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ABSTRACT Lare genomic DNA sequences contain re-
gions with disInctive patterns of sequence organization. We
describe a method using logarithms of probabilities based on
seventh-order Markov chains to rapidly identify genomic se-
quences that do not resemble models of genome orgnzation
built from compilation of octanucleotde usage. Data bases
have been constructed from Escherichia coli and Saccharomy-
ces cerevisiae DNA sequences of >1000 nt and human se-
quences of >10,000 nt. Atypical genes and clusters of genes
have been located in bacteriophage, yeast, and primate DNA
sequences. We consider criteria for atisl s nce of
the results, offer possible expanatons for the observed vari-
ation in genome organization, and give additional applications
of these methods in DNA sequence analysis.

Large contiguous genomic DNA sequences have been de-
termined for a number of species. The Human Genome
Project and similar efforts for important model systems will
be producing such sequences at an increasing rate. The most
widely used computational technique for the analysis of new
sequence information is the comparison ofthe sequence with
all other known sequences for regions of similarity. With the
growth of the public data bases, this approach has become
increasingly successful, with about one-third of all large open
reading frames in new genomic sequences or new cDNA
sequences being related to known genes (1, 2). The genome
projects will have a major impact on this approach because
a decreasing fraction of database entries will be sequences of
known function with the wealth of biological information
associated with them.

Existing computational tools for the analysis of DNA
sequences were generally developed for the analysis of
individual genes. Most sequence analysis software reports
tables of regions of interest based on a scoring system. This
tabular presentation becomes unwieldy when faced with
sequences of tens or hundreds of kilobases.

Statistical analyses of DNA sequences have been used
since the origins of molecular biology. It was first noted that
nearest-neighbor frequences of different species varied
greatly and that these differences could not be explained by
the known variation in base composition (3). With the advent
of efficient DNA sequencing techniques, it became clear that
there were wide variations in codon usage (4), tetranucleotide
(5), and hexanucleotide (6) frequencies among species. The
increase in available sequence data as a result of the genome
projects will permit the statistical evaluation offrequencies of
longer oligonucleotides.

Building on these observations, we have developed a
flexible approach to the analysis of large genomic DNA
sequences based on Markov chain models. A data base is
built from a large collection of sequences and the frequency
of occurrence, termed usage, of all possible sequences of

length 8 is tabulated. This length was chosen for several
reasons. First, it is the largest size for which effective
statistics could be developed when the complete genomes of
the important model microorganisms become available. Sec-
ond, it is about the smallest size where protein-DNA inter-
actions might be reflected. Finally, this size represents 16 bits
of information and offers certain computational economies.
Probabilities are calculated for a window of constant length
at every possible position along a query sequence and the
results are presented graphically. The query can be tested
against a variety of models constructed by the selection of
different sets of sequences for the underlying data base. The
display indicates how well regions of the sequence resemble
the model.
Our statistical model assumes stationary behavior of the

query sequence but makes no biological assumptions about
the nature of that sequence or those used to build the data
base. For example, coding and noncoding regions are treated
equivalently. For long genomic sequences, one would expect
substantial local statistical variations. We discuss the validity
of these assumptions and criteria for the determination of
significance of the extreme values that are observed.
By building a data base from all known sequences from a

single species, we have found regions in large query se-
quences with atypical organization in both prokaryotes and in
eukaryotes. These results agree well with our understanding
of DNA organization of these regions and highlight areas for
future biological investigations. We discuss possible expla-
nations for the presence of genes and gene clusters with
unusual organization and other applications of this approach
to DNA sequence analysis.

METHODS
DNA Sequence Data. All DNA sequences used are derived

from those in GenBank release 75. Compilations of se-
quences from a particular species used the name in the
organism field of the entry. Sequences less than 1000 bases
in length (10,000 for human DNA) were not included and the
reverse complement of each sequence was added to the
compilations.
Octmer Usage Statistics. The usage of all octamersjlb1, b2,

... , bg) (where b is any base andfis the tabulated count) and
total usageN = Xall svmersfwere determined. From these data,
conditional probabilities were calculated: P(bglbl, . . . , b7) =
[f(b1, b2,. . ., bg) + k]/>b8[f(b1, b2, ... , b%) + k] where k
= 0.01 N/48. This flattening constant k is approximately unity
for the data bases used below that were built from large
collections of genomic sequences. See ref. 7 for a discussion
of this topic. Translated base 2 logarithms of these values
were determined as Zi = log2 P(bijbi-7, . . . , bi-1) + 2.
Dinucleotide and trinucleotide frequencies were-determined
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from the octamer usage. These values were similarly zero
adjusted and used to determine values of Z.

Confidence Limits. DNA sequences ofa length equal to that
of the query sequence were generated randomly by using the
usage of heptamers in the data base to provide an initial point
and using the conditional probabilities described above. One
hundred such sequences were used to establish 95% confi-
dence limits for the upper limit of the plots.

Graphical Presentation. Scores for sequence blocks of
length j + 1 were calculated for all values of i where i + j is
less than the sequence length; Yij = -k+JiZk was plotted
at x = i + (j/2). The y axis was divided by the mean gj = [(j
+ 1)/N]Xall 8-mersZf, so that the values presented are multi-
ples of u. The entire sequence is plotted in a single frame with
the x axis being the position on the sequence. Because of
variation in the lengths of the query sequences, widths of the
peaks for similar sized structures vary between figures. Note
that the plots are -10g2 P. Therefore, sequences that do not
resemble the underlying model will point upwards and those
overrepresented in the data base will point downwards.
Three horizontal lines are shown. The upper line is the
position where all values would plot if the data base had a
uniform distribution of all sequences. The central line is the
mean of the distribution, 1.t. If the sequence resembled the
underlying model, one would expect a noise band centered on
this position. The third line is twice the mean.

RESULTS
All figures in this work present the comparison of a DNA
sequence with an octamer usage data base constructed from
genomic DNA sequences from a particular species. Gener-
ally all known sequences from a given species were used as
described in Methods. In some cases, the counts were
tabulated from a single DNA sequence. Probabilities were
determined for all subsequences ofa given length (512 or 1024
bases) in the query sequence and values for each position
along the sequence were plotted as described in Methods.

Bacteriophage A. Among large bacterial DNA sequences,
phage A is one of the most intensively characterized (8). In
particular, it exhibits a modular organization with adjacent
genes often having related functions (9). Fig. 1 presents an
analysis with the entire phage genome as query and Esche-
ricia coli sequences used to construct the model. Fig. 1 a uses
a seventh-order Markov chain analysis, whereas Fig. lb uses
first-order Markov statistics (i.e., dinucleotide frequencies).
While the overall pattern is similar, it is clear that the
first-order chain, which is built by using nearest-neighbor
frequencies, does not effectively reveal the block structure
present in the phage genome. Several features stand out in the
plot. First, the late genes A-J clearly are representative of
typical E. coli sequences. The first significant peak near the
end of the late transcript is the loin gene (nt 18,695-19,582;
ref. 10). This gene is transcribed during lytic growth but is not
essential for plaque formation. Other regions that produce the
downward peaks in the right half of the genome include the
recombination, replication, and lysis genes. The regions not
essential for lytic growth, most notably the b2 region (left-
ward from 27,731), deviate most from the model.
Saccharomyces Chromosome 3. This sequence was the first

complete eukaryotic chromosome to be determined (2). Be-
cause of the extreme length of the yeast sequences being
tested, the size of the window was doubled to assure statis-
tical significance. This also makes the remaining larger fea-
tures easier to detect given the compression ofthe x-axis. Fig.
2a shows the pattern produced using the entire chromosome
as query with the model built from all other yeast sequences
of >1 kb. While the extent of variation from the model is not
as extensive at that observed with phage A, there is a large
region centered about coordinate 210,000 that does not
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FIG. 1. Seventh-order (a) and first-order (b) Markov chain anal-
ysis of the bacteriophage A sequence. The block size was 512 nt. In
a, the 95% confidence limit for significant deviation from the model
is -0.28. Locations of A markers are given at the top of each panel.

strongly resemble yeast sequences. Several other statistically
significant variations are observed. Notable is the lowest
point in the graph, which is at the location of a Ty element.
This is expected for sequences that are highly represented in
the data base.
When yeast chromosome 3 is tested against an E. coli

model, no part of the sequence strongly resembles bacterial
DNA. The mean ofthe noise band is at -0.55 and none ofthe
low points on this plot (not shown) align with the peaks in Fig.
2 a or b.

Fig. 2b is a plot where the data base is built solely from the
actual sequence of yeast chromosome 3. Most of the se-
quence shows no significant variation from other sequences
on the chromosome. Several features are of interest. The
lowest point on the plot is again the Ty element. The other
three pronounced downward peaks are HML (12,000), MAT
(199,000), and HMR (292,000). This indicates that any se-
quence representing about 1% of a data base will be readily
detected without resorting to a conventional homology
search. The two highest points are the region around 210,000
which was found not to resemble yeast sequences in general
and the glucokinase gene (50,000).
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FIG. 2. Analysis of yeast chromosome 3 with the yeast model (a)
or a yeast chromosome 3 model (b). The block size was 1024 nt. The
95% confidence limit for the upper bound in a is -0.15. The locations
of several chromosome 3 landmarks are shown at the top of each
panel.

Fig. 3 shows an enlargement of the region near coordinate
210,000 on chromosome 3. The window size has been re-

duced to show smaller features ofthe plot. Note that the most
atypical regions align well with the largest open reading
frames of the region; however, many large open reading
frames nearby, such as TSMI (201,000-204,000) and THR4
(216,000), show more typical organization.
Saccharomyces Chromosome 1. Among several large yeast

genomic sequences examined by this approach, including a
total ofabout 100 kb from chromosome 5, the most significant
variation from the general yeast model was noted for this
sequence from chromosome 1 (Fig. 4). The highest peak in
the plot again aligns with an open reading frame. While the
function of this gene in the region of this peak is not
completely understood, it is homologous to the hamster
RCCJ locus (11). Given the role of this gene in the cell cycle,
one would expect it to have some type of yeast counterpart;
however, it is unclear why such a gene would require atypical
organization.
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FIG. 3. An enlargement of part of yeast chromosome 3 with the
block size reduced to 512 nt. Open reading frames (>100 amino acids
starting with methionine) are shown at top with arrows indicating
direction of translation. Note the alignment of the peaks with the
largest open reading frame in those regions.

P-Globin Genes. Fig. 5 a and b show seventh-order and
second-order analyses of the human 3-globin gene cluster
(12) using all other human sequences >10 kb to build the data
base. This higher cutoff is necessary because a high propor-
tion of the data base is cDNA sequences. The presence of
highly repeated DNA sequences such as Alu repeats clearly
influence the seventh-order results but not the second-order
plot. All of the strong downward peaks are at the position of
Alu elements. When the model is built solely with a related
sequence such as the 40-kb Galago crassicaudatus (bush
baby) ,-globin gene cluster (13), the only significant down-
ward peaks are at the regions of homology encoding the
(-globin-like genes (data not shown).

Fig. 6a shows the results of a seventh-order plot with the
bush baby (3-globin cluster as query and a human model built
from all sequences >10 kb. Note the large region around
position 7000 that differs greatly from the human model. A
portion of this region was known to be highly homologous to
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FIG. 4. Analysis ofa region ofyeast chromosome 1 with the yeast
model. The query sequence is GenBank entry YSCLTESPO. The
block size and confidence limits are as described in Fig. 2. Open
reading frames are shown at top.
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FIG. 5. Human P-globin gene cluster. The query sequence used
is HUMHBB with a block size of 512 nt. a presents a seventh-order
plot; b presents a second-order plot. The strong downward peaks in
a are all at the location of Alu elements in the sequence.

the E. coli insertion sequence IS186. Our statistical analysis
detected a much larger region of unusual organization. The
larger region is highly homologous to the E. coli entD gene
(14) with the left end homologous to IS421. Fig 6b shows the
same sequence plotted with an E. coli model. While the entD
homology fits well with the E. coli model, the other peak in
Fig. 6a does not. This region (near 32,000) contains a segment
homologous to the E. coli lac operon.

DISCUSSION

We have developed a simple method, using seventh-order
Markov chains, to locate genes and clusters of genes in
bacterial and yeast DNA sequences that are quite dissimilar
from other sequences in those species. Our approach makes
no assumptions about the nature of the sequences being
tested and can scan tens of kilobases per second. Similar
analyses can also reveal repeated elements and rapidly locate
regions of homology between two sequences. This approach
should permit the rapid location of interesting regions in large
DNA sequences for subsequent computational analyses and
biological experimentation.

If a stationary seventh-order Markov model were appro-
priate for the query sequences, then for most subsequences
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FIG. 6. Bush baby P-globin gene cluster. The query sequence is
GCRHBEGEB with a block size of 512 nt. A seventh-order Markov
chain analysis is shown using the human (a) orE. coli (b) model. Both
of the upward peaks in a contain sequences homologous to E. coli
DNA sequences.

of length j + 1 the value -log2 P(bi, bi+1, . . , bi+j) should
be approximately (j + 1)H, where H is the entropy of the
Markov chain. Our analysis differs in that our -log2P values
are derived from a data base of other sequences, zero
adjusted, and conditional on b.... b7. The evidence we have
accumulated argues strongly that the seventh-order Markov
model does not hold globally and forms the basis for identi-
fying biologically interesting regions in large sequences.
We have established our confidence limits by using a

simulation procedure (see Methods). Other efforts to deter-
mine the probability of the plots crossing any value assumed
a normal distribution for the values being plotted because
each would represent the sum ofmany identically distributed
random variables. Q-Q plots (not shown) of these values for
large sequences clearly indicate that this assumption is not
correct and that the distributions of the plotted values lack
the tails that would expand the range of values that might be
expected. The variance determined by fitting a line to these
plots was used in efforts to calculate the probability of
extreme values arising in Markov chains of the length under
study. These latter values gave 95% confidence limits far

outside the range of the plots shown. While it is important not
to equate biological and statistical significance (15), the
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confidence limits determined by the simulation procedure are
quite effective in identifying interesting regions in the plots.
Markov chains have been used extensively to study DNA

sequences (16, 17), particularly with shorter sequences.
While some features mentioned above would have been
revealed through analysis of base composition and nearest-
neighbor frequencies, much additional useful information is
present in the higher-order Markov chains. With bacterial
sequences, the general outline of the plot emerges in a
second-order chain, reflecting the high fraction of coding
sequence. This is not true with human genomic sequences, as
coding sequences do not produce the predominant features of
the plot. Fifth-order plots begin to indicate the presence of
highly repeated elements such as Alu sequences.
The sequence under study is not included when the data

base is constructed; however, multiple entries or similar
sequences may be present for subsets of the sequence. At
present, there is no systematic way to resolve these two
possibilities for particular regions of a large DNA sequence.
This type of overrepresentation does not significantly affect
our conclusions. By use of data bases the size ofknown yeast
and E. coli sequences, an extra copy ofa sequence will lower
its position in the plot by 0.1 Aj (data not shown).
There are many possible explanations for why a portion of

a chromosome might have drastically different sequence
composition from the remainder of the chromosome. Some
variation would be expected by chance alone in the stationary
model. Unknown selective pressures or structural features of
chromosomes may be operating. Additional possibilities in-
clude horizontal transmission from an unrelated organism,
viral infection, and incorporation of sequences from an
organelle into the nuclear genome. The demonstration of
transfer of plasmids from bacteria into yeast is one example
of the first possibility. Many viruses are known to integrate
their DNA into human chromosomes, and fractions of the
yeast mitochondrial genome have been detected in nuclear
DNA. The methods presented here will readily detect hep-
atitis B virus in the background of human genomic DNA
sequences (data not shown).
The modular structure of bacterial genomes is built on the

clustering of genes with related functions and the genetic
exchanges that can take place between species. The central
(b2) region of phage A has long been known to have a base
composition that is markedly different from the composition
of other parts of the phage genome. This region is the part
substituted in many A transducing phages with E. coli DNA,
making it surprising that this is the part of the genome least
like E. coldi DNA. Similarly, the loin gene and the sequences
at the extreme right end of A are expressed in lysogens (10).
All of the regions we find different from typical E. coli
organization are known to be dispensable to the phage. Such
regions of the phage appear to be under different selective
pressures than the rest of the genome and might be optimized
for function in another host.
The sequence of yeast chromosome 3 has been extensively

analyzed by a variety of statistical tests. The open reading
frames near the glucokinase gene and to the right of MAT
have been noted to have unusual base compositions in the
third position of their codons (18). This agrees well with our
findings. While there is much evidence for movement of
blocks of genes at the telomeres, much less is known about
internal insertions or substitutions in yeast chromosomes.
The results in Fig. 6 indicate that this approach will permit

the rapid scanning of large sequences for the presence of
vector or other bacterial contaminants that might have been
included as a result of some step ofthe cloning or sequencing.
Other reports have indicated the presence of E. coli IS
elements in eukaryotic database entries as the result of

homology searches (19, 20). The approach taken here does
not rely on homology to known sequences to detect suspect
regions.
The usage tables need not be constructed from all se-

quences of an organism. Any subset of adequate size could
be used such as transcribed or translated regions.
Our results indicate that caution must be exercised in the

construction of data sets for use in gene-finding algorithms.
It is clear that several authentic E. coli and yeast genes differ
significantly from the norm using our statistical measure.
Using known genes to build the training set will significantly
bias the set ofreading frames selected by computer programs
toward finding more genes like those we already know.
The highly nonrandom character of DNA sequences

greatly complicates efforts at statistically modeling large
genomic DNA sequences (21). Our studies provide a simple
method to visually display this behavior. Graphical presen-
tation of the results of sequence analysis offers several
additional advantages over familiar tabular presentations.
For example, the growth in siZe in public data bases and
query sequences causes an increase in the score required for
statistical significance in a variety of tests. Even with an
incomplete understanding of the statistical behavior ofDNA
sequences, the presence of scores all along a large query
rapidly gives the investigator a feel for background scores.
We expect that this approach to the presentation of DNA
sequence analysis results will have wide application.
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