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1 Relationship between input features and predicted model quality

To evaluate the relationship between input features and predicted model quality by ProALIGN, we
further plot the scatter figure of the feature qualities and predicted model quality of each target
Test1K dataset, and then calculate the corresponding linear correlation coefficients. As shown in
Figure S1,predicted secondary structures accuracy, solvent accessibility accuracy, distances quality
and MSA quality used in our approach have relatively low Pearson correlation coefficient with the
prediction model qualities (less than 0.4).
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Fig. S1. Effects of the accuracy of input features on the final predicted model by ProALIGN. Dataset:
Test1K. The input features include: (a) Predicted secondary structure, whose quality is measured based on
the ratio of correct prediction by PSIPRED; (b) Solvent accessibility, whose quality is measured based on
the ratio of correct prediction by RaptorX-property (c) Inter-residue distance, whose quality is measured
using accuracy of the top L/2 predicted contacts; and (d) MSA, whose quality is measured using NEFF



2 The dynamic programming method for inferring alignment from
alignment likelihood matrix

As described in Section 2.4, we calculated the optimal alignment Aopt by maximizing likelihood of
predicted matrix obtained by neural network, at the same time satisfying the definition of valid
alignment, i.e.,

arg max
A∈S

logP (A|S, T )− λ · r(A). (1)

Here, r(A) represents a regular term to make the alignment compacted. In this study, we set
r(A) as the length of actual alignment area, i.e., the area from the first aligned residue pair to the
last aligned residue pair in built alignment. Here we assume all elements in the predicted alignment
likelihood matrix are independent of each other,

arg max
A∈S

logP (A|S, T )− λ · r(A) (2)

= arg max
A∈S

m∑
i

n∑
j

logP (Ai,j)− λ · r(A) (3)

, m and n represent the number of rows and columns of. We use dynamic programming to calculate
the optimal alignment.

Firstly, we use state p to describe whether matrix element Aij is in penalty status, in other
word, whether in alignment penalty area. And then we further define three values of p: 0, 1 and 2.
0 represent the left area of alignment penalty area in alignment, 1 represent matrix element is in
penalty area of alignment, and 2 represent matrix element is in right area of alignment penalty area.
In addition, we set another state s to describe matrix element Aij choose 0 or 1, where 1 represent
match and 0 represent not. We define dynamic programming matrices Mi,j,p,m to represent the
optimal score of the partial alignment which ends in row i and column j of alignment matrix A in
penalty state p and match state s. Here, the matrices are calculated recursively,

Mi,j,p=0,s=0 = Mi−1,j−1,p=0,s=0 +

i−1∑
k=1

logP (Ak,j−1 = 0) +

j−1∑
l=1

logP (Ai−1,l = 0) + logP (Ai,j = 0)

(4)

=

i∑
k=1

j∑
l=1

logP (Ak,l = 0) (5)

Mi,j,p=1,s=1 = max



Mi−1,j−1,p=0,s=0 +
i−1∑
k=1

logP (Ak,j−1 = 0) +
j−1∑
l=1

logP (Ai−1,l = 0) + logP (Ai,j = 1)− λ

Mi−1,j−1,p=1,s=1 +
i−1∑
k=1

logP (Ak,j−1 = 0) +
j−1∑
l=1

logP (Ai−1,l = 0) + logP (Ai,j = 1)− λ

Mi−1,j−1,p=1,s=0 +
i−1∑
k=1

logP (Ak,j−1 = 0) +
j−1∑
l=1

logP (Ai−1,l = 0) + logP (Ai,j = 1)− λ

(6)



Mi,j,p=1,s=0 = max



Mi,j−1,p=1,s=0 +
i−1∑
k=1

logP (Ak,j−1 = 0) + logP (Ai,j = 0)− λ

Mi,j−1,p=1,s=1 +
i−1∑
k=1

logP (Ak,j−1 = 0) + logP (Ai,j = 0)− λ

Mi−1,j,p=1,s=1 +
j−1∑
l=1

logP (Ai−1,l = 0) + logP (Ai,j = 0)− λ

Mi−1,j,p=1,s=0 +
j−1∑
l=1

logP (Ai−1,l = 0) + logP (Ai,j = 0)− λ

(7)

Mi,j,p=2,s=0 = max



Mi,j−1,p=1,s=1 +
i−1∑
k=1

logP (Ak,j−1 = 0) + logP (Ai,j = 0)

Mi−1,j,p=1,s=1 +
j−1∑
l=1

logP (Ai−1,l = 0) + logP (Ai,j = 0)

Mi,j−1,p=2,s=0 +
i−1∑
k=1

logP (Ak,j−1 = 0) + logP (Ai,j = 0)

Mi−1,j,p=2,s=0 +
j−1∑
l=1

logP (Ai−1,l = 0) + logP (Ai,j = 0)

(8)

3 Selection of hyper-parameter

Hyper-parameter λ in dynamic programming method is determined by 1000 alignment pairs ran-
domly selected from validation dataset. We tested 13 values of λ for 0.1 to 4. The influence of
different possible values are evaluated by the average predicted model quality (TMscore). The re-
sult are as shown in Table S1.As shown in Table S1, λ is not sensitive from 0.1 to 0.4 , and can
obtain a relatively good prediction model quality in total. Finally, we choose 0.3 as the final value.

Table S1. Influence of hyper-parameter. Dataset: Valid1K

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

TMscore 0.585 0.586 0.586 0.585 0.580 0.574 0.567 0.561 0.554 0.542

4 Alignment cases of failing in predicting high-quality alignment

There are still some cases when this method performed worse than HHpred or other existing meth-
ods. Here, we further analyze how these happened. In the case of Test1K dataset, we identified 6
template-query pairs, for which ProALIGN generated worse structural models than HHpred (TM-
score difference > 0.1). These template-query pairs, together with failure reasons, are summarized
as below.

As shown in the Table S2, the failures of ProALIGN can be divided into two cases: (1) Low-
quality alignment likelihood matrix. In the cases of protein pair 3c12A-4g5aA, ProALIGN outputs



Table S2. Alignment Cases Worse than HHpred with TMscore > 0.1 . Dataset: Test1K

Alignment NEFF Fold Type TMscore

Template Query Template Query Template Query ProALIGN HHpred DeepAlign Failure reason

1yj7A 1ctfA 4.2 6.3 a+b a+b 0.211 0.394 0.425 Low-quality alignment likelihood matrix
3c12A 4g5aA 7.4 1.3 b b 0.194 0.451 0.465 Low-quality alignment likelihood matrix
3o0rB 3dwwA 7.8 6.3 a a 0.480 0.585 0.683 Low-quality alignment likelihood matrix
4it7A 2o9uX 8.2 1.0 a+b a+b 0.503 0.654 0.682 Low-quality alignment likelihood matrix
3kmiA 1xl3C 6.0 3.5 a a 0.302 0.482 0.566 Fail to construct alignment
3hhmB 1t3jA 8.3 2.8 a a 0.258 0.494 0.858 Fail to construct alignment
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Fig. S2. Predicted alignment by HHPred and ProALIGN for proteins 3c12A-4g5aA. (a) Structural align-
ment matrix of the two proteins constructed by running DeepAlign. (b) Alignment predicted by HHpred
(c) Predicted alignment likelihood matrix and the final predicted alignment
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Fig. S3. Predicted alignment by HHPred and ProALIGN for proteins 3hhmB-1t3jA. (a) Structural align-
ment matrix of the two proteins constructed by running DeepAlign. (b) Alignment predicted by HHpred
(c) Predicted alignment likelihood matrix and the final predicted alignment

an alignment likelihood matrix (shown in panel C) that differs from the ideal structural alignment
matrix reported by DeepAlign (shown in panel A), thus leading to the failure of ProALIGN.

(2) Fail to construct final alignment: In the case of protein pair 3hhmB-1t3jA, ProALIGN
generated high-quality alignment likelihood matrix that is close to the ideal structural alignment
matrix reported by DeepAlign. However, ProALIGN failed to construct the final alignment. The
possible reason might be the insufficient penalty score for gaps in middle of alignment.


