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Supplementary Figure 1. Per subtype performance on RCC subtyping. For different training 
set sizes, all 10 CLAM models trained on the public TCGA kidney dataset are evaluated. By 
considering the probability predictions and ground truth labels for the 3-class classification 
problem as one-vs-rest (OVR), the averaged ROC curve of 10 models (confidence band shows ±1 
std) is drawn for each of the three classes (left: chromophobe, middle: clear cell and right: 
papillary) on each RCC subtyping dataset: a) public TCGA kidney test set (n = 86), b) BWH 
independent test set (n = 135), c) BWH biopsy dataset (n = 92), and d) BWH cellphone dataset (n 
= 135). Area under the curve (AUC) values are shown in figure legends (± std).  
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Supplementary Figure 2. Model performance on in-house NSCLC resection WSIs for 
different scanner hardware. Different scanner hardware produces different micron per pixel 
(mpp) resolution even at the same magnification. We evaluated the models trained on the public 
TCGA + CPTAC lung dataset (Aperio scans with an average 20x equivalent mpp of 0.50) on both 
WSIs (n = 131) digitized with an in-house Hamamatsu scanner (20x mpp: 0.44) and in-house 
3DHistech scanner (20x mpp:  0.33). The 3DHistech scans were drastically different in terms of 
mpp from the training data and resulted in an average decrease of 6.5% in test AUC to 0.910 ± 
0.022 from 0.975 ± 0.007. Notably, the drop in AUC performance is much larger for MIL and SL 
when evaluated on the 3DHistech scans, at 16.6% and 31.6% respectively. Additionally, we 
adjusted the mpp of our in-house scans to 0.5 by downscaling the image patches before they are 
embedded by the CNN feature encoder.  When this simple technique is applied, the average test 
AUC of CLAM on the 3DHistech scans improved to 0.965 ± 0.006. These results demonstrate that 
CLAM is reasonably robust to technical variability introduced by different scanner hardware. The 
test AUC performance of all 10 trained models for each algorithm is shown for each configuration 
using box plot. Boxes indicate quartile values (1st, median, and 3rd) and whiskers extend to data 
points within 1.5x the interquartile range.  
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Supplementary Figure 3. Performance of CLAM ensemble system on independent test sets. 
For each task, we took the 10 models trained on the public datasets using 10-fold monte-carlo 
cross-validation (recall 80% of cases in each dataset were used to train each model) and 
computed their ensemble predictions by averaging the normalized probability scores over all 10 
readers for each slide in the independent test set. For BWH NSCLC subtyping and axillary lymph 
node metastasis detection, the test AUC of the ROC curve corresponding the ensemble 
predictions is computed along with its 95% confidence interval (CI). For BWH RCC subtyping, the 
one-vs-rest AUC and its 95% CI for each subtype is computed in addition to the macro-averaged 
AUC. See Supplementary Table 12 – 14 for more details. 
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Supplementary Figure 4. Attention heatmap visualization using varying degrees of overlap. 
In our study, CLAM uses 256 × 256 patches to make predictions. By default, patches cover the 
entire extent of the tissue regions in each slide with a step size of 256 (no overlap) for fast training 
and inference. The resulting attention heatmap appears blocky as there can be large transitions in 
the attention scores assigned to neighboring patches. Instead of using interpolation techniques to 
estimate the attention scores for overlapped locations that are not sampled during patching, we 
increased the overlap between patches (up to 95% overlap) for fine-grained heatmap visualization. 
Attentions scores are first normalized to percentile scores by referring to the raw scores computed 
for all non-overlapped patch locations (this ensures that the same locations from the overlapped 
and non-overlapped heatmaps always have roughly the same normalized scores). Normalized 
attention scores are mapped to their corresponding spatial locations in the WSI and visualized 
(scores for overlapped regions are accumulated and averaged). As demonstrated in both the 
whole slide image (WSI) and cellphone image (CPI) example, using an overlap above 50% 
significantly reduces the blockiness of the resulting heatmap and using a 95% overlap renders the 
heatmap nearly completely smooth to a human observer.  
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Supplementary Figure 5. Validation of attention heatmap for axillary lymph node metastasis 
using cytokeratin (AE1/AE3) immunohistochemical staining. Subsequent slices of paraffin-
embedded tissue of several positive cases of axillary lymph node metastasis are collected, cut and 
stained with H&E and AE1/AE3 IHC, and digitized at BWH. In the representative example, a 
CLAM model trained on our public lymph node metastasis training set is tested on the entire tissue 
region (excluding fat) of the H&E WSI using overlapping patches and a fine-grained attention 
heatmap corresponding to the model’s prediction is created. We find that in addition to correctly 
detecting metastasis at the slide-level, CLAM accurately attends to metastatic regions (red in 
attention heatmap, gold in corresponding IHC) and often even individual tumor cells in the side-by-
side comparison of the fine-grained attention heatmap and IHC-stained WSI. This promising 
finding suggests that while further validation is needed, in some circumstances, it might be 
possible to apply CLAM (which requires no pixel-level or ROI-level annotation and no special 
stains for training) to whole-slide-level segmentation tasks (including but not limited to predicting 
the corresponding IHC) that would otherwise incur either costly labor and human expertise or 
expensive reagents and core facilities. 
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Supplementary Figure 6. Analysis of misclassified cases in the independent test sets. The 
attention heatmaps and high attention patches can be utilized to analyze failure cases of the 
CLAM model. a) Example of squamous cell NSCLC misclassified as adenocarcinoma. Tumor 
regions were identified by the model and represented large, pleomorphic, poorly differentiated 
cells that lacked definite morphologic features or architecture of either adenocarcinoma (glandular 
formation, intracellular mucin, etc.)  or squamous cell carcinoma (keratin formation, intracellular 
bridges, etc.). b) Example of papillary RCC misclassified as chromophobe. The model identified 
large, atypical, polygonal cells with either a clear or granular, eosinophilic cytoplasm in regions 
that did not have definitive fibrovascular cores, likely as a result of sectioning. c) Example of false 
positive misclassification in lymph node metastasis detection. The model identified larger cells with 
irregular nuclear contours and foamy cytoplasm, likely representing histiocytes that are commonly 
found within lymph nodes. 
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Supplementary Figure 7. Quantitative assessment of attention heatmaps using pathologist 
annotations. While attention heatmaps of CLAM models trained with only WSI-level labels were 
not intended for detailed annotation at the pixel-level, we attempted to quantitatively correlate the 
attention heatmaps of CLAM with tumor regions in WSIs. Two anatomic pathologists (AP) 
independently annotated all resection slides in our in-house RCC, NSCLC and Lymph node met. 
datasets. Attention heatmaps were first created by using the best performing CLAM model in 
terms of test AUC for each task with patches tiled at a 75% overlap and then thresholded to 
produce binary masks. Simple post processing techniques such as morphological closing followed 
by opening were used to reduce the fragmentation in the initial masks, close small holes and 
suppress small artifacts. The Dice score, intersection over union (IoU) and Cohen’s κ were 
calculated against the ground truth annotations. 
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Supplementary Figure 8.  Visualizing the patch-level feature space. To visualize the patch-
level feature space, for each task, we randomly sampled 2% of patches from each slide in the 
independent test cohort for a total of n = 54,995, n = 64,687 and n = 136,726 patches for a) RCC, 
b) NSCLC and c) LN Met. Slides in the BWH independent test sets. We then reduced their 512-
dimensional feature representations to two dimensions using PCA (left). For subtyping tasks (a, 
b), each patch is shaded with the class with the highest predicted probability (with p ≥ 0.5) by the 
clustering layers of the model.  If a patch is predicted as negative (p < 0.5) for all classes, it is 
labeled as “agnostic”. We observe that patches predicted as different subtypes are separated into 
distinct clusters in the feature space, and patches sampled from each cluster generally exhibit 
morphology characteristic of each subtype. Similarly, for metastasis detection in axillary lymph 
nodes (c), patches are shaded as positive (p ≥ 0.5 for the positive class) and agnostic (p < 0.5). 
The positive cluster generally picks out tumor cells and the agnostic cluster corresponds with 
immune cells and normal tissue. 
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Supplementary Figure 9. CLAM model performance for different hyperparameter choices. 
Unless otherwise specified, we used a random validation fold from our 10-fold train/val/test 
partitions created for each task to tune for B, which controls the number of patches to consider for 
the task of instance-level clustering, and then c1 and c2, which specify the relative contribution of 
the bag-level classification loss and the instance-level clustering loss in the total loss incurred for 
each slide during training (without loss of generality, we let c2 = 1 − c1 and tuned for different 
values of c1). The models were trained using 50% of cases in the training set corresponding the 
selected validation set. In each task, we did not notice a large difference in the validation 
performance for different hyperparameter choices. 
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10-fold CV 100% Train Data AUC bACC F1 mAP 
mMIL 0.9730 ± 0.0135 0.8946 ± 0.0197 0.8932 ± 0.0262 0.9482 ± 0.0266 
SL 0.9859 ± 0.0074 0.9122 ± 0.0326 0.9084 ± 0.0342 0.9740 ± 0.0130 
CLAM 0.9915 ± 0.0038 0.9205 ± 0.0175 0.9212 ± 0.0264 0.9820 ± 0.0109 
10-fold CV 75% Train Data 

 

mMIL 0.9699 ± 0.0147 0.8778 ± 0.0298 0.8742 ± 0.0331 0.9390 ± 0.0322 
SL 0.9693 ± 0.0089 0.8690 ± 0.0271 0.8260 ± 0.0346 0.9491 ± 0.0177 
CLAM 0.9838 ± 0.0097 0.9021 ± 0.0295 0.8853 ± 0.0260 0.9613 ± 0.0278 
10-fold CV 50% Train Data 

 

mMIL 0.9304 ± 0.0274 0.8058 ± 0.0458 0.8030 ± 0.0488 0.8825 ± 0.0414 
SL 0.9171 ± 0.0226 0.7955 ± 0.0496 0.7288 ± 0.0638 0.8788 ± 0.0290 
CLAM 0.9705 ± 0.0163 0.8788 ± 0.0449 0.8679 ± 0.0470 0.9453 ± 0.0343 
10-fold CV 25% Train Data 

 

mMIL 0.8562 ± 0.0486 0.7177 ± 0.0785 0.7063 ± 0.0807 0.7670 ± 0.0833 
SL 0.8784 ± 0.0341 0.7094 ± 0.0566 0.6289 ± 0.0529 0.7838 ± 0.0575 
CLAM 0.9532 ± 0.0169 0.8183 ± 0.0524 0.8156 ± 0.0507 0.9038 ± 0.0314 
10-fold CV 10% Train Data 

 

mMIL 0.7772 ± 0.0637 0.5517 ± 0.1048 0.5464 ± 0.0985 0.6426 ± 0.1016 
SL 0.8667 ± 0.0237 0.6684 ± 0.0364 0.5382 ± 0.0522 0.7608 ± 0.0383 
CLAM 0.9044 ± 0.0366 0.7619 ± 0.0820 0.7497 ± 0.0625 0.8248 ± 0.0608 

 

Supplementary Table 1. RCC subtyping: cross-validation performance on TCGA dataset. 
The 10-fold average performance (± std) in terms of test AUC, mean average precision score 
(mAP), F1 score and balanced accuracy score (bACC) are reported (n = 86). Macro-averaging is 
used for one-vs-rest AUC, F1 and mAP.   
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10-fold CV 100% Train Data AUC bACC F1 mAP 
MIL 0.9062 ± 0.0258 0.8322 ± 0.0282 0.8011 ± 0.0321 0.8919 ± 0.0310 
SL 0.8735 ± 0.0345 0.7738 ± 0.0406 0.7304 ± 0.0479 0.8317 ± 0.0451 
CLAM 0.9561 ± 0.0179 0.8891 ± 0.0252 0.8675 ± 0.0284 0.9393 ± 0.0253 
10-fold CV 75% Train Data 

 

MIL 0.9034 ± 0.0234 0.8332 ± 0.0330 0.8025 ± 0.0380 0.8899 ± 0.0274 
SL 0.8496 ± 0.0320 0.7534 ± 0.0301 0.7094 ± 0.0343 0.8024 ± 0.0529 
CLAM 0.9510 ± 0.0190 0.8919 ± 0.0288 0.8713 ± 0.0342 0.9262 ± 0.0323 
10-fold CV 50% Train Data 

 

MIL 0.8878 ± 0.0251 0.8140 ± 0.0284 0.7800 ± 0.0324 0.8663 ± 0.0293 
SL 0.7894 ± 0.0462 0.6978 ± 0.0431 0.6571 ± 0.0507 0.7290 ± 0.0696 
CLAM 0.9406 ± 0.0195 0.8733 ± 0.0244 0.8510 ± 0.0275 0.9050 ± 0.0396 
10-fold CV 25% Train Data 

 

MIL 0.7919 ± 0.0677 0.7065 ± 0.0891 0.6181 ± 0.1853 0.7415 ± 0.1054 
SL 0.6901 ± 0.0508 0.6076 ± 0.0432 0.6112 ± 0.0313 0.6157 ± 0.0467 
CLAM 0.9032 ± 0.0248 0.8105 ± 0.0505 0.7719 ± 0.0707 0.8640 ± 0.0380 
10-fold CV 10% Train Data 

 

MIL 0.7134 ± 0.0728 0.6380 ± 0.0695 0.4894 ± 0.1933 0.6620 ± 0.0865 
SL 0.6152 ± 0.0727 0.5643 ± 0.0543 0.5628 ± 0.0583 0.5649 ± 0.0780 
CLAM 0.7983 ± 0.0632 0.7213 ± 0.0610 0.6845 ± 0.0722 0.7274 ± 0.0897 

 

Supplementary Table 2. NSCLC subtyping: cross-validation performance on TCGA + 
CPTAC dataset. The 10-fold average performance (± std) in terms of test AUC, mean average 
precision score (mAP), F1 score and balanced accuracy score (bACC) are reported (n = 196).  
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10-fold CV 100% Train Data AUC bACC F1 mAP 
MIL 0.9033 ± 0.1591 0.8547 ± 0.1303 0.8004 ± 0.2214 0.8891 ± 0.1680 
SL 0.7041 ± 0.1053 0.5887 ± 0.0418 0.3024 ± 0.1269 0.6306 ± 0.0918 
CLAM 0.9532 ± 0.0292 0.9042 ± 0.0365 0.8878 ± 0.0471 0.9464 ± 0.0302 
10-fold CV 75% Train Data 

 

MIL 0.9047 ± 0.1132 0.8392 ± 0.1092 0.7738 ± 0.2297 0.8848 ± 0.1594 
SL 0.6008 ± 0.0796 0.5296 ± 0.0258 0.1169 ± 0.0985 0.5178 ± 0.0824 
CLAM 0.9298 ± 0.0437 0.8847 ± 0.0251 0.8610 ± 0.0347 0.9293 ± 0.0403 
10-fold CV 50% Train Data 

 

MIL 0.7396 ± 0.2189 0.6851 ± 0.1701 0.4852 ± 0.3594 0.6754 ± 0.2722 
SL 0.5759 ± 0.0782 0.5272 ± 0.0826 0.4829 ± 0.0994 0.4640 ± 0.1018 
CLAM 0.9286 ± 0.0278 0.8717 ± 0.0290 0.8421 ± 0.0417 0.9079 ± 0.0410 
10-fold CV 25% Train Data 

 

MIL 0.5861 ± 0.1468 0.5514 ± 0.1139 0.2887 ± 0.2299 0.5073 ± 0.1824 
SL 0.5489 ± 0.0972 0.5227 ± 0.0827 0.4746 ± 0.0979 0.4523 ± 0.1252 
CLAM 0.8538 ± 0.0542 0.8106 ± 0.0510 0.7535 ± 0.0700 0.8236 ± 0.0609 
10-fold CV 10% Train Data 

 

MIL 0.5973 ± 0.1547 0.5775 ± 0.1151 0.2168 ± 0.2956 0.5014 ± 0.2030 
SL 0.5384 ± 0.0964 0.5124 ± 0.0829 0.4511 ± 0.1118 0.4313 ± 0.0988 
CLAM 0.8419 ± 0.0481 0.7861 ± 0.0635 0.7234 ± 0.0863 0.7978 ± 0.0828 

 

Supplementary Table 3. Lymph node metastasis detection: cross-validation performance 
on Camelyon16 + Camelyon17 dataset. The 10-fold average performance (± std) in terms of test 
AUC, mean average precision score (mAP), F1 score and balanced accuracy score (bACC) are 
reported (n = 89).  
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A. LN metastasis detection  
 

10% of Train Data AUC bACC F1 mAP 
CLAM (no clustering) 0.7370 ± 0.1484     0.7156 ± 0.1283     0.6064 ± 0.2194     0.6914 ± 0.2020 
CLAM (w/ clustering) 0.8419 ± 0.0481     0.7861 ± 0.0635     0.7234 ± 0.0863     0.7978 ± 0.0828 
50% of Train Data 
CLAM (no clustering)  0.9182 ± 0.0398     0.8565 ± 0.0333     0.8234 ± 0.0518     0.8961 ± 0.0499 
CLAM (w/ clustering) 0.9286 ± 0.0278     0.8717 ± 0.0290     0.8421 ± 0.0417     0.9079 ± 0.0410 
100% of Train Data     
CLAM (no clustering)  0.9405 ± 0.0425     0.8946 ± 0.0292     0.8763 ± 0.0345     0.9404 ± 0.0320 
CLAM (w/ clustering) 0.9532 ± 0.0292     0.9042 ± 0.0365     0.8878 ± 0.0471     0.9464 ± 0.0302 

 
 
B. NSCLC subtyping 
 

10% of Train Data AUC bACC F1 mAP 
CLAM (no clustering) 0.7788 ± 0.0674     0.6850 ± 0.0927     0.5592 ± 0.2399 0.6992 ± 0.0806 
CLAM (w/ clustering) 0.7983 ± 0.0632     0.7213 ± 0.0610     0.6845 ± 0.0722 0.7274 ± 0.0897 
50% of Train Data 
CLAM (no clustering)  0.9300 ± 0.0259     0.8576 ± 0.0242     0.8318 ± 0.0300     0.8948 ± 0.0525 
CLAM (w/ clustering) 0.9406 ± 0.0195     0.8733 ± 0.0244     0.8510 ± 0.0275     0.9050 ± 0.0396 
100% of Train Data     
CLAM (no clustering)  0.9523 ± 0.0158     0.8886 ± 0.0211     0.8662 ± 0.0235     0.9270 ± 0.0238 
CLAM (w/ clustering) 0.9561 ± 0.0179     0.8891 ± 0.0252     0.8675 ± 0.0284     0.9393 ± 0.0253 

 
 
C. RCC subtyping 
 

10% of Train Data AUC bACC F1 mAP 
CLAM (no clustering) 0.8902 ± 0.0337     0.7284 ± 0.0970     0.7152 ± 0.0995     0.8120 ± 0.0509 
CLAM (w/ clustering) 0.9044 ± 0.0366     0.7619 ± 0.0820     0.7497 ± 0.0625     0.8248 ± 0.0608 
50% of Train Data 
CLAM (no clustering)  0.9660 ± 0.0200     0.8633 ± 0.0633     0.8513 ± 0.0599     0.9360 ± 0.0363 
CLAM (w/ clustering) 0.9705 ± 0.0163     0.8788 ± 0.0449     0.8679 ± 0.0470     0.9453 ± 0.0343 
100% of Train Data     
CLAM (no clustering)  0.9890 ± 0.0078  0.9219 ± 0.0261     0.9212 ± 0.0301 0.9766 ± 0.0190 
CLAM (w/ clustering) 0.9915 ± 0.0038 0.9205 ± 0.0175 0.9212 ± 0.0264     0.9820 ± 0.0109 

 
Supplementary Table 4. Ablation experiments. Experiments for CLAM with and without the 
clustering constraint were performed on the public dataset partitions (the same as our main study 
described by Figure 2) for all 3 disease models and different sized subsets of the full training set. 
The 10-fold mean test performance (± std) is reported for the AUC, bACC (balanced accuracy), F1 
and mAP (mean average precision) score.  For multi-class RCC subtyping, macro-averaging was 
used for all metrics to account for class imbalance. Clustering improves performance for smaller 
data denominations, particularly for more difficult tasks such as LN metastasis detection. 
Clustering also offers a mechanism of enhanced interpretability shown in Supplementary Figure 
8.  
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A. LN metastasis detection  
 

 AUC bACC F1 mAP 
Train/Val/Test: 40/10/50 (n=452) 
MIL 0.7154 ± 0.1836  0.6509 ± 0.1681 0.4183 ± 0.3416 0.6069 ± 0.2609 
SL 0.6589 ± 0.0306  0.5967 ± 0.0285 0.4676 ± 0.0369 0.5244 ± 0.0383 
CLAM 0.9199 ± 0.0135  0.8665 ± 0.0232 0.8362 ± 0.0284 0.9111 ± 0.0176 
Train/Val/Test: 60/10/30 (n=269) 
MIL 0.7628 ± 0.1682  0.6893 ± 0.1661 0.4918 ± 0.3412 0.6720 ± 0.2451 
SL 0.6944 ± 0.0476  0.5916 ± 0.0351 0.3330 ± 0.1064 0.5934 ± 0.0694 
CLAM 0.9374 ± 0.0238  0.8839 ± 0.0382 0.8574 ± 0.0476 0.9290 ± 0.0237 

 
 
B. NSCLC subtyping 
 

 AUC bACC F1 mAP 
Train/Val/Test: 40/10/50 (n=984) 
MIL 0.9043 ± 0.0088     0.8217 ± 0.0147     0.7867 ± 0.0170     0.8763 ± 0.0102 
SL 0.8452 ± 0.0327     0.7654 ± 0.0317     0.7226 ± 0.0370     0.7725 ± 0.0540 
CLAM 0.9424 ± 0.0058     0.8635 ± 0.0178     0.8371 ± 0.0210     0.9116 ± 0.0061 
Train/Val/Test: 60/10/30 (n=598) 
MIL 0.9099 ± 0.0147     0.8247 ± 0.0197     0.7908 ± 0.0256     0.8873 ± 0.0206 
SL 0.8597 ± 0.0303     0.7899 ± 0.0261     0.7531 ± 0.0294     0.8054 ± 0.0424 
CLAM 0.9482 ± 0.0109     0.8740 ± 0.0134     0.8508 ± 0.0161     0.9220 ± 0.0135 

 
 
C. RCC subtyping 
 

 AUC bACC F1 mAP 
Train/Val/Test: 40/10/50 (n=442) 
MIL 0.9679 ± 0.0045     0.8807 ± 0.0162     0.8768 ± 0.0095     0.9356 ± 0.0106 
SL 0.9745 ± 0.0080     0.8823 ± 0.0188     0.8794 ± 0.0178     0.9521 ± 0.0140 
CLAM 0.9775 ± 0.0074     0.8831 ± 0.0207     0.8849 ± 0.0196     0.9529 ± 0.0139 
Train/Val/Test: 60/10/30 (n=262) 
MIL 0.9717 ± 0.0044     0.8930 ± 0.0255     0.8877 ± 0.0190     0.9396 ± 0.0100 
SL 0.9783 ± 0.0065  0.8876 ± 0.0277     0.8854 ± 0.0271 0.9530 ± 0.0221 
CLAM 0.9792 ± 0.0115 0.8946 ± 0.0202 0.8893 ± 0.0218     0.9573 ± 0.0171 

 
Supplementary Table 5. Performance comparison with weakly-supervised baseline 
methods on public datasets using additional dataset partitions. Additional experiments for 
comparing the performance of CLAM with weakly-supervised baseline algorithms trained using 
reduced data were performed on public datasets for all 3 disease models. Specifically, 40/10/50 
and 60/10/30 train/val/test partitions were investigated on the same datasets used in our main 
cross-validation study (Figure 2). These experiments have the additional benefit of allowing the 
algorithms to be assessed on larger held-out test sets (compared to i.e., using 10% of the dataset 
as the test set). Consistent with the rest of our study, we used repeated 10-fold partitions for each 
task and the mean test performance (± std) is reported for the AUC, bACC (balanced accuracy), 
F1 and mAP (mean average precision) score. For multi-class RCC subtyping, macro-averaging 
was used for all metrics to account for class imbalance.  We used the same hyperparameters for 
CLAM as in the main study and ablation experiments. 
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A. LN metastasis detection: Train C17 → Test C16 (n=399) 
 

25% of Train Data AUC bACC F1 mAP 
MIL 0.6220 ± 0.1455 0.5645 ± 0.1012 0.2830 ± 0.2788 0.5402 ± 0.1834 
SL 0.5726 ± 0.0206 0.5083 ± 0.0057 0.0445 ± 0.0378 0.5277 ± 0.0277 
CLAM 0.8101 ± 0.1496 0.7597 ± 0.1241 0.6496 ± 0.2727 0.7860 ± 0.1696 
100% of Train Data 
MIL 0.8451 ± 0.1503 0.7598 ± 0.1181 0.6836 ± 0.1905 0.8337 ± 0.1716 
SL 0.6089 ± 0.0192 0.5104 ± 0.0016 0.0415 ± 0.0078 0.5661 ± 0.0208 
CLAM 0.9120 ± 0.0118 0.8416 ± 0.0284 0.8100 ± 0.0408 0.9201 ± 0.0093 

 
 
B. NSCLC subtyping: Train TCGA → Test CPTAC (n=974) 
 

25% of Train Data AUC bACC F1 mAP 
MIL 0.7919 ± 0.0677 0.7065 ± 0.0891 0.6181 ± 0.1853 0.7415 ± 0.1054 
SL 0.6901 ± 0.0508 0.6076 ± 0.0432 0.6112 ± 0.0313 0.6157 ± 0.0467 
CLAM 0.9032 ± 0.0248 0.8105 ± 0.0505 0.7719 ± 0.0707 0.8640 ± 0.0380 
100% of Train Data 
MIL 0.9062 ± 0.0258 0.8322 ± 0.0282 0.6836 ± 0.1905 0.8337 ± 0.1716 
SL 0.8735 ± 0.0345  0.7738 ± 0.0406 0.7304 ± 0.0479 0.8317 ± 0.0451 
CLAM 0.9557 ± 0.0199  0.8825 ± 0.0289 0.8604 ± 0.0338 0.9358 ± 0.0278 

 
 
C. RCC subtyping: Train TCGA → Test TCGA (independent sites, n=140) 
 

25% of Train Data AUC bACC F1 mAP 
mMIL 0.8562 ± 0.0486  0.7177 ± 0.0785 0.7063 ± 0.0807 0.7670 ± 0.0833 
SL 0.8784 ± 0.0341  0.7094 ± 0.0566 0.6289 ± 0.0529 0.7838 ± 0.0575 
CLAM 0.9532 ± 0.0169  0.8183 ± 0.0524 0.8156 ± 0.0507 0.9038 ± 0.0314 
100% of Train Data 
mMIL 0.9730 ± 0.0135  0.8946 ± 0.0197 0.8932 ± 0.0262 0.9482 ± 0.0266 
SL 0.9859 ± 0.0074  0.9122 ± 0.0326 0.9084 ± 0.0342 0.9740 ± 0.0130 
CLAM 0.9915 ± 0.0038  0.9205 ± 0.0175 0.9212 ± 0.0264 0.9820 ± 0.0109 

 
Supplementary Table 6. Additional performance comparison with weakly-supervised 
baseline methods on public datasets. For NSCLC subtyping and lymph node met. detection, 
model development was performed using one dataset and evaluated on a separate dataset (e.g. 
train on TCGA data and test on CPTAC data). For RCC subtyping, 3 tissue source sites were 
selected to form an independent test set of 140 WSIs (19 Chromophobe, 23 Papillary, 98 Clear 
Cell) and the remaining of the TCGA dataset was used for model development. For each disease 
model, the data used for model development were randomly divided into a training (90% of cases) 
and validation (10% cases) set. Consistent with the rest of our study, we used a 10-fold partition 
for each task and the mean test performance (± std) is reported for the AUC, bACC (balanced 
accuracy), F1 and mAP (mean average precision) score.  For multi-class RCC subtyping, macro-
averaging was used for all metrics to account for class imbalance. We used the same 
hyperparameters for CLAM as in the main study and ablation experiments. 
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RCC Subtyping (TCGA) 
Study Method Name Performance Notes 
Tabibu et al. 2019 [1] Resnet-34 + DAG-SVM AUC: 0.93 @20X on TCGA 

 

Ours CLAM AUC: 0.991 @20X on TCGA 
 

NSCLC Subtyping (TCGA) 
Wang et al. 2019 [2] CNN-AvgFea-Norm3-based RF AUC: 0.856 @20X on TCGA 

 

Xu et al. 2015 [3] Pretrained-Feature-Norm3 AUC: 0.832 @20X on TCGA 
 

Hou et al. 2016 [4] EM-CNN-Fea-SVM AUC: 0.816 @20X on TCGA 
 

Yu et al. 2016 [5] SVM (Gaussian Kernel) AUC: 0.75 @40X on TCGA 
 

Khosravi et al. 2018 [6] Inception-V1 CNN AUC: 0.89 @40X on TCGA 
 

Coudray et al. 2018 [7] Inception-V4 CNN SL AUC: 0.95 @20X on TCGA LUAD vs LUSC (without normal)  
Ours CLAM AUC: 0.963 @20X on TCGA 

 

LN Met. Detection (Camelyon 16) 
Campanella et al. 2019 [8] MIL-RNN AUC: 0.899 @20X on C16 Test Weakly supervised, trained on in-house data 
Tellez et al. 2019 [9] Neural image compression AUC: 0.704 @20X on C16 Test Weakly supervised 
Ours CLAM AUC: 0.936 @40X on C16 Test Weakly supervised 
Chen et al. 2016 [10] CNN-maxpool AUC: 0.942 @40X on C16 Test Uses pixel-level annotation (fully supervised) 
Koohbanani et al. 2018 [11] Multi-resolution CNN ensemble AUC: 0.990 @40X + 20X on C16 Test Uses pixel-level annotation (fully supervised) 
Wang et al. 2016 [10] CNN-RF AUC: 0.994 @40X on C16 Test Uses pixel-level annotation (fully supervised) 
Zhong et al. 2016 [10] CNN-RF AUC: 0.976 @40X on C16 Test Uses pixel-level annotation (fully supervised) 
[1] Tabibu, Sairam, P. K. Vinod, and C. V. Jawahar. "Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning." Scientific reports 9.1 
(2019): 1-9. 
[2] Wang, Xi, et al. "Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis." IEEE Transactions on Cybernetics (2019). 
[3] Xu, Yan, et al. "Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation." 2015 IEEE international conference on acoustics, 
speech and signal processing (ICASSP). IEEE, 2015. 
[4] Hou, Le, et al. "Patch-based convolutional neural network for whole slide tissue image classification." Proceedings of the ieee conference on computer vision and pattern recognition. 2016. 
[5] Yu, Kun-Hsing, et al. "Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features." Nature communications 7.1 (2016): 1-10. 
[6] Khosravi, Pegah, et al. "Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images." EBioMedicine 27 (2018): 317-328. 
[7] Coudray, Nicolas, et al. "Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning." Nature medicine 24.10 (2018): 1559-1567. 
[8] Campanella, Gabriele, et al. "Clinical-grade computational pathology using weakly supervised deep learning on whole slide images." Nature medicine 25.8 (2019): 1301-1309. 
[9] Tellez, David, et al. "Neural image compression for gigapixel histopathology image analysis." IEEE Transactions on Pattern Analysis and Machine Intelligence (2019). 
[10] Bejnordi, Babak Ehteshami, et al. "Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer." Jama 318.22 (2017): 2199-
2210. 
[11] Koohbanani, Navid Alemi, et al. "Significance of hyperparameter optimization for metastasis detection in breast histology images." Computational Pathology and Ophthalmic Medical Image 
Analysis. Springer, Cham, 2018. 139-147. 
 

 
Supplementary Table 7. Performance reported by related works. For the Camelyon16 challenge, only the top 3 performing algorithms from 
the official leader board are included, full leader board can be accessed at: https://camelyon16.grand-challenge.org/Results/.  
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Dataset Source Total 
Slides 

Number of 
Slides Per 

Class 
Scan 

Magnification Scanner Process 
Magnification 

Average Number 
of Patches Per 

Slide 
Public Datasets (Used for Training, Validation, Test) 

TCGA Kidney: RCC 
Subtyping TCGA, Public 884 

CRCC: 111, 
CCRCC: 489, 
PRCC: 284 

40X or 20X Aperio (exact model 
and mpp varies) 20X 13907 

TCGA + CPTAC Lung: 
NSCLC Subtyping 

TCGA and 
CPTAC, Public 1967 LUAD: 1175, 

LUSC: 792 40X or 20X Aperio (exact model 
and mpp varies) 20X 9958 

C16 + C17: Lymph Node 
Metastasis Detection 

Camelyon16 
and 17, Public 899 Negative: 591, 

Positive: 308 40X Varies 40X 41802 

Independent Test Cohorts (Only for Testing) 

BWH Kidney: RCC 
Subtyping BWH, Internal 135 

CRCC: 43, 
CCRCC: 46, 
PRCC: 46 

40X Hamamatsu S210 20X 20394 

BWH Kidney: RCC 
Subtyping (Biopsy) BWH, Internal 92 

CRCC: 13, 
CCRCC: 53, 
PRCC: 26 

40X Hamamatsu S210 20X 1709 

BWH Kidney: RCC 
Subtyping (Cellphone 
Imaged) 

BWH, Internal 135  
CRCC: 43, 
CCRCC: 46, 
PRCC: 46 

20X Objective, 
10X Eyepiece 

iPhone X on 
Olympus 
Microscope 

20X 419 

BWH Lung: NSCLC 
Subtyping (Resection) BWH, Internal 131 LUAD: 63, 

LUSC: 68 
40X(Hamamatsu), 
20X (3DH) 

Hamamatsu S210 & 
3DHistech Mirax 150 20X 24714 

BWH Lung: NSCLC 
Subtyping (Biopsy) BWH, Internal 110 LUAD: 55, 

LUSC: 55 40X Hamamatsu S210 20X 820 

BWH Lung: NSCLC 
Subtyping (Cellphone 
Imaged) 

BWH, Internal 131 LUAD: 63, 
LUSC: 68 

20X Objective 
(Olympus)  

iPhone X on 
Olympus 
Microscope 

20X 406 

BWH Axillary Lymph 
Node: Lymph Node 
Metastasis Detection 

BWH, Internal 133 Negative: 66, 
Positive: 67 40X Hamamatsu S210 20X 51426 

 
Supplementary Table 8. Dataset summary. Summary of all datasets used in the study.   



 19 

 
10-fold CV 100% Train Data AUC bACC F1 mAP 
mMIL 0.9616 ± 0.0123 0.8834 ± 0.0203 0.8841 ± 0.0197 0.9415 ± 0.0158 
SL 0.9371 ± 0.0154 0.4982 ± 0.0467 0.4263 ± 0.0605 0.9003 ± 0.0367 
CLAM 0.9716 ± 0.0082 0.8916 ± 0.0247 0.8935 ± 0.0236 0.9603 ± 0.0103 
10-fold CV 75% Train Data 

 

mMIL 0.9152 ± 0.0203 0.7928 ± 0.0515 0.7803 ± 0.0628 0.8782 ± 0.0282 
SL 0.9463 ± 0.0091 0.6863 ± 0.0676 0.6498 ± 0.0891 0.9147 ± 0.0132 
CLAM 0.9734 ± 0.0076 0.7941 ± 0.0477 0.7759 ± 0.0602 0.9596 ± 0.0110 
10-fold CV 50% Train Data 

 

mMIL 0.8987 ± 0.0332 0.7894 ± 0.0517 0.7849 ± 0.0557 0.8678 ± 0.0400 
SL 0.9136 ± 0.0175 0.6143 ± 0.1320 0.5643 ± 0.1745 0.8716 ± 0.0234 
CLAM 0.9518 ± 0.0113 0.7834 ± 0.0532 0.7783 ± 0.0585 0.9282 ± 0.0164 
10-fold CV 25% Train Data 

 

mMIL 0.8121 ± 0.0918 0.7013 ± 0.0971 0.6955 ± 0.1063 0.7573 ± 0.1081 
SL 0.8813 ± 0.0095 0.5075 ± 0.0275 0.4177 ± 0.0361 0.8145 ± 0.0167 
CLAM 0.9545 ± 0.0168 0.8316 ± 0.0439 0.8315 ± 0.0462 0.9263 ± 0.0267 
10-fold CV 10% Train Data 

 

mMIL 0.7911 ± 0.0643 0.5551 ± 0.0740 0.4992 ± 0.0895 0.7037 ± 0.0788 
SL 0.8466 ± 0.0175 0.5290 ± 0.0555 0.4457 ± 0.0800 0.7588 ± 0.0285 
CLAM 0.9260 ± 0.0186 0.7847 ± 0.0222 0.7836 ± 0.0241 0.8756 ± 0.0287 

 
Supplementary Table 9. RCC subtyping performance evaluated on the BWH RCC 
independent test set. The 10-fold average performance (± std) in terms of test AUC, mean 
average precision score (mAP), F1 score and balanced accuracy score (bACC) are reported (n = 
135). Macro-averaging is used for one-vs-rest AUC, F1 and mAP. 
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10-fold CV 100% Train Data AUC bACC F1 mAP 
MIL 0.9201 ± 0.0125 0.7426 ± 0.0543 0.6529 ± 0.1124 0.9326 ± 0.0094 
SL 0.8656 ± 0.0286 0.5674 ± 0.0662 0.2220 ± 0.1913 0.8799 ± 0.0238 
CLAM 0.9749 ± 0.0067 0.7551 ± 0.0719 0.6640 ± 0.1292 0.9820 ± 0.0053 
10-fold CV 75% Train Data 

 

MIL 0.9193 ± 0.0092 0.7099 ± 0.0496 0.5894 ± 0.1081 0.9307 ± 0.0115 
SL 0.9027 ± 0.0148 0.5125 ± 0.0211 0.0457 ± 0.0753 0.9158 ± 0.0135 
CLAM 0.9697 ± 0.0128 0.7579 ± 0.0584 0.6744 ± 0.1028 0.9770 ± 0.0086 
10-fold CV 50% Train Data 

 

MIL 0.9256 ± 0.0051 0.6998 ± 0.0444 0.5683 ± 0.0966 0.9381 ± 0.0044 
SL 0.8498 ± 0.0440 0.5074 ± 0.0033 0.0289 ± 0.0128 0.8615 ± 0.0417 
CLAM 0.9685 ± 0.0087 0.7944 ± 0.0406 0.7414 ± 0.0633 0.9722 ± 0.0110 
10-fold CV 25% Train Data 

 

MIL 0.8577 ± 0.0515 0.6866 ± 0.0707 0.5375 ± 0.1887 0.8793 ± 0.0534 
SL 0.7496 ± 0.0821 0.5527 ± 0.0581 0.2210 ± 0.2237 0.7463 ± 0.0839 
CLAM 0.9154 ± 0.0268 0.7377 ± 0.0661 0.6387 ± 0.1282 0.9310 ± 0.0226 
10-fold CV 10% Train Data 

 

MIL 0.7819 ± 0.0734 0.5804 ± 0.0432 0.3119 ± 0.1649 0.7862 ± 0.0856 
SL 0.5923 ± 0.0530 0.5096 ± 0.0062 0.1510 ± 0.1131 0.5825 ± 0.0389 
CLAM 0.8570 ± 0.0690 0.6255 ± 0.0663 0.4102 ± 0.1584 0.8622 ± 0.0851 

 
Supplementary Table 10. NSCLC subtyping performance evaluated on the BWH NSCLC 
independent test set. The 10-fold average performance (± std) in terms of test AUC, mean 
average precision score (mAP), F1 score and balanced accuracy score (bACC) are reported (n = 
131).  
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10-fold CV 100% Train Data AUC bACC F1 mAP 
MIL 0.8741 ± 0.1115 0.7872 ± 0.1000 0.7554 ± 0.2255 0.8978 ± 0.1096 
SL 0.7373 ± 0.0222 0.6158 ± 0.0433 0.4267 ± 0.1583 0.7599 ± 0.0218 
CLAM 0.9404 ± 0.0148 0.8707 ± 0.0187 0.8707 ± 0.0203 0.9535 ± 0.0098 
10-fold CV 75% Train Data 

 

MIL 0.8532 ± 0.1238 0.7678 ± 0.0987 0.7273 ± 0.2443 0.8839 ± 0.1168 
SL 0.7444 ± 0.0080 0.5254 ± 0.0313 0.0901 ± 0.1091 0.7747 ± 0.0138 
CLAM 0.9217 ± 0.0139 0.8282 ± 0.0290 0.8372 ± 0.0267 0.9289 ± 0.0128 
10-fold CV 50% Train Data 

 

MIL 0.6964 ± 0.1786 0.6481 ± 0.1328 0.4465 ± 0.3571 0.7290 ± 0.1735 
SL 0.6130 ± 0.0389 0.5008 ± 0.0054 0.6686 ± 0.0027 0.6458 ± 0.0427 
CLAM 0.8754 ± 0.0146 0.7991 ± 0.0301 0.8055 ± 0.0222 0.8899 ± 0.0169 
10-fold CV 25% Train Data 

 

MIL 0.5434 ± 0.1712 0.5491 ± 0.1131 0.2770 ± 0.3457 0.5726 ± 0.1707 
SL 0.5389 ± 0.0197 0.5070 ± 0.0245 0.5671 ± 0.1809 0.6092 ± 0.0325 
CLAM 0.8360 ± 0.0133 0.7598 ± 0.0206 0.7482 ± 0.0139 0.8680 ± 0.0145 
10-fold CV 10% Train Data 

 

MIL 0.5816 ± 0.1665 0.5583 ± 0.0877 0.2174 ± 0.2947 0.6192 ± 0.1532 
SL 0.4991 ± 0.0360 0.4935 ± 0.0148 0.5228 ± 0.1713 0.5527 ± 0.0486 
CLAM 0.8142 ± 0.0328 0.7425 ± 0.0393 0.7257 ± 0.0370 0.8462 ± 0.0233 

 
Supplementary Table 11. Lymph node metastasis detection performance evaluated on the 
BWH lymph node independent test set. The 10-fold average performance (± std) in terms of 
test AUC, mean average precision score (mAP), F1 score and balanced accuracy score (bACC) 
are reported (n = 133).  
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BWH Independent Test Set (n=135) 
Training Set Size AUC mAP F1 bACC CRCC AUC CCRCC AUC PRCC AUC 
100% of Train Data 0.9800 0.9715 0.9058 0.9038 0.9740 (0.9351 - 1.0000) 0.9897 (0.9746 - 1.0000) 0.9763 (0.9550 - 0.9976) 
75% of Train Data 0.9805 0.9699 0.7870 0.8038 0.9853 (0.9703 - 1.0000) 0.9844 (0.9668 - 1.0000) 0.9719 (0.9457 - 0.9981) 
50% of Train Data 0.9636 0.9462 0.7910 0.7941 0.9537 (0.9219 - 0.9856) 0.9861 (0.9682 - 1.0000) 0.9509 (0.9117 - 0.9901) 
25% of Train Data 0.9655 0.9459 0.8737 0.8728 0.9550 (0.9216 - 0.9884) 0.9724 (0.9460 - 0.9988) 0.9690 (0.9428 - 0.9952) 
10% of Train Data 0.9441 0.9139 0.8593 0.8598 0.9671 (0.9342 - 1.0000) 0.9328 (0.8881 - 0.9776) 0.9323 (0.8806 - 0.9841) 
BWH Independent Test Set (Cellphone, n=135)  
100% of Train Data 0.9427 0.9031 0.6233 0.6271 0.9398 (0.8985 - 0.9812) 0.9226 (0.8776 - 0.9676) 0.9658 (0.9316 - 1.0000) 
75% of Train Data 0.9234 0.8798 0.5505 0.5676 0.9363 (0.8911 - 0.9815) 0.8710 (0.8131 - 0.9289) 0.9629 (0.9259 - 0.9999) 
50% of Train Data 0.9214 0.8714 0.6333 0.6520 0.9070 (0.8515 - 0.9624) 0.9023 (0.8529 - 0.9517) 0.9548 (0.9109 - 0.9987) 
25% of Train Data 0.9444 0.9088 0.7168 0.7332 0.9406 (0.8973 - 0.9839) 0.9399 (0.9025 - 0.9774) 0.9526 (0.9071 - 0.9981) 
10% of Train Data 0.9274 0.8844 0.7033 0.7021 0.9477 (0.9083 - 0.9870) 0.9165 (0.8709 - 0.9620) 0.9179 (0.8541 - 0.9817) 
BWH Independent Test Set (Biopsy, n=92) 

 

100% of Train Data 0.9599 0.9242 0.7590 0.8358 0.9864 (0.9680 - 1.0000) 0.9826 (0.9645 - 1.0000) 0.9108 (0.8431 - 0.9786) 
75% of Train Data 0.9468 0.9285 0.6468 0.7153 0.9922 (0.9794 - 1.0000) 0.9497 (0.9116 - 0.9878) 0.8986 (0.8224 - 0.9748) 
50% of Train Data 0.9405 0.8678 0.6873 0.7463 0.9503 (0.9081 - 0.9926) 0.9637 (0.9325 - 0.9949) 0.9073 (0.8293 - 0.9854) 
25% of Train Data 0.9581 0.9121 0.7564 0.7646 0.9708 (0.9410 - 1.0000) 0.9468 (0.9062 - 0.9874) 0.9569 (0.9180 - 0.9958) 
10% of Train Data 0.9429 0.8832 0.7315 0.6991 0.9669 (0.9309 - 1.0000) 0.9434 (0.8953 - 0.9915) 0.9184 (0.8580 - 0.9789) 

 
Supplementary Table 12. RCC subtyping: ensemble performance evaluated on the BWH RCC independent test sets. For each slide, the 
predicted normalized scores from all 10 CLAM models developed on the TCGA training sets are averaged and used to inform the slide-level 
diagnosis. The ensemble performance is reported in terms of the macro-averaged test AUC, mAP and F1 score and balanced accuracy score 
(bACC). For individual subtypes, 95% confidence intervals for the per subtype one-vs-rest AUC were calculated using Delong's method and 
indicated in parentheses. 
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BWH Independent Test Set (n=131) 
Training Set Size AUC mAP F1 bACC 
100% of Train Data 0.9797 (0.9543 - 1.0000) 0.9859 0.6667 0.7500 
75% of Train Data 0.9792 (0.9544 - 1.0000) 0.9846 0.6923 0.7647 
50% of Train Data 0.9725 (0.9435 - 1.0000) 0.9779 0.7170 0.7794 
25% of Train Data 0.9360 (0.8972 - 0.9749) 0.9508 0.6667 0.7500 
10% of Train Data 0.9043 (0.8528 - 0.9558) 0.9163 0.4545 0.6471 
BWH Independent Test Set (Cellphone, n=131) 
100% of Train Data 0.8826 (0.8241 - 0.9411) 0.8826 0.8188 0.7898 
75% of Train Data 0.8695 (0.8088 - 0.9303) 0.8740 0.7742 0.7894 
50% of Train Data 0.8527 (0.7872 - 0.9182) 0.8842 0.5474 0.6832 
25% of Train Data 0.8140 (0.7395 - 0.8885) 0.8306 0.3333 0.5871 
10% of Train Data 0.8583 (0.7922 - 0.9244) 0.8240 0.3133 0.5797 
BWH Independent Test Set (Biopsy, n=110) 
100% of Train Data 0.9233 (0.8735 - 0.9731) 0.9308 0.4507 0.6455 
75% of Train Data 0.9078 (0.8522 - 0.9633) 0.9256 0.4722 0.6545 
50% of Train Data 0.9071 (0.8491 - 0.9651) 0.9274 0.4058 0.6273 
25% of Train Data 0.8800 (0.8120 - 0.9480) 0.9079 0.2812 0.5818 
10% of Train Data 0.8317 (0.7560 - 0.9074) 0.8565 0.0702 0.5182 

 
Supplementary Table 13. NSCLC subtyping: ensemble performance evaluated on the BWH 
NSCLC independent test sets. For each slide, the predicted normalized scores from all 10 CLAM 
models developed on the TCGA + CPTAC training sets are averaged and used to inform the slide-
level diagnosis. The ensemble performance is reported in terms of the average test AUC, mAP, F1 
score and balanced accuracy score (bACC). The 95% confidence intervals for the true AUC were 
calculated using Delong's method and indicated in parentheses. 
 
 
 
 
 
 
 
 

BWH Independent Test Set (n=133) 
Training Set Size AUC mAP F1 bACC 
100% of Train Data 0.9491 (0.9133 - 0.9850) 0.9597 0.8889 0.8872 
75% of Train Data 0.9123 (0.8629 - 0.9616) 0.9009 0.8201 0.8120 
50% of Train Data 0.8856 (0.8267 - 0.9444) 0.9076 0.8116 0.8045 
25% of Train Data 0.8252 (0.7538 - 0.8966) 0.8607 0.7317 0.7519 
10% of Train Data 0.8089 (0.7331 - 0.8847) 0.8442 0.7419 0.7594 

 
Supplementary Table 14. Lymph node metastasis detection: ensemble performance 
evaluated on the BWH lymph node independent test sets. For each slide, the predicted 
normalized scores from all 10 CLAM models developed on the Camelyon16 + Camelyon17 
training sets are averaged and used to inform the slide-level diagnosis. The ensemble 
performance is reported in terms of the average test AUC, mAP, F1 score and balanced accuracy 
score (bACC). The 95% confidence intervals for the true AUC were calculated using Delong's 
method and indicated in parentheses. 
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Training Data  AUC bACC F1 mAP 
100% of Train Data 0.9213 ± 0.0234 0.6181 ± 0.0817 0.6050 ± 0.0943 0.8670 ± 0.0350 
75% of Train Data 0.9074 ± 0.0247 0.5564 ± 0.0921 0.5201 ± 0.1237 0.8424 ± 0.0474 
50% of Train Data 0.9002 ± 0.0258 0.6299 ± 0.0855 0.5996 ± 0.1131 0.8391 ± 0.0447 
25% of Train Data 0.9265 ± 0.0146 0.7065 ± 0.0617 0.6900 ± 0.0751 0.8865 ± 0.0238 
10% of Train Data 0.9097 ± 0.0217 0.7037 ± 0.0858 0.6998 ± 0.0938 0.8571 ± 0.0335 

 
Supplementary Table 15. RCC subtyping performance evaluated on the BWH cellphone 
microscopy image test set. The 10-fold average performance (± std) of CLAM models trained on 
TCGA are reported in terms of test AUC, mean average precision score (mAP), F1 score and 
balanced accuracy score (bACC) for n = 135. Macro-averaging is used for one-vs-rest AUC, F1 
and mAP.   
 
 
 
 
 
 
 
 

Training Data  AUC bACC F1 mAP 
100% of Train Data 0.8729 ± 0.0246 0.7716 ± 0.0418 0.7973 ± 0.0351 0.8714 ± 0.0311 
75% of Train Data 0.8496 ± 0.0413 0.7431 ± 0.0621 0.7001 ± 0.1211 0.8512 ± 0.0541 
50% of Train Data 0.8368 ± 0.0391 0.6654 ± 0.0918 0.4932 ± 0.2492 0.8640 ± 0.0298 
25% of Train Data 0.7980 ± 0.0193 0.6078 ± 0.0640 0.3603 ± 0.1810 0.8188 ± 0.0159 
10% of Train Data 0.8258 ± 0.0489 0.6233 ± 0.0785 0.4145 ± 0.2399 0.8055 ± 0.0436 

 
Supplementary Table 16. NSCLC subtyping performance evaluated on the BWH cellphone 
microscopy image test set. The 10-fold average performance (± std) of CLAM models trained on 
TCGA + CPTAC are reported in terms of test AUC, mean average precision score (mAP), F1 
score and balanced accuracy score (bACC) for n = 131.  
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NSCLC 
Slide ID 

Biopsy Specimens 
Embedded 

Label RCC 
Slide ID 

Biopsy Specimens 
Embedded 

Label 

Slide_1 2 LUAD Slide_1 3 CCRCC 
Slide_2 2 LUAD Slide_2 3 CCRCC 
Slide_3 2 LUAD Slide_3 3 CCRCC 
Slide_4 1 LUAD Slide_4 3 CCRCC 
Slide_5 1 LUAD Slide_5 3 CCRCC 
Slide_6 1 LUAD Slide_6 3 CCRCC 
Slide_7 1 LUAD Slide_7 2 CCRCC 
Slide_8 1 LUAD Slide_8 2 CCRCC 
Slide_9 2 LUAD Slide_9 3 CCRCC 
Slide_10 3 LUAD Slide_10 3 CCRCC 
Slide_11 2 LUAD Slide_11 2 CCRCC 
Slide_12 2 LUAD Slide_12 2 CCRCC 
Slide_13 2 LUAD Slide_13 2 CCRCC 
Slide_14 2 LUAD Slide_14 1 CCRCC 
Slide_15 1 LUAD Slide_15 1 CCRCC 
Slide_16 2 LUAD Slide_16 2 CCRCC 
Slide_17 3 LUAD Slide_17 2 CCRCC 
Slide_18 2 LUAD Slide_18 1 CCRCC 
Slide_19 1 LUAD Slide_19 1 CCRCC 
Slide_20 2 LUAD Slide_20 1 CCRCC 
Slide_21 1 LUAD Slide_21 1 CCRCC 
Slide_22 1 LUAD Slide_22 4 CCRCC 
Slide_23 1 LUAD Slide_23 4 CCRCC 
Slide_24 2 LUAD Slide_24 4 CCRCC 
Slide_25 2 LUAD Slide_25 2 CCRCC 
Slide_26 2 LUAD Slide_26 2 CCRCC 
Slide_27 1 LUAD Slide_27 2 CCRCC 
Slide_28 1 LUAD Slide_28 2 CCRCC 
Slide_29 1 LUAD Slide_29 2 CCRCC 
Slide_30 4 LUAD Slide_30 2 CCRCC 
Slide_31 2 LUAD Slide_31 2 CCRCC 
Slide_32 2 LUAD Slide_32 2 CCRCC 
Slide_33 2 LUAD Slide_33 2 CCRCC 
Slide_34 2 LUAD Slide_34 2 CCRCC 
Slide_35 2 LUAD Slide_35 3 CCRCC 
Slide_36 2 LUAD Slide_36 3 CCRCC 
Slide_37 3 LUAD Slide_37 2 CCRCC 
Slide_38 1 LUAD Slide_38 2 CCRCC 
Slide_39 1 LUAD Slide_39 2 CCRCC 
Slide_40 5 LUAD Slide_40 2 CCRCC 
Slide_41 2 LUAD Slide_41 4 CCRCC 
Slide_42 3 LUAD Slide_42 2 CCRCC 
Slide_43 2 LUAD Slide_43 2 CCRCC 
Slide_44 2 LUAD Slide_44 4 CCRCC 
Slide_45 2 LUAD Slide_45 4 CCRCC 
Slide_46 5 LUAD Slide_46 2 CCRCC 
Slide_47 2 LUAD Slide_47 1 CCRCC 
Slide_48 1 LUAD Slide_48 2 CCRCC 
Slide_49 3 LUAD Slide_49 2 CCRCC 
Slide_50 3 LUAD Slide_50 5 CCRCC 
Slide_51 3 LUAD Slide_51 5 CCRCC 
Slide_52 3 LUAD Slide_52 4 CCRCC 
Slide_53 2 LUAD Slide_53 4 CCRCC 
Slide_54 4 LUAD Slide_54 3 CRCC 
Slide_55 2 LUAD Slide_55 3 CRCC 
Slide_56 1 LUSC Slide_56 3 CRCC 
Slide_57 4 LUSC Slide_57 3 CRCC 
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Slide_58 5 LUSC Slide_58 3 CRCC 
Slide_59 2 LUSC Slide_59 3 CRCC 
Slide_60 4 LUSC Slide_60 2 CRCC 
Slide_61 4 LUSC Slide_61 2 CRCC 
Slide_62 6 LUSC Slide_62 3 CRCC 
Slide_63 2 LUSC Slide_63 1 CRCC 
Slide_64 4 LUSC Slide_64 3 CRCC 
Slide_65 5 LUSC Slide_65 1 CRCC 
Slide_66 2 LUSC Slide_66 4 CRCC 
Slide_67 3 LUSC Slide_67 1 PRCC 
Slide_68 4 LUSC Slide_68 1 PRCC 
Slide_69 5 LUSC Slide_69 2 PRCC 
Slide_70 2 LUSC Slide_70 2 PRCC 
Slide_71 4 LUSC Slide_71 2 PRCC 
Slide_72 2 LUSC Slide_72 2 PRCC 
Slide_73 3 LUSC Slide_73 2 PRCC 
Slide_74 4 LUSC Slide_74 3 PRCC 
Slide_75 2 LUSC Slide_75 2 PRCC 
Slide_76 2 LUSC Slide_76 2 PRCC 
Slide_77 3 LUSC Slide_77 3 PRCC 
Slide_78 5 LUSC Slide_78 3 PRCC 
Slide_79 4 LUSC Slide_79 2 PRCC 
Slide_80 3 LUSC Slide_80 2 PRCC 
Slide_81 3 LUSC Slide_81 2 PRCC 
Slide_82 3 LUSC Slide_82 1 PRCC 
Slide_83 4 LUSC Slide_83 1 PRCC 
Slide_84 3 LUSC Slide_84 1 PRCC 
Slide_85 1 LUSC Slide_85 1 PRCC 
Slide_86 2 LUSC Slide_86 1 PRCC 
Slide_87 1 LUSC Slide_87 1 PRCC 
Slide_88 4 LUSC Slide_88 4 PRCC 
Slide_89 2 LUSC Slide_89 4 PRCC 
Slide_90 1 LUSC Slide_90 2 PRCC 
Slide_91 1 LUSC Slide_91 2 PRCC 
Slide_92 4 LUSC Slide_92 1 PRCC 
Slide_93 3 LUSC 

   

Slide_94 3 LUSC 
   

Slide_95 1 LUSC 
   

Slide_96 4 LUSC 
   

Slide_97 2 LUSC 
   

Slide_98 5 LUSC 
   

Slide_99 1 LUSC 
   

Slide_100 2 LUSC 
   

Slide_101 2 LUSC 
   

Slide_102 2 LUSC 
   

Slide_103 2 LUSC 
   

Slide_104 1 LUSC 
   

Slide_105 4 LUSC 
   

Slide_106 2 LUSC 
   

Slide_107 1 LUSC 
   

Slide_108 1 LUSC 
   

Slide_109 4 LUSC 
   

Slide_110 1 LUSC 
   

 
Supplementary Table 17. Number of biopsy specimens embedded on BWH In-house biopsy 
slides.   The number of biopsy specimens embedded on each slide varies and ranges from 1 – 6 
for lung biopsy WSIs and 1 - 5 for kidney biopsy WSIs. The median number of embedded 
specimens per slide is 2 for both datasets. 
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Training Data  AUC bACC F1 mAP 
100% of Train Data 0.9514 ± 0.0110 0.7983 ± 0.0341 0.7164 ± 0.0519 0.9125 ± 0.0204 
75% of Train Data 0.9318 ± 0.0150 0.7455 ± 0.0378 0.6573 ± 0.0580 0.8925 ± 0.0269 
50% of Train Data 0.9206 ± 0.0126 0.7067 ± 0.0659 0.6470 ± 0.0671 0.8358 ± 0.0267 
25% of Train Data 0.9346 ± 0.0191 0.7452 ± 0.0325 0.7350 ± 0.0365 0.8649 ± 0.0356 
10% of Train Data 0.9232 ± 0.0260 0.6960 ± 0.0641 0.7150 ± 0.0693 0.8508 ± 0.0567 

 
Supplementary Table 18. RCC subtyping performance evaluated on the BWH RCC biopsy 
test set. The 10-fold average performance (± std) of CLAM models trained on TCGA are reported 
in terms of test AUC, mean average precision score (mAP), F1 score and balanced accuracy 
score (bACC) for n = 92.  
 
 
 
 
 
 
 
 

Training Data  AUC bACC F1 mAP 
100% of Train Data  0.9017 ± 0.0161 0.6509 ± 0.0455 0.4593 ± 0.1123 0.9133 ± 0.0139 
75% of Train Data 0.8819 ± 0.0250 0.6555 ± 0.0367 0.4731 ± 0.0930 0.9009 ± 0.0238 
50% of Train Data 0.8848 ± 0.0106 0.6309 ± 0.0371 0.4108 ± 0.0885 0.9075 ± 0.0089 
25% of Train Data 0.8457 ± 0.0256 0.5973 ± 0.0390 0.3187 ± 0.1082 0.8747 ± 0.0248 
10% of Train Data 0.7881 ± 0.0742 0.5282 ± 0.0131 0.1393 ± 0.0903 0.8023 ± 0.0842 

 
Supplementary Table 19. NSCLC subtyping performance evaluated on the BWH NSCLC 
biopsy test set. The 10-fold average performance (± std) of CLAM models trained on TCGA + 
CPTAC are reported in terms of test AUC, mean average precision score (mAP), F1 score and 
balanced accuracy score (bACC) for n = 110.  
 
 
 
 
 
 
 
 
Dataset Link 
TCGA Kidney RCC https://portal.gdc.cancer.gov/repository  
TCGA Lung NSCLC https://portal.gdc.cancer.gov/repository  
CPTAC Lung NSCLC https://cancerimagingarchive.net/datascope/cptac/ 

Camelyon16 + Camelyon17 https://camelyon17.grand-challenge.org/  

 
Supplementary Table 20. Access links to public datasets used. 
 
 
 
 
  
 


