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Supplementary methods

Data Pre-processing. The CT data in COVID-19 database were collected by different
scanners in three different centers in Wuhan, so that the spacings of them are different.
For a better performance of our proposed deep learning method, a resampling process
was done to regularize them to 1xI1x1 mm per voxel. The HU value of CT volumes
ranges from -2048 to 3071. For a clear view of lungs and tissues inside or around lungs,
we truncated a window of [-1200,700], and normalized the value to float value ranging
fromOto 1.

Slice Extraction. Our COVID-19 slice diagnosis network uses two-dimensional slices
in axis direction instead of three-dimensional volumes as input.

For training of slice diagnosis network, slices were sampled from CTs of four
different classes. For training cohort, all CTs were extracted to slices offline for training,
while for test cohort, the whole CT volumes were feed to the Al system. We firstly
sampled all cases in training cohort in axis direction within the lung. After slice
extraction, we collected 282,805 slices for training consisting of 90,728 healthy slices,
45,476 CAP slices, 1,760 influenza-A/B slices and 144,571 COVID-19 slices.

For test of slice diagnosis network, we use all slices in the whole volume. Our
system will automatically swap and compute on every slice and output the case level
results via task-specific fusion module.

For training and test of COVID-infectious slice locating network, slices were only
extracted from COVID-19 cases. We manually annotated COVID-infectious slice on
152 COVID-19 cases, of which 72 were from training cohort and 80 were from test
cohort. According to the manual annotation, we finally get 3,758 slices of training
samples (1,135 abnormal slices and 2,623 normal slices) and 4,707 slices of test
samples (1,684 abnormal slices and 3,023 normal slices) for COVID-infectious slice
locating.

Lung Segmentation Network. We have done transfer learning based on a widely used
segmentation model UNet. This network can process two-dimensional images and
produce binary segmentation maps. We used 100 COVID-19 CTs in the training cohort
with annotated lung mask to train the lung segmentation network and their lung areas
were manually annotated. CT volumes were cut into slices and 16,223 slices were
obtained (Supplementary Figure 1). We found that segmentation network trained on
COVID-19 cases was able to segment CTs of other categories well.

Slice Diagnosis Network. The network structure is ResNet152, a deep network with
152 convolutional, pooling or fully-connected layers. The input of this part is lung
masked images, whose three channels were respectively raw image, raw image dot-
times lung mask, lung mask. The input images were cropped along the bounding box
of lung masks. Then, all input slices are resized to 224x224 and fed to network
(Supplementary Figure 2 a b). We have tested three different classification networks
before choosing the proposed one, including 3D classification network, 2D



classification network with case-level supervision (also called week supervision).
Supplementary Figure 3 shows the structures of them. Besides a naive method of the
proposed network, which uses input image without segmentation mask of lung, has
been tested. All these three different networks performed worse than the proposed one.

COVID-infectious Slice Locating Network. We fine-turned our slice diagnosis
network to get the COVID-infectious slice locating network. This network was trained
for 20 epochs.

CXR diagnosis Network. We exploited the convolutional neural network to
distinguish COVID-19 and CAP cases from CXR scans. The CXR images fed to the
network were cropped along the lung area and resized to 512x512 first. The system will
learn the context information automatically and decide the probabilities that the input
falls into two categories. Our network consists of 4 convolutional layers followed by
max-pooling layers, and 2 fully-connected layers (Supplementary Figure 6). This
network was trained for 150 epochs. Considering the small proportion of CAP in the
training images, we applied data augmentation.

Choice of K. We performed a 4-fold cross-validation on the training cohort to find the
best K in top-K fusion. Other than top-K fusion, we also tested results using NO. K
method, which uses the K-th highest score of every category. Both fusion methods are
designed for reducing false positives. Performances are listed in Supplementary Table
1 and the metric is averaged accuracy.



Supplementary Table 1 | Accuracy of different fusion settings.
Method K Accuracy

0.8755 (0.8705-0.8806)
0.8921 (0.8872-0.8966)
0.8863 (0.8826-0.8915)
0.8921 (0.8868-0.8970)
0.8752 (0.8712-0.8794)
0.8853 (0.8818-0.8904)
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Supplementary Figure 1 | Network structure of lung segmentation
network is Unet.
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Supplementary Figure 2 | Structure of ResNet152, the slice diagnosis
network. a. The overview of structure of ResNet152. The basic block of this
network is notated as Resnet block. b. Structure of Resnet blocks.
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Supplementary Figure 3 | Workflows of the two other methods which have been proved weaker than the proposed slice
diagnosis network by experiments. a. workflow of 2D method with weak supervision at case level. b. workflow of 3D method with
weak supervision at case level.
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Supplementary Figure 4 | Structure of visualization module.



Supplementary Figure 5 | Some typical CT imaging signs of COVID 19. a. Spherical ground-glass opacity, b. Halo, ¢c. Anti-halo,
d. Enlarged vascular, e. Crazy paving, f. Cord, g. Band. (lesions marked by blue arrows)
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Supplementary Figure 6 | Structure of the CXR-based COVID-19 diagnosis network.
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Supplementary Figure 7 | Selected radiomics features to identify COVID-19 from CAP. A. Coefficients of selected features and the R-score provided by
LASSO model based on those features. Kolmogorov-Smirnov test and two-side t test were also done. B. Cluster heatmap of the selected features.
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Supplementary Figure 8 | Selected radiomics features to identify COVID-19 from influenza-A/B. A. Coefficients of selected features and the R-score
provided by LASSO model based on those features. Kolmogorov-Smirnov test and two-side t test were also done. B. Cluster heatmap of the selected features.
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Supplementary Figure 9 | Distribution of three attentional region related features. A.
Distances from the center of attentional region to lung’s margin. B. Margin fractal dimension
of attentional region. C. Gray level mesh fractal dimension off attentional region. D. P value of
Kolmogorov-Smirnov test and two-side t test of three features between COVID-19 and CAP

or influenza.




