"2°n?8 as a lower bound for the bit cost of the attack. Precise estimates are not
relevant because, as observed in Table 5.1, the cost of the Kipnis-Shamir attack exceeds the require-
ments for the claimed security level by large margins.

Reconciliation attack. [DYCT08] A more obvious method to find vectors in the oil space O is to use
the fact that P(o) = 0 for all o € O. We expect random systems P to have approximately ¢" " zeros,
and the Oil and Vinegar maps have an additional ¢° artificial zeros in the subspace O. If o > n — m
(which is the case for the MAYO parameters), then, the majority of the zeros of P are in O, so to find
avector in O, an attacker can look for x such that P(x) = 0 using generic system solving algorithms.
The attacker can use o random affine constraints to eliminate o variables in the system P(x) = 0, and
with high probability, the resulting system will have a unique solution, which corresponds to a vector
in O. Therefore, finding a vector in O reduces to solving a system of m inhomogeneous multivariate
quadratic equations in n — o variables. Once a single vector in O is found, finding the rest of O is a
much easier problem, so the cost of the reconciliation attack is XL_Cost,;, n—o,q-

Intersection attack The intersection attack, introduced by Beullens [Beu21] is a generalization of
the reconciliation attack which uses the ideas behind the Kipnis-Shamir attack. The idea is to simul-
taneously look for more than one vector in the oil space. Let £k > 2 be some parameter, then the
attack tries to find k vectors in O by solving a system of M = (*I")m — 2(%) quadratic equations in
N = min(n,nk — (2k — 1)m) variables. In the context of MAYO, we get the most efficient attacks in
the case £ = 2. The attack is only guaranteed to work if 30 > n, which is not the case for the MAYO
parameters. If 30 < n, then the attack succeeds with probability g~ 3°~!, so the attack needs to be
repeated on average ¢" 3°*! times, which makes the cost of the attack:

q"_30+1XL,Cost3m_2’n7q .

Because ois very smallin MAYO, the intersection attack has a very low success probability. This makes
the attack much less efficient compared to the common Oil-and-Vinegar setting where o = m.

Attacks on the multi-target whipped MQ problem.

A signature for a message M consists of a vector s € F;** and a salt salt € B='tbvtes guch that P*(s) =
SHAKE256(SHAKE256()) | salt), where

P*(Xl, 00 0C ,Xk) = Z Eii’P(Xi) + Z Z EijP/(Xi,Xj)
1=1 1=1 j=1+1
is the whipped Oil and Vinegar map. Therefore, an attacker can forge a signature for a message M by
hashing M with many salts and then trying to find a vector s such that P*(s) equals one of the hashes.
Here we give the best known ways an attacker could do this.
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Direct attack. In a direct attack the attacker picks a random salt salt € Bsaltbytes and solves for
s € F% such that P*(s) = SHAKE256(SHAKE256(M) || salt). There are at present no known al-
gorithms that can take advantage of the structure of the system P*(s) = H to find a solution more
efficiently compared to running a generic algorithm. Therefore, we estimate the cost of a direct attack
as XL_Costiy,m,q-

Claw finding attacks. An attacker can compute P(s;) for X arbitrary inputs {s; },c[x] and compute
SHAKE256(SHAKE256(M )||salt;) for Y arbitrary salts {salt; } jcy]. If XY = ¢", then there is a collision
P(s;) = SHAKE256(SHAKE256(M)|[salt;) with probability ~ 1 — e~!, and the attacker can output the
signature (salt;,s;) for the message M. The bit-cost of the attack is then:

36mX + Y2'7

which is equal to 12+/¢™m217 for optimally chosen X, Y such that XY = ¢™. This is the formula we
use in Table 5.1. We have used gray-code enumeration [BCC10] to evaluate P at X inputs and, for the
sake of concreteness, we estimate that computing SHAKE256 has a bit cost of at least 2'7. Realistically,
an attacker would use a memoryless claw finding algorithm [vIW96], where it might not be possible to
take full advantage of gray-code enumeration.

Quantum attacks.

All the known quantum attacks against MAYO are obtained by speeding some part of a classical at-
tack up with Grover’s algorithm. Therefore, they outperform the classical attacks by at most a square
root factor, and they do not threaten our security claims. Indeed, the NIST security levels 1,3, and 5
are defined with respect to the hardness of a key search against a block cipher such as the AES with
128,192, or 256-bit keys respectively. Grover speeds up a key search by almost a square root factor,
so, for a quantum attack to break the NIST security targets it needs to improve on classical attacks by
more than a square root factor, which is not possible by relying on Grover’s algorithm alone.

We very briefly discuss how the different attacks can be sped up by Grover’s algorithm:

Claw finding and Hash collisions. Claw-finding and collision-finding for functions that are cheap to
compute are not believed to benefit from quantum computing [JS19].

System-solving attacks. The attacks that reduce to system-solving such as the direct attack, the rec-
onciliation attack, and the intersection attack benefit relatively little from Grover’s algorithm, because
only a small part of the cost comes from guessing some of the variables, and only this part can be sped
up with Grover’s algorithm.

Kipnis-Shamir attack. Almost all of the cost of the Kipnis-Shamir attack comes from guessing a cer-

tain matrix in the hope that it has a good eigenvector, so here Grover can almost fully achieve a quadratic
speedup (assuming there is no restriction on the depth of a quantum attack.). However, for our pro-

posed parameters the Kipnis-Shamir attack is much less efficient than the relevant key search against

the AES classically, and the depth of the Grover oracle that checks if a matrix has a good eigenvalue

is larger than the depth of a Grover oracle that checks if an AES key-guess is correct. Therefore, a

Groverized Kipnis-Shamir attack against MAYO;/MAYO,, MAYO3, or MAYOs, is much more costly than

a Groverized key search against AES-128, AES-192, or AES-256 respectively.

Guessing seedg,. One can almost fully achieve a quadratic speedup for the seedgk-guessing attack, but
we choose the length of seedy to be 64 bitslonger than the length of the AES key that defines the claimed
security level (e. g., seeds, has 192 bits for SL 1 which is defined with respect to AES with 128-bit keys),
so this also does not threaten the security claim.
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Chapter 6

Advantages and Limitations

Advantages

Small key and signature sizes. Compared
to other post-quantum digital signature algo-
rithms, the MAYO signature scheme has short
keys and very short signatures.

Computational efficiency. MAYO offers good
performance for key generation, signing, and
verification. Our generic C implementation
of MAYO is slower than the fastest (platform-
specific) optimized implementations of lattice-
based signatures by only a small factor. We hope
this gap will shrink as more optimized imple-
mentations of MAYO are developed.

Flexible. Parameter sets are easily adjusted to
reach a specific security level. For each target se-
curity level, there is a flexible trade-off between
signature size and public key size, as demon-
strated in Table 2.2.

Wide security margin against known attacks.
State-of-the-art attacks against MAYO are well-
understood and easy to analyze. We pick pa-
rameters using a conservative methodology that
only focuses on gate count and ignores the cost
of memory accesses and which ignores how well
attacks parallelize. Therefore, in realistic mod-
els, the state-of-the-art attacks against MAYO
are more costly than key-search attacks on AES
(which define the NIST security levels 1,3, and 5)
by a wide margin.

(0

Limitations

Scalability to higher security levels. Multivari-
ate quadratic maps need O()\3) coefficients to
reach O(\) bits of security. This causes multi-
variate cryptosystems, such as MAYO, to scale
less well to higher security levels, compared to
e. g., lattice-based signature schemes. For exam-
ple, even though at the lowest security level the
combined public key and signature size of MAYO
is only 40% of that of the Dilithium scheme, at
security level 5, the combined size of MAYO is
already 81% of that of Dilithium. At sufficiently
higher security levels Dilithium would become
more compact than MAYO.

New design. MAYO, invented in 2021, is a rel-
atively recent design. MAYO public keys have
the same structure as Oil and Vinegar public
keys, so decades of cryptanalysis inspire confi-
dence in the security of MAYO against key re-
covery attacks. However, for security against
forgery attacks, MAYO relies on the hardness of
the “Whipped MQ” problem, which has had rela-
tively less public scrutiny.
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