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1 CNV Discovery

1.1 Samples

For the discovery phase, we analysed 20 CEU HapMap samples, 20 YRI HapMap samples and
one Polymorphism Discovery Resource sample for CNVs by array-CGH (Table 2.1). DNAs
used for discovery were first screened on a lower resolution tiling-BAC array to exclude any
with large-scale somatic chromosomal artifacts.

Sample ID Test/Reference Population Sex Trio member
NA12156 Test CEU Female mother
NA12878 Test CEU Female child
NA12239 Test CEU Female mother
NA11993 Test CEU Female mother
NA12004 Test CEU Female mother
NA12006 Test CEU Female mother
NA11995 Test CEU Female mother
NA12044 Test CEU Female mother
NA06985 Test CEU Female mother
NA10851 Reference CEU Male child
NA15510 Test PDR Female -
NA18517 Test YRI Female mother
NA19129 Test YRI Female child
NA19240 Test YRI Female child
NA18505 Test YRI Female mother
NA18502 Test YRI Female mother
NA19099 Test YRI Female mother
NA18523 Test YRI Female mother
NA18508 Test YRI Female mother
NA18858 Test YRI Female mother
NA18861 Test YRI Female mother
NA07045 Test CEU Female mother
NA11931 Test CEU Female mother
NA12489 Test CEU Female mother
NA12749 Test CEU Female mother
NA12828 Test CEU Female mother
NA12776 Test CEU Female mother
NA11894 Test CEU Female mother
NA12287 Test CEU Female mother
NA07037 Test CEU Female mother
NA12414 Test CEU Female mother
NA18511 Test YRI Female mother
NA18909 Test YRI Female mother
NA19114 Test YRI Female mother
NA19147 Test YRI Female mother
NA19190 Test YRI Female mother
NA18907 Test YRI Female mother
NA18916 Test YRI Female mother
NA19108 Test YRI Female mother
NA19257 Test YRI Female mother
NA19225 Test YRI Female mother

Table 2.1: Description of samples used in discovery experiment. Abbreviations:
CEU, CEPH Europeans from Utah; YRI, Yoruba from Idaban Nigeria, PDR, Polymorphism
Discovery Resource. Reference: common reference sample used on all CGH hybridizations.



1.2 Array design

The CNV discovery platform consisted of 20 Nimblegen HD2 chips, each chip containing
2.1M probes. Each chip is further subdivided into 3 equal-sized subarrays containing about
726k probes. The probes were designed according to Nimblegen’s standard protocol, with the
exception that probes with up to 100 close matches in the genome were included, allowing
greater coverage of segmentally duplicated regions. The final design provides 1 probe per
56bp median density across the genome. The layout of the entire chipset is included as
Appendix A at the back of this document.

For quality control purposes, three sets of special probes were used for this experiment.
Over 1400 exons of known dosage sensitive genes were identified, and a single probe placed in
each exon. This set of control probes was printed on each subarray. Second, each successive
chip overlaps the previous one by about 14,000 probes, equivalent to the average number
of probes per megabase. Third X-linked probes were printed on each subarray, which al-
lowed empirical measurement of experimental dose-response for each of our male-female
cohybridizations.

1.3 Overview of CNV map construction

In brief, the construction of the CNV map entailed the following steps:

• QC of hybridizations.

• Normalize log2 ratios.

• Segment log2 ratios from each sample. This was done running the GADA algorithm
(Pique-Regi et al., 2008) using the options “-M 10 -T 10 -a 2.5”.

• Filter non-CNV segments using intensity thresholds. Merge remaining CNV “calls”
within each sample. Adjacent calls of the same direction (gain or loss) are merged if
both: the distance between calls is less than 10kb, and the distance between calls is
less than 10% of the size of the largest of the two calls.

• Post-calling QC: remove sub-arrays with oversegmentation, split calls spanning gaps
and centromeres. Relabel calls using probe midpoints.

• Merge CNV calls into CNV regions (CNVRs) and loci using hierarchical clustering.

Full details on algorithms, parameter settings for various steps, and choice of QC statistics
can be found in the following sections.

1.4 QC of hybridizations

The quality of all subarrays was measure by two summary statistics, mad.d1r and the log2
ratio of x-linked probes. The threshold for selecting an experiment for re-analysis was:



• mad.d1r> 0.23

• sd/mad.d1r < 1.8

• median X < 0.35 [median (X controls) median (autosomal controls)]

• X response < 2 [median X / (mad.d1r of all test probes)]

and 81 chips were selected for repeating once, and 5 selected to be done twice. The statis-
tic “mad.d1r” is defined as the median of absolute differences in copy number measurement
between neighbouring probes. In the R language it would be calculated as median(abs(diff(x)))
.

1.5 Normalization

The normalization pipeline begins with the q-spline normalized data provided by Nimble-
gen; q-spline normalization transforms the red and green channel data from a single array
experiment to the identical distribution. Log2 ratios are then obtained at each probe posi-
tion as Cy3/Cy5. In-house, we corrected for GC effects by fitting a model with linear and
quadratic effects of GC content to the log2 ratios, separately for each subarray. We take the
GC percentage in a 300bp window centered on each probe as our data for this analysis, using
NCBI36 as our reference genome sequence. Finally, long-range spatial auto-correlation in
log2 ratios (the ’wave effect’) is modeled and removed using the method described in Marioni
et al. (2007).

All of the data in this dataset are generated from female samples co-hybridized with a
common male reference. For X-linked probes outside of PAR1 and PAR2, we take a slightly
different normalization approach, to remove the effect of the reference sample. The raw data
for non-PAR1/PAR2 X-linked probes are separated from all other probes and normalized as
above (q-spline, GC, wave). Following this, the population median log2 ratio at each probe
is calculated, and this value is subtracted from each probe in turn.

1.6 Background on segmentation algorithms

We initially explored two calling algorithms, CBS and GADA, as potential single-sample
calling algorithms (Venkatraman and Olshen, 2007; Pique-Regi et al., 2008). GADA is a
newly described method that relies upon a novel piecewise-constant vector representation of
the intensity data to facilitate extremely fast matrix-based breakpoint finding. The method
consists of two primary steps. The first step is a Bayesian learning process which generates
a list of candidate breakpoints and segment means while trying to strike an optimal balance
between model fit (measured as residual sum of squares) and model sparseness (the number
of breakpoints). The Bayesian learning process is driven by a prior parameter, a, which
summarizes the user’s prior belief in the appropriate degree of segmentation (larger a leads
to greater segmentation). After this initial segmentation process, a “t” statistic is calculated



for each segment, which is a function of the segment mean and variance. The second step is
then a backwards elimination process which removes breakpoints with a level of significance
(t statistic) less than some user-defined threshold, T .

Under the null hypothesis that a segment is copy normal, the t statistic should be a
draw from a standard normal distribution. In algorithm comparisons using real (Affymetrix
500K, Illumina 550) and simulated data, Pique-Regi et al. (2008) found that a critical value
of t = 4.8 provided comparable results to a CBS analysis with α = 0.01. Based on the
relative speed and performance of the two methods we elected to use GADA for the final
CNV segmentation.

1.7 Data-driven intensity thresholding

The most basic implementation of GADA can produce a set of segments but does not classify
segments into gains and losses. Our approach to the problem is to select intensity thresholds
above/below which a segment is considered a CNV. Based on analysis of X-chromosome
probes on each subarray, we estimated that a typical log2 ratio for a deletion heterozygote
will be -0.55. Using an additive background model for the log2 ratios, ie.

y = log2(
a + c

b + c
)

where a is the intensity of the target, b the intensity of the reference, and c the background,
we used the X-chromosome observations to find c = 1.125. This value of c was then used
to calculate expected log2 ratios for other critical relative copy number comparisons (Table
2.2).

Relative copy number expected log2 ratio
1/2 -.55
3/4 -.31
4/5 -.25
2/2 0
5/4 .25
4/3 .31
3/2 .40
4/2 .71

Table 2.2: Estimated log2 ratios including additive background, calculated for
several canonical relative copy numbers

We appraised the usefulness of the numbers calculated in Table 2.2 by examining the dis-
tribution of segment log2 ratios from a whole-genome GADA analysis. In Figure 2.1, we can
see discrete peaks near -.55 and .71 that appear to correspond to deletion heterozygotes and
duplication homozygotes, respectively. There is no clear peak for duplication heterozygotes;



this could indicate a flaw in the use of an additive background model, or it could reflect the
greater difficulty of calling such events. A key consideration was that we wanted to call some
fold-change CNVs, such as might be observed at duplication of DNA segment already present
in 4 copies. Combining analyses of replicate experiments and predicted dose-response for
various classes of CNV, we settled on simple intensity thresholds of -.25 for losses and 0.1
for gains.
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Figure 2.1: Distribution of segment log 2 ratios from whole-genome GADA analysis of 40
samples. The expected location of log2 ratios corresponding to 1/2, 3/2 and 4/2 relative
copy number comparisons are marked with vertical red lines, left to right. Note that the data
appear to be a mixture of CNV at unique sequence ( producing discrete peaks corresponding
to a small number of relative copy number states) and CNV at high-copy number sequence
(that produces a normal distribution of relative copy number).

1.8 Post-calling QC and processing

We have found that one of the most sensitive metrics for detecting a poor CNV experiment
is the number of CNV calls made in that experiment (Figure 2.2). Let nij be the number
of CNV calls made on subarray i in individual j. We removed 104 subarrays where nij >
3∗MADi +mi, where MADi and mi are the mean absolute deviation and median number of
calls on subarray i, respectively. In support of the belief that these “oversegmented” arrays
represent technical artifacts, we observed that such subarrays tend to come in bunches of 3
within an individual (corresponding to a single chip), and 56 of 104 subarrays removed came
from only 4 individuals.
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Figure 2.2: Relationship between number of calls per subarray and 4 QC statistics.
The Pearson correlation between the number of calls per subarray and the QC statistic is
written above each plot.

In addition, there were 511 calls that span gaps or centromeres in the reference sequence.
Each of these calls were split into two daughter calls, and daughter calls were retained if
their length > 400bp.

1.9 CNV region definitions

As segmentation is done one sample at a time, we required an approach to identify and
combine calls from different indiviudals that correspond to the same mutation event. While
one could envision statistical approaches to the problem we chose to implement an algorith-
mic approach predicated on hierarchical clustering. At the top level of the hierarchy, all
contiguous bases overlapping at least 1bp of a CNV call are merged into a “CNV region”
(CNVR). Within each CNVR we further define CNVs with the following algorithm:

1. Calculate reciprocal overlap (RO) between all remaining calls.

2. Identify pair of calls with greatest RO. If RO > threshold, merge and create a new
CNV (CNV). If not, exit.



3. Continue adding unclustered calls to the CNV, in order of best overlap. In order to
add a call, the new call must have > threshold to all calls within CNV to be added.
When no additional calls may be added, move to next step.

4. If calls remain, return to 1. Otherwise exit.

We used a reciprocal overlap threshold value of 0.51 for constructing CNVs. CNV events
are labeled in a way that indicates their CNVR membership. For example, the CNV name
“CNVR45.2” refers to the second event in CNVR45.

1.10 Analysis of replicate pairs

As the experimental unit in these repeat hybridizations is a chip (consisting of 3 subarrays),
some subarrays were replicated despite passing the QC on the raw hyb data. In total there
were 42 replicate subarray experiments that passed our QC process; these were generated
from 14 individuals and represented 29 different subarrays (that is, 13 subarrays were repli-
cated on multiple individuals). In theory it is possible to analyze these replicate experiments
to gain a better understanding of the relationship between calling parameters and CNV call
reproducibility.

To gain a better understanding of the impact of calling parameters on segmentation
performance, we ran GADA on the entire data set over a grid of a(0.2, 0.7, . . . , 2.7) and
T (1, 2, . . . , 17). For each combination of parameter settings we calculated numerous sum-
maries of the data which are illustrated in the following figures. In the range of T that we
would plausibly consider (T = 6 . . . 10) the value of a doesn’t actually make much of an
impact on the final results with our data.

The summaries considered can be loosely split into those measuring statistical aspects of
calling (false negative rate, false positive rate, false discovery rate, overlap in calls between
replicate samples), summaries of the extent of CNV (proportion of probes called in CNVs,
projected number of calls per experiment, proportion of singleton calls) and call properties
(median length of calls, median intensity of calls, ratio of gains to losses).

We examined a few ways of estimating the false positive and negative rates of CNV
calling using replicate pairs; one of the main considerations is whether to consider CNVR or
probe as the unit of testing. In Figures 2.3 and 2.4 we report the Jaccard measure of overlap
between replicate pairs measured on both the probe level and the CNVR level:

A ∩B

A ∪B

False positive rate, negative rate and FDR are all estimated using three data points: the
Jaccard overlap between replicates (probe level version), the average proportion of probes
called as CNV across replicates, and the (unknown) average proportion of sequence contained
in CNV within a single genome. We have arbitrarily used 1.5% as our estimate of this last
quantity, which we feel is a conservative number; the estimated false positive rate will be
underestimated if this number is too large.
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Figure 2.3: Summary statistics of replicate pairs 1. Each colored line represents a
different value of a. Clockwise, from upper left: false-positive rate (alpha), false discovery
rate, jaccard overlap on CNVR basis, false-negative rate (beta).
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Figure 2.4: Summary statistics of replicate pairs 2. Each colored line represents a
different value of a. Clockwise, from upper left: Jaccard overlap on probe basis, estimated
number of genome-wide calls per experiment (co-hybridization), ratio of gains/loses, percent
of probes inside a CNV call.
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Figure 2.5: Summary statistics of replicate pairs 3. Each colored line represents a
different value of a. Clockwise, from upper left: median length of CNV call, percent of
CNVRs with a single CNV call, median intensity of CNV call.

Additional summaries of reproducibility. Other measures of reproducibility one could
examine, to better understand the quality of the data, are the agreement in breakpoint
position and log2 ratio of a CNV call made in both replicates. A conservative estimate of
breakpoint reproducibility puts the variation in breakpoint position at around 7.9% (T = 8)
or 3.9% (T = 14) of the total possible CNV length (in base pairs). Twenty-one percent
(T = 8) to 24% (T = 14) of calls had perfect breakpoint agreement between replicates.
Agreement in log2 ratio between replicated CNV calls appears extremely high with a Pearson
correlation of 0.96 (Figure 2.6).
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Figure 2.6: Agreement in log2 ratio and breakpoints for CNV calls made in repli-
cate experiments. (a) The correlation in log2 ratio for approximately 1000 calls made
in both replicates, average across all samples, was 0.96. Data points are colored by sam-
ple of origin. (b) Distribution of difference in breakpoint location for CNVs called in both
replicates. Both results from segmentation with GADA parameters of T = 8, a = 1.7.

Interaction between data quality and calling stringency One interesting observation
is that data quality appears to have a non-linear affect on GADA CNV calling as the calling
parameters are relaxed. We ran the whole-genome segmentation analysis on all 40 samples
for values T = 8, 10, 14 and a = 2.0. One simple QC check is to calculate the number of calls
per chromosome, separately for each sample (Figure 2.7). We see that the number of calls
per chromosome increases quite rapidly with decreasing call stringency for a small number
of outlier samples.
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Figure 2.7: Calls per chromosome, for three different set of segmentation results.
There appear to be some samples (it would be more accurate to say “subarrays”) that “blow
up” as the calling becomes more permissive.



1.11 Analysis of paired end sequence data from NA15510

For one sample, NA15510, CNV calls have been made using sequencing-based approaches
(Fosmid end sequence (FES) and paired-end mapping (PEM)) that represent a fairly orthog-
onal source of information on our call quality and power (Tuzun et al., 2005; Korbel et al.,
2007). We restricted our analysis to autosomal deletions in NA15510 relative to the reference
(102 from FES, 282 in PEM), as insertions detected by the paired-end methodology may not
be easily identified in the array data.

The analysis consisted of segmenting the entire autosomal genome for NA15510 over a
range of a and T values, and counting the proportion of FES and PEM calls also called on
the 42M platform (Figure 2.8). In order to declare that two variants detected on different
platform correspond to the same event we require at least 40% reciprocal overlap between
them. The striking impression that one gets from examining these results is that the max-
imum number of replicated calls, for both sets, is achieved at very conservative parameter
settings (the smallest value of T examined is 24). For instance, over the range of T = 24
to T = 5, the number of replicated FES calls increased from 47 to 62. Overall a greater
percentage of FES calls are replicated than PEM.
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Figure 2.8: Overlap between NA15510 42M calls and Tuzun FES (black dots) or
Korbel PEM (red dots) calls, as function of T. The y-axis indicates the proportion of
102 deletions identified by FES or 282 deletion identified by PEM that overlap calls made
in 42M discovery data from sample NA15510.

The end-sequence based discovery strategies have a different power profile than array-
based methods; they are especially advantageous at detecting rearrangements that involve
extremely high copy number elements such as SINEs and LINEs. We manually curated the
47 FES calls that were not replicated for the value of T = 8, and identified two distinct sets



Location Identified with Korbel PEM Notes
chr1:216,247,751-216,282,164 Korbel LINE, 1 gain called
chr2:19,051,097-19,091,018 No Korbel large segdups
chr3:188,056,986-188,080,903 Korbel SVA, 1 deletion called
chr5:103,880,569-103,907,829 Korbel LINE
chr6:150,023,750-150,043,744 No Korbel many SINES
chr7:4,584,757-4,607,795 No Korbel HERVK, 1 deletion called
chr7:57,462,039-57,487,506 No Korbel large segdups
chr7:91,033,112-91,073,941 No Korbel LINEs
chr7:96,289,288-96,332,046 Korbel LINE
chr8:126,663,820-126,670,399 Korbel single LINE element
chr8:135,141,298-135,188,617 Korbel single LINE element
chr10:6,433,069-6,462,822 Korbel single LINE element
chr11:1,855,962-1,897,796 Korbel repeat rich
chr12:13,429,399-13,466,004 No Korbel LINE??
chr12:57,006,943-57,032,578 Korbel HERVK, 1 loss called
chr14:23,475,038-23,545,053 No Korbel 2 losses called
chr14:23,539,508-23,574,552 No Korbel 3 losses called
chr15:52,995,999-53,034,494 Korbel LINE
chr19:8,237,615-8,276,742 No Korbel 2 gains called, segdup

Table 2.3: Summary of Tuzun deletion calls not validated with 42m discovery data

of events. On one hand, there are 28 FES calls that correspond to regions of high frequency
CNV in our data; these are likely to be places were the reference CNV genotype is affecting
our ability to identify an event in NA15510. In support of this, 11/28 of these CNVRs
contain both gains and losses, while such gain/loss loci represent fewer than 10% of CNVRs
in the entire dataset. On the other hand, there are a set of 19 deletions called by FES
(Table 2.3). Comparison with the PEM dataset suggests that a.) they are often replicated
by PEM and cannot be solely explained as false positive by FES; b.) the breakpoints are
often localized to the edges of LINEs and segmental duplications, and the deleted region is
either not covered by probes on the 42M platform or the fold-change is too shallow to be
called by single-sample segmentation.

In summary the results suggest that we come close to 100% power for calling deletions
identified with FES, when we consider false-negatives due to reference effects and experi-
mental limitations in highly repetitive sequence contexts.



2 CNV Genotyping

2.1 Array Design

Within the context of a CNV association study conducted by the Wellcome Trust Case
Control Consortium (WTCCC), a CNV-typing array was designed by the WTCCC in a
collaboration with the other co-authors of this paper in which a preliminary version of our
discovery data was shared at an early stage. The array used the Agilent CGH-platform
and comprised 105,000 long oligonucleotide probes. Full details of the array design will
be provided elsewhere (manuscript in preparation), but in brief, it included 10,819 loci
discovered from our CNV discovery experiment and 375 CNVs described in other discovery
projects (Table 2.4).

The genotyping array design incorporated 9,722 loci (89.5%) from a preliminary set of
10,865 candidate CNV loci from the CNV discovery experiment. This set of loci includes all
of the CNVs discovered in the CEU samples, and all of the CNVs discovered in 2 or more
YRI individuals, but only a subset (53%) of the loci discovered in a single YRI individual.
Upon generating a refined set of 11,700 candidate CNV loci from the same underlying data,
we identified 10,819 (92.5%) of these loci as having probes on the genotyping array, and we
used this later set of CNV definitions in downstream analyses.

Affymetrix 6.0 CEU CNVs are those CNVs observed in 2 or more unrelated CEU individ-
uals in McCarroll et al. (2008) that were not also among the 42M CNV discovery set. Novel
Sequence Insertions were selected as follows: 186 Novel Sequences identified and validated as
being polymorphic by array-CGH by Kidd et al. (2008), and 106 Novel Sequences identified
from alignment of the Venter genome sequence Levy et al. (2007) against NCBI36. Selection
and analysis of WTCCC loci will be described in a forthcoming manuscript.

Name Number of Loci Source
42M CNV discovery 10,819 (9,722) This study
Novel sequence insertions 292 Kidd, et al. 2008; Levy, et al. 2007
Affymetrix 6.0 CEU 83 McCarroll, et al. 2008
WTCCC loci 1,530 Manuscript in preparation

Table 2.4: Content on 105K CNV genotyping array

2.2 Samples

We screened the 270 samples genotyped as part of the PhaseI and II International HapMap
Project (International HapMap Consortium, 2005), as well as the second plate of YRI sam-
ples and second plate of CEU samples included in the Phase III HapMap, amounting to a
grand total of 450 samples. Sample NA15510 from the Polymorphism Discovery Resource
was also included. The reference DNA for these experiments was actually an equimolar pool



of DNAs from 10 European samples (9 males, 1 female) obtained from the European Col-
lection of Cell Cultures. Their IDs are C2078, C2141, C2153, C2173, C2175, C2188, C2159,
C2184, C2142, C2151.

2.3 Pre-calling QC

The HapMap samples were typed on three days: 9/26, 10/27 and 12/08 2008, over a total of
12 batches (hyb plates). We used several statistics provided by Agilent Feature Extraction
software for QC, including the Red Channel signal and “DLRSpread”. The metric DLR-
Spread is computed as: DLRSpread = IQR(dLR) / 4*erfinv(0.5), where dLR is an array of
differences between log ratios of adjacent probes, erfinv is the Inverse Error Function and
IQR is Inter Quartile Range. Ninety-four samples were selected for repeat on the basis of
DLRSpread and Red Channel signal. The median reduction of DLR spread for the repeated
samples was to 60% of the original. Over 95% of the repeated samples had DLRSpread less
than 0.3.

Prior to genotype calling, we searched for individuals carrying cell-line artifacts, in the
form of partial or whole-chromosome aneuploidies. For each normalization (details below) we
tabulated the 1st, 2nd, and 3rd quartile of the intensity distribution for each sample’s data,
chromosome-by-chromosome. Individual chromosomes that were outliers (+/- 4 median
absolute deviations from the population median) in the population distribution for any of
these quantiles were then replaced with missing data. The chromosomes censored are listed
in Appendix B at the end of this document.

2.4 Normalization

All probe-level data from the genotyping array was initially normalized using the default
settings of Agilent’s feature extraction software. We developed 4 different post-processing
routines for creating univariate summaries of the probe-level data from each CNV (Table
2.5). In brief, each post-processing (“norm”) consists of a normalization step and probe
summary step. Normalization 1 consists of quantile normalization of the log2 ratio from all
probes across all samples. Normalization 2 involved adding an ad hoc batch correction at the
probe level. This batch effect doesn’t correspond to any experimental unit in our genotyping
pipeline, but a subset of samples, predominately CEU, show systematic intensity bias at a
set of high-GC content loci. We suspect this may represent a labeling problem due to an
epigenetic change in some cell lines. This bias is apparent in principle components analysis
(it is the first principle component (PC) when looking at intensities, and the third PC when
looking at genotypes). We therefore used a linear model relating probe intensity to both PC1
of the intensity data and PC3 of the norm1 genotype data loading to regress out this effect.
Normalization 3 was formulated to separate the signals of overlapping CNVs in complex
regions of the genome. We developed an algorithm to identify the most unique regions of
CNVs belonging to CNVRs with multiple events, and we used a principal components probe
summary to further boost the major signal of variation at the locus (Barnes et al., 2008).



name processing summary
norm 1 log2(Cy5/Cy3), quantile normalized across samples mean
norm 2 norm1 + PC correction mean
norm 3 norm1, unique regions PC1
norm 4 Cy5/Cy3 mean

Table 2.5: Post-processing algorithms used for the 105K genotyping data. See
main text for details.

Definition of new loci. Some of the CNV regions on the array consist of multiple over-
lapping events. This complexity could derive from repeat mutations, or it could be noise
in the segmentation process, which leads to incorrect fragmentation of a single CNV. To
maximize the likelihood of obtaining quality genotypes from each CNV region, we defined
a “meta locus” for each complex CNV that included all probes from the CNV region; these
are referred to in the genotyping data as “ full” loci, e.g. “CNVR123 full”. This boosts
the number of loci, derived from the discovery project and that we attempted to genotype,
above the 10819 that we originally defined.

2.5 Genotype calling and QC

After post-processing of the data each CNV is represented by a vector of N numbers, ~x, that
contains all the information used for assigning CNV genotypes to samples. The data at each
locus is modeled as a mixture of normal densities, where each genotype cluster is parameter-
ized by a mean, variance and frequency. We used the EM algorithm, a standard statistical
technique for fitting such models that has enjoyed success in CNV analysis (Barnes et al.,
2008; Korn et al., 2008). Models were fitted to all 4 post-processed datasets using priors on
mean locations appropriate to the scale of that dataset. These prior means were determined
manually by inspection of the data. As in (Korn et al., 2008), we place s “pseudopoints” at
the prior mean of each cluster in the “M” step; we find that with the scale data we were
using (450 samples) 1 point was often enough to significantly improve the frequency of cor-
rect solutions. Five models were fitted for each locus, corresponding to {2}, {1, 2},{0, 1, 2},
{2, 3} and {2, 3, 4} copy number clusters; each model thus specified the number of genotype
clusters and a prior on the cluster location. We also used a shrinkage step to stabilize the
variances.

For any given model there are K clusters with frequencies q1, ..., qj..., qk. The algorithm
iterates between estimation and maximization. The E-step estimates the probability that
the ith sample belongs to cluster j,

E-Step:

P (zi = j) =
N(xi; µj, σj) ∗ qj∑K

i=1 N(xi; µj, σj)



where N(x; µ, σ) represents the normal pdf with mean µ and standard deviation σ eval-
uated at x. The M-Step finds maximum likelihood estimates for the cluster means and
variances, and mixture proportions, conditional on the probability distribution of cluster
membership across samples.

M-Step:

qj =

∑N
i=1 P (zi = j)

N

µj = [(1/(s + qj) ∗
N∑

i=1

P (zi = j) ∗ xi] + [s/(s + qj)µ
p
j ]

σ2
j = (1/qj) ∗

N∑
i=1

∗(xi − µj)
2

σ2
j = (

1

1 + r
) ∗ σ2

j + (
r

1 + r
) ∗ σ̂2

where σ̂2 is the mean of the cluster variances; we found r = .1 to be a generally useful
setting.

Each model was fit using 5 independent starts of the EM and the highest likelihood
run (of the 5) was retained. The best-fitting model was selected by Bayesian Information
Criterion (BIC) and carried forward for manual curation. This manual curation was done
using the program GASSS, which allows joint visualization of the 4 normalizations as well
as manual editing of the number and location of genotype clusters. GASSS was developed
internally within our group, by Jan Aerts, Don Conrad and Matt Hurles, and programmed
by Jan Aerts in the Processing language (www.processing.org). The output of the manual
curation process is a single set of intensities and models for all CNVs on the genotyping chip.
Of the 13,007 total CNVs that we attempted genotyping, 8038 (60%) polymorphic CNVs
were carried through from manual curation at the operators’ discretion.



Figure 2.9: Manual curation with Genotype Assignment Software (GASSS)).

Manual curation using GASSS was run by two operators, so we analyzed the properties of
the resulting datasets produced by each operator. The proportion of CNVs carried through
was similar for each operator (65% and 59%), as was the distribution of normalizations
(Table 2.6). The main goal of the curation process was to select the best normalization for
each locus, but manual editing of the model fit did happen for 23.9% and 27.8% of loci for
Operator 1 and 2, respectively.

Normalization Operator 1 Operator 2
Norm 1 757 (16%) 475 (13.7%)
Norm 2 1994 (43.7%) 1451 (41.2%)
Norm 3 356 (7.8%) 621 (17.8%)
Norm 4 1455 (31.8%) 929 (26.8%)

Table 2.6: GASSS operator characteristics: Normalization usage.

After manual curation a final round of model-fitting was done which differed slightly from
before. In this round two sets of model fits were generated: in the first, the cluster means are
fixed to the values assigned during manual curation; in the second the cluster means from
GASSS are used as priors but the means are allowed to be updated. The number of clusters
at each locus are fixed to the value specified by GASSS curation. CNVs were genotyped
using these final fitted models, with the requirement that each individual have a posterior
probability > 90% of cluster membership in order to be called. A small number of model



fits didn’t lead to multiple copy number states being called (due to poor clustering quality)
and removal of these loci brought the total number down to 7,827 genotyped loci which were
then passed on to QC.

These genotypes were subjected to a round of QC using criteria analogous to those applied
to the Phase I HapMap (International HapMap Consortium, 2005). CNVs were flagged QC-
if > 10% of the genotypes at the locus were missing data (QC-m), if the chi-square statistic
for goodness of fit to the expected genotype counts under Hardy-Weinberg Equilibrium > 10
in at least one population (QC-h), if two or more Mendelian errors were observed at the
locus (QC-). A total of 6487 CNVs passed QC as 1340 (17%) of CNVs failed QC.

XY homologies. Segmental duplications between the sex chromosomes and autosomes
can potentially generate false-positive CNV calls due to duplication shadowing. We con-
ducted a genomewide association study on all autosomes using the Agilent data in order to
identify such CNVs, fitting a logistic regression of sex on CNV intensity. The distribution
of the standardized regression coefficient from this procedure suggested a threshold for 10
standard deviations for declaring an XY homology, and 296 CNVs genomewide fell above
this threshold (Figure 2.10).
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Figure 2.10: Distribution of standardized regression coefficient of sex on CNV
intensity. Data generated using all CNVs from chromosome 22.

Redundant loci. Finally, we removed CNVs that appeared to represent a duplicate of
another genotyped CNV. Such a situation could arise, for instance, where the CNV map
showed evidence of overlapping CNVs with distinct breakpoints but a) there was in fact
only one mutation segregating or b) genotyping probes could not be designed that could
distinguish the two events. After filtering on possibly redundant CNVs we were left with
5238 QC+ loci.



QC Flag Number of Loci
QC+ 6487
QC-e 66
QC-h 32
QC-hi 23
QC-i 15
QC-m 1204

Table 2.7: Tabulation of QC flags across all genotyped loci. See text for description of flags.

We assessed the quality of the genotypes by measuring the concordance of genotype calls
in repeat experiments; concordance between replicates ranged from 99.76% to 99.92% (Table
2.8. The Mendelian error rate was measured in 114 trios at non-X, bi-allelic loci with < 10%
missing data, and we found that it was in a range comparable to some SNP genotyping
platforms that were used in the Phase I HapMap (median .25%, range 0-2.1%).

Sample Complete Data QC+
NA15510 99.77 99.85
NA18537 99.23 99.81
NA18923 99.25 99.92
NA19096 99.12 99.85
NA12878 (4 repeats) NA 99.76 (mean)

Table 2.8: Average concordance for replicate experiments at all genotyped loci (left) and at
QC+ loci (right).
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Figure 2.11: Size distribution for the various CNV datasets generated in different
stages of the study. The distribution of CNV length is shown for the various breakdowns
of (A) validated vs. non-validated, (B) validated-genotyped vs. non-validated, and (C)
validated-genotyped vs. validate-non-genotyped. There is a subset of large CNVs that
have not been genotyped though they are part of the validated set. Closer inspection of
these CNVs indicates that ungenotyped CNVs larger than 10Kb are predominantly “gain”
calls from the CGH experiment (60% “gain” vs. 23% of “loss” and 17% of “gain+loss”)
and associated with segmental duplications as well as with repeat elements such as simple
repeats (ie. using Tandem Repeat Finder).

2.6 Absolute Copy Number / Ancestral State Assignment

The problem of ancestral state assignment is related to the determination of absolute copy
number, and thus the analyses were done in parallel. We ran 1 chimp (Clint) on the 42M
platform as well as 8 chimps on the Agilent 105K genotyping chip. Our original plan was
to use the chimp genotype calls to define the human ancestral state at each CNV. As the
analysis progressed, the patterns of polymorphism in the chimp data and inspection of the



chimp genome sequence made it clear that there would frequently be independent variants
segregating in both chimp and human genealogies and multiple mutational events might
separate human and chimp. Additionally, in the case of two-component CNVs, there is the
possibility for high-frequency derived alleles that the ancestral state is not represented by
a human genotype. Consequently we regard the absolute copy model to be a better guide
than chimp ancestral state.

Chimp genotyping All of the human QC+ genotyping models were re-mapped to a
single normalized dataset, log2(red/green). Divergence-corrected chimp intensity values were
mean-summarized for each CNV, and then genotyped using the human genotyping models.
For three-component CNVs, ancestral state was called only if 5 non-missing chimp calls were
identical. Seventeen percent (about 900/5238) of loci show high likelihood of polymorphism
in chimpanzee.

Modeling absolute copy number The Agilent 105K array is a comparative genome
hybridization (CGH) platform which requires a reference sample for each experiment. Instead
of using reference DNA from a single individual we used a pooled reference consisting of
an equimolar mix of 9 males and 1 female from the European Collection of Cell Cultures
(ECACC). The consequence of this pooled reference is that the cluster means and variances
for each genotype is a function of the underlying genotype frequency (Figure 2.12). If we
have a bi-allelic locus with integer copy number C0, C1, C2, that are present with frequencies
f0, f1, f2; then the cluster mean for the integer copy number ’n’ should be

Mn = n/(f0C0 + f1C1 + f2C2) (1)

And the variance might be

Vn ∝ n/(f0V0 + f1V1 + f2V2)



● ● ●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Duplications

Cluster Mean

A
nc

es
tr

al
 a

lle
le

 fr
eq

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Deletions

Cluster Mean

A
nc

es
tr

al
 a

lle
le

 fr
eq

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ●

● ●

● ●

●

●

●

Figure 2.12: Expected cluster locations as function of CNV allele frequency for bi-
allelic CNVs. The expected intensity ratios (Cy5/Cy3), calculated by Eq. 1 for all three
genotypes (x-axis) are plotted as a function of the ancestral allele frequency (y-axis), for
duplications (left) and deletions (right). Notice that the range of deletions and duplications
is overlapping.

Our strategy for assigning absolute copy number is to use as much information as possible:
we use the allele frequency (a, the cluster means for both the ratioed (Cy5/Cy3) as well as
single channel (Cy5) intensities, and the relative spacing of the cluster means. The red
channel intensity alone potentially contains useful information about absolute copy number
that is lost when compared to the reference. We treat the problem of assigning absolute
copy number as a model selection problem. Given the number of components at the locus,
we identify the maximum likelihood model (m) out of a set of predefined models:

• for a 2 component locus, there are 4 models: 0,1, 1,2, 2,3, 3,4

• for a 3 component locus, 3 models: 0,1,2, 1,2,3, 2,3,4

• and for > 3 components, 3 models: 0,1,2,> 2, 1,2,3,> 3, 2,3,4,> 4

We consider the cluster means (both ratioed and single-channel) and the ratio of adjacent
cluster means to be normally distributed conditional on absolute copy number. The mean of
these cluster distributions are a function of allele frequency (as explained above). The vari-
ance is modeled to be constant for duplications, and a linear function of allele frequency for
deletions. These variances are estimated in an iterative fashion, beginning with a clustering
of outliers, and then re-estimated after the first set of absolute copy number assignments.



Data. For notation, let ~f be the k cluster frequencies at the locus, ~x be the means of the k
cluster log2 ratios, ~r be the k−1 ratios of adjacent cluster means (x1/x2, ..., xk−1/xk). These
are all observed quantities.

Model Notation. A full table of symbols used in notation is given in Table 2.9. The
absolute copy number likelihood is formulated as a function of (maybe unknown) parameters.
Each model m is defined by a number, km, of components and the absolute copy number of

those components: c1, ..., ci, ...ckm . Therefore ~µl and ~σl are the set of km log2 ratio means and

standard deviations for model m, ~µcy5 and ~σcy5 the set of red channel means and standard
deviations; ~µr and ~σr the means and standard deviations of adjacent clusters.

We model the cluster log2 ratio means simply as a function of allele frequency and
absolute copy number, as in Equation 1. Using the current notation then given a model m,

µl
i =

ci∑km

i fici

(2)

Although we are using the intensity data from all populations to fit this model, we only
use CEU data to estimate the fi’s as our reference pool is thought to be comprised of only
European individuals.

Given these expected µl’s we can then calculate expected values of µr as µr
i =

µl
ci

µl
ci+1

.

The values for the µcy5
i ’s, are not obtainable from first principles. We manually clustered

a subset of loci that were obvious deletions and duplications and used these prior cluster
assignments to calculate µcy5

i and σcy5
i for copy number i = 0, 1, ..., 6. Values for σr

i for
i = 0, ..., 5 and σl

i for i = 2, ..., 6 were calculated in the same way.
A preliminary analysis of deletion loci suggested that the variance in the distribution of

cluster means increases as a function of deletion allele frequency. We therefore use a linear
model for the σl

i in deletion models. The model parameters were estimated using an iterative
process of absolute copy number assignment and model fitting. The final variance models
used were

σl
0 = 0.11

σl
1 = 0.06 + 1.38x2

σl
2 = 0.03 + 2.36x2

where x is deletion allele frequency.
Using the parameters and data defined above, the likelihood of model m, given the data,

is

L(m|~f, ~x, ~r) =
km∏
i

N(xi; µ
l
ci
, σl

ci
)

km∏
i

N(yi; µ
cy5
ci

, σcy5
ci

)
km−1∏

i

N(ri; µ
r
ci
, σr

ci
) (3)



Data Description
~f cluster freqs
~x cluster means (Cy5/Cy3)
~y cluster means (Cy5)
~r ratio of adjacent cluster means (Cy5/Cy3)
Model Parameters Description
m model type
k number of clusters in model
ci absolute copy number of ith cluster
µl

ci
, σl

ci
mean, standard deviation of cluster means
for copy number ci, (Cy5/Cy3)

µCy5
ci

, σCy5
ci

mean, standard deviation of single-channel
cluster means for copy number ci, (Cy5)

µr
ci
, σr

ci
mean, standard deviation of µl

ci
/µl

ci+1

Table 2.9: Description of symbols used in modeling absolute copy number.

3 Validation

3.1 Comparison of discovery and genotyping data

All 41 samples from the 42M discovery experiment were also typed on the 105K genotyping
chip. Intensity data from probes measuring the same CNV should be correlated between the
two experiments; however, we don’t expect intensities to be correlated at the location of a
false positive CNV. Using this principle we devised a method to estimate the false discovery
rate (FDR) of the CNV calls made in the discovery phase.

Pearson correlations were calculated on the summarized data (normalization 2) for all
10819 autosomal CNVs with probes on both platforms. These were then transformed into
standard normal variates using Fisher’s z transformation (Figure 2.13). The resulting data
can be modeled as a mixture of two Gaussians, one representing the distribution of cor-
relations for false positive sites, and one the distribution of correlations for true positives.
The expectation-maximization (EM) algorithm was used to estimate means and variances
for each distribution, and the mixture proportion. The false discovery rate as measured
by the mixture proportion was 15.3%, however, this does not consider that a proportion of
CNVs with probes on the Agilent array will falsely report negative due to erroneous probe
placement (see below).

Using the fitted model, we calculated for each CNV the probability that it belongs to
the false positive cluster, pr(Z = 1), and the probability that it belongs to the true positive
cluster, pr(Z = 2). We refer to this latter probability as “pp true”. If we removed all CNVs
with pr(Z = 1) >pr(Z = 2), we would remove 1945 events, and there would be an estimated



314/8874 (3.5%) false discovery rate in the remaining CNVs.
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Figure 2.13: Validation of CNVs discovered from 42M CGH data using 105K CGH
data. On the left, distribution of Pearson correlation coefficient for Agilent genotyping signal
and 42M discovery data signal across 10819 loci. The data can be modeled as a mixture of
two distributions: correlations from false positive loci, and correlations from true positive
loci.The right panel displays a mixture model fit to Fisher z-transformed data from left panel.

This FDR estimate is actually a concordance metric that conflates false positives from
the 42M discovery with false negatives on the Agilent 105K array. One potential source of
low concordance is the probe placement on the 105K array. More conservative probe design
filters on the 105K array mean that if probes are not well spread throughout the discovered
CNV region they may lie outside the true CNV boundaries and not show any CNV signal
accordingly. We formulated two statistics, “edge”, and “spread” to measure the extent of
this phenomenon (Figure 2.14). “Edge” is the proportion of probes in a CNV that are within
the first and last 10% of the CNV. “Spread” is the distance from the start of the first probe
to the end of the last probe within a CNV, scaled to the length of the CNV (ie. the maximum
spread is 1).
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Figure 2.14: Two statistics summarizing probe placement within CNVs. Left, the
“edge”, or proportion of probes in the first and last 10% of the CNV. Right, “spread” the
distance between the first and last probe within the CNV, scaled by the length of the CNV.

The overall impact of the probe placement on validation rate can be gauged by looking
at validation rate across deciles of edge and spread (Figure 2.15). There is a clear deficit
of validated calls in the smallest decile of spread and the top decile of edge (all probes
clustered in outer 10%). One can make heuristic arguments based on these numbers that
approximately 2% of loci are not validated due to issues with probe placement, although we
cannot say definitively which CNVs are the false negatives.
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Figure 2.15: Impact of probe placement on validation. The proportion of CNVs
validated by Agilent is plotted by deciles of the spread and edge statistics. There are clear
deficits of validation in the bottom decile of spread and top decile of edge.

3.2 Prior datasets

We compiled a number of datasets from high-resolution experiments that would be useful
for validating calls made in the current project.

• Validated sites of structural variation from Kidd et al. (2008) were downloaded from
the Eichler lab website on 21 January 2009. Data were converted from NCBI35 to
NCBI36 using liftOver, all but 18 converted successfully.

• Indels and structural variants from 4 published individual genome sequences: Venter
Levy et al. (2007), Watson Wheeler et al. (2008), NA18507 Bentley et al. (2008), and
the Asian sequenced by Wang et al. (2008).

• McCarroll et al. (2006); Conrad et al. (2006); Mills et al. (2006)

• McCarroll et al. (2008) 1318 sites of genotypable CNVs from HapMap.

• 342 CNVs with sequenced breakpoints from NA18505 and NA15510 (Kim et al., 2008).

• deSmith et al. (2007),3554 CNV calls from Perry et al. (2008).

There is uncertainty in the location of the breakpoint for every dataset. The rules for
deciding if two variants correspond to one another may have a strong influence on the
validation rate. We have looked at both 51% and 80% reciprocal overlap.



3.3 Validation summary

The final validated dataset was created by retaining CNVs that met at least one of the fol-
lowing three criteria: the pp true of the CNV > 0.9, the CNV had > 0.6 reciprocal overlap
with a call from one of the external datasets, or QC+ genotypes were generated for the CNV.
There was an additional filter that all loci must have an average GC content less then .65 in
order to be considered validated; this final filter removes 365 CNVs that would otherwise be
validated (many of which are VNTRs). We also removed CNVRs overlapping Immunoglob-
ulin loci likely to be somatic events. In total 8599 CNVs were validated, representing 43911
calls.

3.4 Q-PCR

Introduction. In collaboration with Applied Biosytems (AB), TaqMan assays for 103
randomly chosen CNV regions from our pre-validated set were selected from pre-designed
TaqMan Copy Number Assays. All 41 samples from the discovery phase (40 targets plus
reference sample), were analyzed using these assays. TaqMan assays for each CNVR target
were selected from the Applied Biosystems pre-designed TaqMan Copy Number Assays (P/N
4400293). One assay was selected for all the CNVRs except that 2 assays were selected for 7
of them. Among the 110 selected TaqMan copy number assays, about half of them targeted
gene regions and the other half targeted non-gene regions.

Methods. All the assays, ordered from appliedbiosystems.com, were first validated with a
panel of 92 genomic DNAs, which were purchased from Coriell and composed of Caucasians
and African Americans. Validated TaqMan assays were then run on all 41 discovery samples,
plus one of two additional Coriell samples (NA17210 or NA17144). The FAM dye-based
TaqMan copy number assays, designed to detect the target of interest, and the VIC dye-based
RNaseP TaqMan Copy Number Reference Assay (P/N 4403328, from Applied Biosystems)
were run in a duplex real-time PCR reaction. The final assay condition was 10 ng of genomic
DNA, 1X TaqMan probe/primer mix in 1X TaqMan Genotyping Master Mix (P/N 4371357,
from Applied Biosystems) in a 10 µl reaction with quadruplicates on 384-well plates. PCR
reactions were incubated in an Applied Biosystems 7900HT SDS instrument for 2 minutes
at 50C, 10 minutes at 95C, and followed by 40 cycles of 15 seconds at 95C and 60 seconds at
60C. Real-time data was collected and processed by the SDS 2.3 software. The SDS output
files were analyzed by CopyCaller, the free data analysis software from Applied Biosystems
for the TaqMan Copy Number Assay. The relative quantification analysis with a reference
sample was performed to calculate estimated copy numbers of each sample for the target
of interest. The HapMap samples NA10851 (default) or NA15510 were used as a reference,
whereas the Coriell samples NA17210 or NA17144 was used as a reference sample only in
the situation where both NA10851 and NA15510 give 0 or non 2 copy numbers.



Comparison with absolute copy number predictions. The copy number estimates
of 60 validated non-complex CNVs (i.e., the breakpoints of which do not overlap with other
CNVs among individuals) were highly concordant (99.99%) between AB predictions and
array-based predictions (Figure 2.16), except for one locus (CNVR2217). Even though the
relative estimations of array based and TaqMan based predictions for the copy number state
of this locus are highly correlated, the former predicts the absolute copy number to vary
between 2 and 4 among samples, whereas the latter predicts a variation between 0 and 2
(data not shown).

Figure 2.16: Validation of absolute copy number estimates. This scatterplot shows the
concordance between estimates of absolute copy number derived from the 105K genotyping
data (y-axis) and TaqMan (x-axis). The size of each point is proportional to the number of
observations, which is printed immediately to the left in each case. The data represented by
the figure are individual copy number estimates for 60 CNVs made on 41 samples (with a
smaller number of observations due to missing data).

3.5 Mass Spectrometry

Introduction. The MassARRAY copy number variation (CNV) method combines real-
competitive PCR (rcPCR) with MassEXTEND procedures and matrix-assisted laser des-



orption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) (Ding and Cantor,
2003; Elvidge et al., 2005; Oeth et al., 2003). Following the design of assays, genomic tem-
plate is spiked with a synthetic DNA molecule (competitor) or with chimpanzee DNA, which
matches the sequence of the targeted human assay region in all positions except a single base
and serves as an internal standard. The two distinct sequences are targeted to the two dif-
ferent alleles. As a result, tools for primer extension may be applied that are the same as
those used for SNP allele frequency analysis, and the ratio of peak areas associated with
each allele can be used to quantitatively determine the number of copies of the wild-type
template vs. the known number of copies spiked into each reaction on a per-locus basis.

Alignment processing and extraction of loci. The human genomic sequence for each
of the CNV regions were extracted from the UCSC Genome Browser and aligned with the
chimpanzee genomic sequence to identify regions of similarity. All sequence differences be-
tween human and chimpanzee were categorized based on the position of difference in the
alignment, alleles in human and chimpanzee, direction of alignment, etc. Using these an-
notations, the human sequence in each region was masked at the locations of differences.
Loci were formatted as SNPs for Sequenom assay design, with the first allele being human
and the second chimpanzee, irrespective of alignment direction; alignment differences in the
sequence flanks had already been masked in step above. As a quality control, all masked
region sequences were inspected and compared to unmasked sequences. The same procedure
as above was used for the 5 control regions received.

Loci prescreening and processing assay design. All aligned human-chimpanzee loci
were processed through the web-based Sequenom Assay Design tools; ProxSNP and PreX-
tend. ProxSNP is used to identify the location of variant bases within a given proximity of
the specified human-chimpanzee loci. PreXtend is used to select PCR primers and verify
the uniqueness of the primer pair. Processed loci for each genomic sub-section were sorted
by chromosome locations, which allowed selection of assays evenly across the region. Assays
that had SNPs defined as chimpanzee deletions (i.e. [N/-]) were excluded from further con-
sideration. Eight independent assays were selected across each individual sub-section. All
control non-variant region assays were selected with the same processes used for genomic
CNV regions.

Assay design. The initial study plan called for each multiplex to consist of 4 assays from
each of three regions of interest to be grouped with 4 control assays (4 assays X 3 ROI + 4
control assays). The multiplexed grouping of CNV region assays as well as the control assays
formed the SNP group file. The rcPCR assay design format was used for all assays. This
design parameter utilizes a wildcard designation ([human/chimpanzee/*]) for the competitor
allele. During the assay design process, the wildcard was translated into the appropriate base
for mass detection.



Genomic templates and primers. Genomic templates were serially diluted from 40ng/ul
to 5ng/ul. Stock concentrations of all samples were measured by NanoDrop according to
the manufacturers protocol. All primers and competitor oligos were ordered from IDT Tech-
nologies. Competitive templates were HPLC purified and independently quantitated with a
NanoDrop to verify concentration before usage. Each DNA sample was titrated from 40ng/ul
to 5ng/ul against a fixed amount of either synthetic competitor oligo (4500 haploid genome
equivalents) or against 15ng of chimpanzee DNA, respectively.

Sequenom iPLEX reaction. The genomic template/competitor mixture was rcPCR am-
plified and subjected to a post-PCR shrimp alkaline phosphatase (SAP) enzyme treatment
to dephosphorylate any remaining unincorporated nucleotides. After inactivation of the al-
kaline phosphatase, a primer extension cocktail was added. The rcPCR products from the
competitor and genomic template then served as templates for MassEXTEND. The primer
extension products were purified through the addition of clean resin and then dispensed on a
SpectroCHIP, a chip array that was preloaded with the components needed for MALDI-TOF
MS sample preparation.

Data analysis. We defined the wild-type genome frequency as (signal intensity of wild-
type allele) / (signal intensity of wild-type allele + signal intensity of the competitor allele),
and the QGE software exported frequencies were used for this study (SEQ, 2005; Mistro,
2005). According to the competitive binding assumption, the frequency and competitor
concentration should follow the relationship:

f =
1

1 + 10(log10EC50−log10C)

where f is the wild type genome frequency, C is the competitor concentration, and
EC50 is the genomic template concentration where the concentrations of the wild type
genomic template and competitor template are equal (SEQ, 2005; Mistro, 2005; Oeth et al.,
2003). Given this relationship, for each assay and sample, we could easily estimate the
genomic template concentration by doing a non-linear regression (Mistro, 2005). To control
for sample to sample (i.e. well to well) loading variation, all copy number measurements
were normalized against copy number measurements from the assays targeting non-variant
regions of the genome from the same well. For the ease of the comparison, we also expressed
or plotted these normalized copy numbers as relative ratio between the observed samples vs.
a reference sample (the HapMap sample NA11931 was used for most of the plexes; samples
NA11995, NA12004, NA12044, NA18505, NA12006 were used in order, in case NA11931 was
not available due to amplification failure). All the statistical analyses were carried out using
R (R Development Core Team, 2008).



No. Concordance

# CNVE ID Reasons for selection cytoband Target‐Region (chr. start‐end) Size (bp) CN_type CN Ref Sample # assays/ 
locus

CN_type (#errors/ samples 
tested)

1 CNVR305_full large CNV; various genes: 
SYT6\HIPK1\MAGI3\PHTF1\PTPN22\BCL2L15\AP4B1\OLFML3
\DCLRE1B\RSBN1

1p13.2 113684475‐114002640 318,165 Dels 1,2 NA11931 3 Dels 1/41

1 CNVR305_full large CNV; various genes: 
SYT6\HIPK1\MAGI3\PHTF1\PTPN22\BCL2L15\AP4B1\OLFML3
\DCLRE1B\RSBN1

1p13.2 114654475‐114692640 38,165 Dels 1,2 NA11931 4 Dels 1/41

2 CNVR2217.1 high VST=0.704; PDLIM3‐intronic 4q35.1 186678922‐186681050 2,128 Dels 0,1,2 NA12004 3 Dels 2/41

3 CNVR2445_full Known GHR exon3‐deletion polymorphism; OMIM 5p12 42664005‐42667027 3,022 Dels 0,1,2 NA11931 4 Dels 0/41

4 CNVR2906.1 high VST=0.419; C6orf142‐intronic 6p12.1 54037093‐54042000 4,907 Dels 0,1,2 NA11993 4 Dels 1/41

5 CNVR3107_full high VST=0.261; ESR1‐intronic; OMIM 6q25.1 152431681‐152433972 2,292 Dels 0,1,2 NA11931 3 Dels 0/41

6 CNVR3928.1 common CNV in CEU; EYA1‐intronic; OMIM:gene associated 
to branchio‐oto‐renal syndrome); dosage‐sensitive gene

8q13.3 72377264‐72380227 2,964 Dels 0,1,2 NA11931 3 Dels 1/41

7 CNVR4739.1 MBL2‐exonic; OMIM:deficiencies associated with 
susceptibility to autoimmune and infectious diseases

10q21.1 54196670‐54199100 2,430 Dels 1,2 NA11931 1 Dels 1/41

8 CNVR6315.1 high VST=0.417; ATP10A‐intronic; Imprinted 15q12 23482489‐23483487 998 Dels 0,1,2 NA11931 2 Dels 3/41

9 CNVR6782.1 high VST=0.426; CNTNAP4‐intronic 16q23.1 75097034‐75101030 3,996 Dels 0,1,2 NA11931 4 Dels 0/41

10 CNVR8300_full DMD‐intronic; OMIM Xp21.1 32897162‐32898244 1,082 Dels 0,1,2 NA11931 2 Dels 0/41

11 CNVR8499_full high VST=0.383; TMLHE‐intronic Xq28 154443364‐154450773 7,409 Dels 0,1,2 NA11931 2 Dels 0/41

12 CNVR8422.1 X‐linked; AKAP14‐exonic Xq24 118920043‐118938368 18,325 Dels 0,1,2 NA11931 6 Dels 0/41

13 CNVR1668_full TP63‐intronic; dosage‐sensitive gene 3q28 190845902‐190853732 7,831 Dels 0,1,2 NA11931 2 Dels 0/41
14 CNVR6359.1 PLCB2‐exonic; OMIM:Taste transduction ‐ PLCβ2 knockouts 

have a complete loss of sweet, amino acid, and bitter taste 
responses 

15q15.1 38376756‐38377676 920 Dups 2,3 NA11931 2 Dups 0/41*

15 CNVR8324.1 X‐linked; various genes: 
SSX6\SPACA5B\ZNF630\ZNF182\SPACA5

Xq11.23 47802588‐47815345 12,757 Dels 0,1,2 NA11931 4 Dels 6/41 **

*not variable in  agilent
** a bit noisey in agilent, there are two clear, tight clusters for males and females, but a number of samples falling in between these clusters

Nimblegen 42M Agilent SQNM

Figure 2.17: Validation of biologically interesting loci by mass spectrometry. This
table summarizes the results obtained for 15 CNV loci experimentally confirmed on three
platforms, Nimblegen 42M CGH, Agilent 105K CGH and Sequenom Mass Spec (SQNM).
We observed that for loci where both SQNM and 105K CGH platforms showed copy number
variation the concordance was high (0-2 discrepancies). We also observed the absolute copy
number for a locus could vary between different methodologies/platforms when the same
reference sample was not used. For example, after examining each locus carefully, we could
determine that a CNV with CN levels [0, 1, 2] in the Agilent platform could easily represent
a CNV with CN levels [0, 2, 4] in the SQNM platform, as was the case for loci CNVR2906.1
and CNVR8499 full.

3.6 Genotyping on Illumina Platform

The raw intensity data from the Human660W genotyping platform were normalized with
Illumina’s standard normalization method in the BeadStudio software (Framework version
3.1.3.0, Genotyping Module version 3.3.4.). The normalization algorithm was applied on the



sub-bead pool level and consisted of five main steps; outlier removal, background estimation,
rotational estimation, shear estimation, and scaling estimation (Illumina’s Genotyping Data
Normalization Methods, Pub. No. 970-2006-010). The steps are designed to adjust for global
intensity differences, channel-dependent background, and to scale the data. Raw genotyping
data was available for 285 samples (including replicates). After excluding replicate samples,
and 28 samples with a lower overall call rate in BeadStudio, 242 samples had data for CNV
genotyping analysis. These samples had a call rate > 99% in BeadStudio. The normalized
X and Y values, which correspond to normalized signals from alleles A and B for the specific
probe, were used as input values in subsequent analyses.

We used CNVtools Barnes et al. (2008) to summarize signal intensity data and to assign
samples to discrete copy number classes in 6,236 unique CNV regions. CNVtools performs
a principal component analysis (PCA) on a matrix of normalized signal intensities and
clusters the result of the PCA; these clusters represent the copy number assignments for
the samples. Output from the PCA procedure can then be used in linear discriminant
analysis (LDF) to further improve the clustering of the data. For each CNV, we compared
the PCA and LDF clustering results and chose the method with higher cluster separation
parameter ’Q’. We applied quality control for the raw genotyping results, and included to
the final QC+ CNV set only the CNVs, which had; genotyping success rate of at least 90 %,
clustering quality Q> 4, Hardy-Weinberg equilibrium test statistic 15 or less (applied only
for bi-allelic CNVs and calculated within populations), and less than 3 Mendelian errors in
the HapMap trios. In addition, we checked for residual correlation within a copy number
cluster by examining signal intensity correlations between the Human660W and the Agilent
105k genotyping experiments. Finally, we checked all QC+ CNV cluster plots manually, to
identify any additional problems with the CNVtools copy number assignments.

4 Genomic Overlaps

4.1 CNV overlap with genomic features

Intersection analysis of CNVs with gene annotations and other datasets from a variety of
biological databases and published studies was done using custom Perl, python and R scripts
(Figure 2.18). To avoid a bias towards genes with multiple annotated transcripts, we also
generated a merged RefSeq gene set (downloaded from UCSC on April 30, 2009) that com-
bines all transcripts for each gene. Briefly, transcripts were merged when they overlapped at
their mapped genomic positions on the same strand and referenced the same gene identifier
(NCBI Entrez ID), taking the minimum and maximum boundaries to define the merged
gene structure. There were 35 genes that mapped to more than one chromosome, and in
few cases to more than two chromosomes. For example, FAM138A, has been mapped to
chromosomes 1, 9 and 19, resulting in three gene models, while other genes in the pseudo
autosomal regions (PAR) have been mapped to both chr.X and chr.Y. For our analyses, we
maintained each copy as they likely represent distinct paralogous transcripts sharing 100%



sequence similarity. Transcripts that mapped to hap, random chromosomes or chrUn, and
mitochondria and the Y chromosome were removed from the dataset. Other datasets were
obtained and processed as indicated in Figure 2.18. Where needed, feature positions were
lifted over to the hg18 genome assembly.

Features were considered as intersecting CNVs if they overlapped by 1 or more bases
on either strand. Enrichment or impoverishment of CNV overlaps with different classes of
genomic features was further assessed in a permutation analysis where CNVs were randomly
reshuffled across the genome, maintaining the size distribution and the number of CNVs
per chromosome. In each iteration, the chromosome number for all CNVs was kept the
same while the positions were randomized within chromosome boundaries. P-values for
enrichment or impoverishment were calculated as the fraction of permutations where the
number of overlaps was respectively greater or smaller than the observed value in 1000
permutations.



 
Dataset Source 

DGV Entries http://projects.tcag.ca/variation/v7, Mar2009, NCBI 36 (hg18) 

DGV_BAC DGV including BAC studies, DGV v.7, Mar2009, NCBI 36 (hg18) 

DGV_noBAC DGV -BAC studies excluded, DGV v.7, Mar2009, NCBI 36 (hg18) 

RefSeq Transcripts, hg18 http://genome.ucsc.edu (May 1st, 2009) 

RefSeq Genes, hg18 Non-redundant gene set; ‘merged RefSeq’ was also generated 
(supplementary methods) 

miRNA http://microrna.sanger.ac.uk/sequences/; Release/Version 11.0, (Apil 
11th 2008), mirBASE { PIMD:17991681} 

Promoter Promoter defined as +/- 500 bp from the TSS 
CpG Islands http://hgdownload.cse.ucsc.edu/downloads.html#human DNA regions 

>500 bp with a GC content >55% and observed CpG/expected CpG of 
0.65 {PMID:11891299}. 

Enhancer Elements VISTA, http://enhancer.lbl.gov/ (negative enhancers were removed) 
Ultra Conserved Elements UCE - elements perfectly conserved over 200 bp or more, Supp Table 

(http://www.soe.ucsc.edu/~jill/ultra.html) {PIMD:15131266} 
Imprinted Genes Otago, http://igc.otago.ac.nz/home.html 

UCSC Duplications http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/genomicS
uperDups.txt.gz; v. created 03-Aug-2006, downloaded 03-Sept-2008 

WSSD Duplications http://hgdownload.cse.ucsc.edu/goldenPath/hg17/database/; added 
Celera Dup positive 

Recombination Hotspots http://www.hapmap.org/downloads/recombination/ 

OMIM Disease Genes http://www.ncbi.nlm.nih.gov/Omim/getmorbid.cgi 
Repeat Masker SINE; LINE; LTR; DNA element;Low complexity;Satellite; Other; 

TRF_SimpleRepeat; http://hgdownload.cse.ucsc.edu 
AR/AD Genes Hand-curated list of 980 gene-phenotype pairs of the OMIM database 

with phenotypic information about the mode of inheritance and age at 
onset (hOMIM) {PMID: 18571414} 

Dosage Sensitive Genes 
associated with disease 

105K Oligo Array- Baylor's Disorder List 
(http://www.bcm.edu/geneticlabs/tests/new.html) 

Decipher Syndromes https://decipher.sanger.ac.uk/application/ 
Pharmaco-genes Drug or xenobiotics metabolizing enzymes (DMEs or XMEs)- 

Integrated list from Goldstein2004 and PMID:18032438 [Hernandez-
Boussard et al.2008, Pharmacogenetics Knowledge Base 
(PharmGKB; http://www.pharmgkb.org/)] 

Cancer Genes Cancer Gene Census list, (Dec. 16 2008) 
[http://www.sanger.ac.uk/genetics/CGP/Census/:CancerGeneCensus_
Table_1_full_2008-12-16.xls] 

GWAS  http://www.genome.gov/gwastudies/ 
Levy et al. (Venter genome) {PMID:17803354} (only entries ≥ 400bp used) 

Wheeler et al. (Watson genome) {PMID:18421352} (only entries ≥ 400bp used) 
Bentley et al. (Yoruban genome) {PMID:18987734} 
Wang et al. (Asian genome) {PMID:18987735} 
Mills et al. {PMID:16902084} (only entries ≥ 400bp used) 

Korbel et al. {PMID:17901297} (only entries ≥ 400bp used) 
 

Figure 2.18: Reference datasets used in the CNV overlap analyses.



4.2 Functional classification of genes intersected by CNV loci

To identify enriched functional annotation gene categories, we used the Database for An-
notation, Visualization and Integrated Discovery (DAVID; v. April2008) (Huangda et al.,
2009). Entrez gene identifiers were used for the upload format. The 3,340 RefSeq genes that
were overlapped by 8,599 validated CNVs were tested for enrichment of biological process
gene ontology (GO) terms, KEGG, BBID and BIOCARTA pathways, further clustering into
function-related gene groups. Cutoffs for enrichment were set at an FDR-corrected EASE
score of 0.05, with a minimum of 2 genes per functional category. To check for consistency
with an independent classification tool we also used BABELOMICS (v.3.2), which was fur-
ther used to annotate loci with impoverished gene ontology/functional classes (Al-Shahrour
et al., 2006, 2005). The highest-scoring enriched categories were seen by two methods, and
are listed in Table SIV together with impoverished categories, after correction for multiple
testing.

We primarily identified ontology gene categories that were enriched or impoverished in
validated genotyped CNV loci when compared to the genomic background. We further ex-
plored enrichment and impoverishment for the loci subgroups deletions, duplications, multi-
allelic, common and rare.

5 Mutation Mechanisms

5.1 VNTRs, NAHR

VNTRs were identified as all CNVs with greater than 50% of their bases contained within
Tandem Repeat Finder annotation. Non-allelic homologous recombination (NAHR) was
ascribed as a mutation process using two different approaches. First all CNVs were identified
that had one edge within one half of a segmental duplication pair, and the other edge within
the other duplication of the same pair. As the segdup definition only identifies homologous
sequences larger than 1kb we added a second, more flexible approach to allow for NAHR
mediated by shorter sequences. Breakpoint regions were constructed for each CNV using
an algorithm that searches for the modal edges in the set of calls comprising that CNV.
Vmatch sequence analysis software (www.vmatch.de) was used to identify the longest stretch
of perfect homology between the two breakpoint regions for each CNV. CNVs with at least
20bp of perfect match homology between breakpoint regions were deemed likely to have
formed by NAHR. In order to be classified as NAHR, a CNV must have less than 70%
of sequence contained in VNTR annotation. This classification leads to 39 CNVs being
classified as both VNTR and NAHR.

5.2 Non-B DNA structures

Based on 30 years of nucleic acid research 10 distinct non-B DNA structures have been
identified. The formation of these structures is largely driven by the primary sequence and



thus the genome can be annotated with locations likely to form non-B DNA. The sequence
motifs of interest are tandem repeats, mirror repeats, inverted repeats and G quartets.

Five Non-B structures were classified with the following rules:

• Z DNA: direct tandem repeats where sequence is (GY.RC)n with n ≥ 6;

• triplexes: mirror repeats + direct tandem repeats composed exclusively of Rs or
Ys. Intermolecular triplexes were identified as the sequence (G.C)n with n ≥ 12.
Intramolecular triplexes: (G.C)12−13N4−6(G.C)12−13, (G.C)14−15N2−7(G.C)14−15,

(G.C)16−17N0−8(G.C)16−17, (G.C)18−19N0−9(G.C)18−19.

• cruciforms: inverted repeats + direct tandem repeats composed exclusively of Rs or
Ys.

• slipped DNA: direct tandem repeats where sequence is (A.T)n with n ≥ 12.

• tetraplex structure: G quartets.

Whole genome annotations of these non-B DNA forming structures were generated using
software kindly provided by Jack Collins of NCI (available from http://ncisgi.ncifcrf.

gov/∼collinsj/pgms/).

5.3 Motif discovery

Our characterization of breakpoint sequences up to this point involved testing hypotheses
about the enrichment of specific sequences suggested by prior research. We also took a
hypothesis-free approach to characterizing CNV breakpoints by trying to identify any small
motifs over-represented in our set of breakpoints sequences. A simple algorithm was used
to define breakpoint regions for each CNV; the target size for each breakpoint region was
550bp, but in the case of small CNVs the window was necessarily smaller. In order to
maximize the chance of identifying a novel rearrangement process, we focused on CNVs
without any obvious etiology: we removed VNTRs and CNVs flanked by segdups or long
stretches of perfect homology. Each sequence was then processed with “dust” (Tatusov, RL
and Lipman, DJ. unpublished), removing homopolymer and simple sequence repeats; only
sequences with greater than 20 non-missing bases were retained for further analysis, leaving
6516 sequences. After these processing steps, 80% of breakpoint sequences were 550bp in
length, with 192 smaller than 550bp and 596 sequences > 1kb.

If one were to test for over-representation of a given motif by exhaustively enumerating
all motifs, it would not be possible to test for motifs of even moderate size (> 10bp ) as the
search space grows exponentially with motif length. Instead we used a stochastic search ap-
proach implemented by nestedMICA (Down and Hubbard, 2005). Briefly, this approach uses
a novel Bayesian hill-climbing algorithm called “nested sampling” to simultaneously learn
multiple motifs represented in a set of input sequences (first proposed by John Skilling at
Cambridge University, http://www.inference.phy.cam.ac.uk/bayesys/). The input sequences



are modeled as a hidden Markov Model; this model has hidden states corresponding to the
background genomic sequence (without motifs), a user-defined number, ’n’, of motif states,
and silent states not responsible for modelling any sequence. Inference essentially amounts
to fitting parameters for the most likely n motifs, which results in n position weight matrices
(PWMs) of variable length.

We ran nestedMICA with parameter settings that would identify the top 20 most enriched
motifs, from 6-13bp in size: ”nminfer -threads 4 -checkpointInterval 1000 -distributed -port
1024 -mixtureUpdate weakResample -revComp”. The algorithm ran for 80,000 updates,
and convergence was confirmed by visual inspection of likelihoods. The resulting PWMs are
presented in Supplementary Notes.

Interpretation of the resulting motifs is not a trivial task. We compiled list of about
200 common transposable element sequences and low complexity DNA motifs (e.g. simple
repeats, homopolymers, etc.) and scanned this list with PWMs for each motif and recovered
all motif hits with bits-sub-optimal score > −5. We identified one 13mer with perfect hits to
many SVA and Alu subfamily consensus sequences. We mapped the location of this hit on
Alu secondary structure and noticed that it resides within a conserved SRP9/14 recognition
site on the left monomer (Figure 2.19).



Motif lies in a highly
conserved binding site
for a SRP

Myers motif

Figure 2.19: Mapping of breakpoint motif on Alu secondary structure. The motif
match begins at position 25 of this AluY consensus, reading from the figure “GUAAUC..”.
We have also labeled the location of a close match to the Myers recombination hotspot motif
(Myers et al., 2008). This figure is adapted from (Mills et al., 2007). Base colorings are from
their analysis and do not pertain to ours.

5.4 Genomic annotations used

In the next section, we describe our analysis of motifs at CNV breakpoints. In addition to
testing motifs producing B-DNA structures (listed above) and the novel motifs identified by
nestedMICA, we also examined two types of annotation (breakpoint annotation and CNV
annotation) derived from the UCSC genome browser tables and other sources. Here we try
to list these sources using the names presented in Figure 3a of the main text. All annotations
were with respect to NCBI36.

I. Breakpoint Annotations. These are annotations that are added to a CNV if one or
more of the elements fall within one or both of the breakpoint regions of that CNV (unless
otherwise specified).

• Simple repeats (UCSC, only those < 100bp).

• dbSNP indels, from dbSNP build 129, only those < 500bp.



• segdup pairs. This is derived from UCSC table “Segmental Dups”. A CNV is anno-
tated with this feature only if the left edge falls into one half of a segdup pair, and the
right edge falls into the other half of the same pair.

• CpG islands (from UCSC).

• degen myers - We annotated this motif on the genome ourself using the “degenerate”
13bp form of the hotspot motif reported in Myers et al. (2008).

II. CNV annotations. These are annotations that are added to a CNV if the entire CNV
region has 50% reciprocal overlap with the

• Simple repeats (UCSC, only those > 100bp).

• Uniq segdups (UCSC table “Segmental Dups”, summarized to remove redundant events)

• Pseudogenes (from the Gerstein lab (www.pseudogene.org).

5.5 Hypothesis testing

We tested two sets of hypotheses: 1. Are any motifs of interest (identified as a priori
candidates or through nestedMICA analysis) overrepresented at the breakpoints of CNVs,
2. Do duplications and deletions differ in their motif enrichment?

To test for breakpoint enrichment it is necessary to have a null distribution for compari-
son. We decided to use sequence closely flanking each CNV to construct this null as it should
be fairly well matched for possible confounders like GC content. The other issue is the scale
at which the motifs are enriched. For some mutation processes the motif by definition will
contain the breakpoint (eg. segmental duplications and NAHR), but one could imagine that
the enrichment may be more diffuse for other motifs.

We created data sets that we refer to as “aligned feature summaries” for each motif of
interest. Each summary is parameterized by a “window” size, w, and a number of bins, n. A
grid of n bins of size w

n
is constructed to the left and right of each of the k CNVs. Likewise we

construct a grid of w
n
bp bins internal to each CNV, the number of bins depending on CNV

size but not exceeding n. In the case that the CNV size is greater than wbp, equal sized
grids of n

2
bins are constructed internally from the left and right breakpoints. The result of

this griding process is a set of (at most) 3n bins centered on each CNV. We tabulate the
density of the motif in each of the 3n bins for each CNV and then average across CNVs. If
Dij is the density of the motif for bin i at CNV j, the total average density in the ith bin is

Di =

∑k
j=1 Dij

k

To assess the significance of observed patterns of motif density, we use bootstrap resam-
pling to create 95% confidence intervals on the observed motif densities in each bin. We
create 1000 datasets of k CNVs each using sampling with replacement and find the 25th and



975th ordered value of each Di across all samples. Ninety-five percent confidence intervals
created this way suggested that slipped DNA, G quadruplexes, hotspot motif, dbSNP indels,
CpGs, simple repeats > 100bp, segmental duplications were enriched at CNV breakpoints,
while cruciforms, Z-DNA, and triplexes were not enriched.

We next tested the hypothesis that deletion and duplication breakpoints are associated
with distinct sequence features. Multiallelic events were treated as duplciations. A dataset
was created of 615 duplications and 2532 deletions for which the breakpoint regions were
550bp on both the left and right edge. For each motif in our list of candidates, we scored
each CNV as spanning no copies of the motif (0) or at least one copy (1). The proportion of
duplications and deletions containing each motif was tabulated and the statistical significance
of the differences in proportion for each motif was assessed by permuting deletion/duplication
labels across CNVs. In all cases of significant difference (p < .05) the difference was an
enrichment of motif usage in duplications over deletions. Segmental duplication pairs and
G-quadruplexes (6.5 fold and 1.75 fold enriched) were highly significant (p < .001), while
short indels were mildly enriched (p < .05).

A similar analysis was conducted looking at the sequence content of entire CNVs; instead
of scoring motif placement in breakpoint regions, we scored the proportion of deletions and
duplications with > 80% reciprocal overlap with various genomic annotations. Segmental
duplications (20 fold), CpGs (4 fold), and VNTRs over 100bp (3 fold) were enriched in
duplications over deletions.

5.6 Dispersed Duplications

There are a very small number of inter-chromosomal duplications that are known to be
polymorphic in man (Wong et al., 1990; Doggett et al., 2006); it is thus of great interest to
identify additional cases. Such knowledge will aid in the interpretation of GWAS results,
and improve our understanding of mutation mechanisms.

Genomic overlaps. We hypothesized that polymorphic inter-chromosomal duplications
longer than 1kb in the reference genome sequence will be annotated as segmental duplica-
tions, and that we might be able to identify a subset of such variants that are also present in
our CNV map. We downloaded the “Segmental Duplication” track from NCBI36 and iden-
tified interchromosomal segmental duplication pairs where both members showed > 90%
reciprocal overlap with a CNV in our map.

We obtained a set of 23 validated, unpublished germline interchromosomal CNVs from the
Cancer Genome Project (Campbell et al., 2008). Cross-referencing these with our CNV map
we were able to identify 4 polymorphic inter-chromosomal duplications; these were validated
by PCR genotyping of each duplication in the Plate 1 HapMap samples (Supplementary
Notes).

Greater consideration of the possible mechanisms leading to an inter-chromosomal dupli-
cation suggested several additional strategies to identify polymorphic retrogenes. In the case
of a processed pseudogene, only the exonic sequence will be copy number variable. As the



exons are typically much smaller than the introns, and we may have only 1 (or no) probes
in any given exon of a gene, we don’t expect the entire gene to show CNV in the case of a
processed pseudogene.

Sequence analysis. We used DNA sequence analysis to identify 14 strong candidates of
retroposition in our CNV map. Briefly, we looked for a poly-A tail at one end of the CNVR
and target site duplications flanking the CNVR, as well as a clear homology match of the
CNV sequence to somewhere else in the genome.

in silico splicing. We created a set of “spliced” CGH data for each gene in RefSeq;
this consisted of creating one vector of all exonic data for each gene and each individual.
We calculated two statistics on each combination of gene and sample: “slope” and “t-test”.
“Slope” starts by fitting a regression of probe position vs. log2 ratio for just the exonic
probes (with estimated regression coefficient β̂1) and intronic probes (β̂2). Under the null of

no retrogene β̂1 = β̂2; our statistic is β̂1−β̂2

SE(β̂2)
. The “t-test” statistic is just the t-test statistic

for difference in mean between the intronic probes and exonic probes,

t =
µ̂1 − µ̂2

σ̂pooled

√
2
n

which should be equal to 0 under the null. We retained all genes that had greater than 5
t-tests with Bonferroni-corrected significance. The goal here is to identify polymorphic pro-
cessed pseudogenes not detected on the discovery array. Therefore we removed all significant
genes that spanned a CNV already in the discovery map.

Inter-chromosomal LD. Finally, we looked for signatures of inter-chromosomal LD
between CNV genotypes and SNPs using the Phase II HapMap data (release 23a). Briefly,
we used a published genetic map (Frazer et al., 2007) to define hotspot intervals around each
CNV (the interval from the nearest hotspot 5’ of the CNV to the nearest hotspot 3’ of the
CNV). We then found the maximum Pearson correlation between the CNV genotypes and a)
SNPs within the hotspot interval and b) SNPs outside the hotspot interval. This resulting
data was used to construct a list of “R2 differences” (R2D = R2

in−R2
out). After filtering our

list to CNVRs with R2D > 0, we binned each CNVR into four categories:

• A: Multiple SNPs with high R2
out on the same chromosome, but different from the R2

in

chromosome.

• B: A single high R2
out SNP on a different chromosome from the R2

out chromosome.

• C: Multiple SNPs on more than one chromosome.

• D: Single or Multiple SNPs all on the same chromosome as the R2
out chromosome.



We retained 58 likely inter-chromosomal events in which the R2D > .5 in at least one
population, the CNV was called a duplication or multi-allelic event, and was in categories A
or B.

6 Analysis of ascertainment

Previously published population studies of CNV have only ascertained events from the largest
end of the CNV size spectrum. We are interested to know the proportion of common variants
(MAF > 5%) that we have ascertained in the discovery phase of the current project. Our
data is the CNV map from the discovery phase and the site frequency spectrum (SFS) of
CNV from the genotyping phase.

To explore this issue we used a Beta-Binomial framework for modeling the process of
sampling CNVs from the underlying population; the Beta distribution models the complete
frequency distribution of CNVs in the CEU population and the CNVs present in our dis-
covery sample are binomial samples from that frequency distribution. However, there are
two additional layers of sampling involved here (Figure 2.20). First, our discovery array has
incomplete power to detect CNVs; the CNV map we construct in the discovery phase repre-
sents only a subset of all copy number variation present in the discovery samples. Second,
while we included all CEU CNVs detected in the discovery phase on the 105K genotyping
chip, we were only able to genotype a subset of these leading to another level of sampling.
Our ultimate goal is to estimate parameters of the underlying Beta distribution, which will
required us to model the various sampling processes leading to the genotype set.



1. The true underlying frequency distribution of
polymorphic sites in population, unknown. This can be
modeled with beta distribution in neutral case, but we can
get better fit to data with more complex functions
considering selection/demography

2. The true site frequency spectrum (SFS) of
CNV in our sample of 40 chromosomes.

Process A:
binomial
sampling

3. SFS of CNV that we can discover in
the discovery data

Process B: CNV
discovery; some
power fxn: p(length)

4. SFS data that we
observe from
genotypesProcess C: CNV

genotyping; some
fxn: g(x)

Figure 2.20: Sampling processes generating genotype data. There are 3 sampling
processes leading to the set of genotype data analyzed in this section. Our goal is to make
inferences on the underlying CNV frequency distribution using the discovery and genotype
data.

We consider size to be the primary characteristic that influences CNV detection power,
and we model our power to detect a variant in a single experiment, p1(l), as a simple
linear function of length. To construct this power curve we compare the genotyping data
and discovery CNV calls for the 21 samples typed on both platforms. Homozygous CNV
genotypes are far less common than CNV heterozygotes, and we make the conservative
assumption that power to detect a sample that has 2 alleles different from the reference will
be the same as a sample with 1 allele different from the reference.

For each genotyped CNV, we estimate the false negative rate (FNR) in the discovery
data as the proportion of samples with a genotype call different from the CGH reference
individual but not called. We define power as 1-FNR (Figure 2.21).
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Figure 2.21: False negative rates and power as function of CNV size. A black point
representing the false negative proportion for each genotyped CNV is plotted against CNV
size. The power function, constructed by binning CNVs into deciles of length, is plotted as
a red line using the same scale.

This type of power estimate is the probability of detecting a variant in a single sample;
however we are interested in the detection probability of a locus. The power of detecting a
locus is a function of the per sample power, p1(l) and the allele frequency, f , at that locus;
we denote this power as p2(l, f). More explicitly,

p2(l, f) = 1− (1− p1(l)
a)∗ (1− f)2 +(1− (1− p1(l)

b)∗ 2f(1− f)+ (1− (1− p1(l)
c)∗ f 2) (4)

where a, b, and c represent the expected numbers of samples without the minor allele,
not heterozygous, and without the major allele, respectively. The formula can be understood
to represent a weighted average of three power estimates, one for each possible genotype of
the CGH reference individual. An example locus power curve is given in Figure 2.22.
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Figure 2.22: Power curve to detect a CNV locus in a sample of 40 chromosomes.
Each bar corresponds to the power to detect a locus in the CGH discovery experiment, as a
function of derived allele count; going from 1 copy on the left to 40 copies on the right. The
power indicated on y-axis is calculated with Eq. 4. using CNV data from the bottom decile
of the CNV length distribution (446-794bp).

To model the sampling of loci introduced by genotyping, we make the assumption that
probability of genotyping success is equal for all CNVs in the discovery set. Therefore
there is a constant loss of observations in each bin of the SFS, 1/g, which we estimate as
4978/8599=0.59. Note that this does not take into account redundancy in the validated
CNVs that has been eliminated in the QC+ genotyping set.

Next we divided all CNVs into deciles of length, li, ..., l10, and constructed power functions
for each decile, p2(li, x). Let Nxi

be the number of CNVs of frequency x in decile i. We
combine the loss of loci due to genotyping, the locus specific power curve and the observed
SFS data to estimate the true SFS in the discovery samples:

E[X = x] =
10∑
i=1

∗Nxi
∗ 1/p2(li, x) ∗ g (5)
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Figure 2.23: Observed and estimated SFS of CNVs. On left, the actual SFS observed
by genotyping the 20 samples used in the discovery phase. Each frequency bin is divided
into deciles of CNV length. Coloring of deciles is consistent across bins. On right is the
analogous SFS plotted for the estimated SFS calculated by Eq. 5.

Based on these calculations there are 5500 potentially assay-able CNVs > 450bp segre-
gating in the CEU discovery samples, 5000 (91%) of which were detected by CGH (Figure
2.23).

This addresses the sampling due to discovery power, but there is the additional issue
of sampling from the population; we have not yet considered that our discovery sample is
a subset of 40 chromosomes from the entire European “population”. Under neutrality, the
expected frequency distribution can be modeled by a beta distribution of the form

f(x) =
x( θ

2
−1) ∗ (1− x)( θ

2
−1)

B( θ
2
, θ

2
)

where θ is the population scaled mutation rate and B(a, b) is the beta function (Wright,
1951). We fit this neutral beta density to our expected SFS calculated in Eq. 5, obtaining an
MLE for the whole-genome θ. Assuming a total assay-able genome size of 3Gb our estimate
translates to a base-pair θ = 4.3× 10−7.

Considering just CNVs greater than 5% MAF, the expected number of sites with exactly
i copies of the derived allele in a sample of n chromosomes is

F (i, n) =

∫ 0.95

0.05

(
n

i

)
xi(1− x)n−if(x)dx



and the total number of sites where we expect to observe a variant of 5% or greater is

n∑
i=1

F (i, n). (6)

In Figure 2.24a we plot Eq. 6 over a grid of sample sizes; from analysis of the asymptotic
behaviour of the function we estimate that there are 3797 CNVs > 5% MAF and > 450bp
in the European population from which our discovery sample was drawn. We estimate that
we have genotyped 939 (25%) of these.

After consideration of the power curve in Figure 2.21, we believe that all CNVs greater
than 3kb that are present in the discovery sample have been identified. We present a parallel
analysis focusing on just these variants for comparison in Figure 2.24b. We estimate that
there are 971 variants > 3kb in size, > 5% MAF and that we have genotyped 426 (44%) of
these.
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Figure 2.24: Expected number of sites with minor allele freq > 5% as a function of
number chromosomes sampled for (a) all CNVS > 450bp long and (b) all CNVS
> 3kb long.

7 Mutation rate

We used the ascertainment-adjusted data described above to formulate population-genetic
estimates of the autosomal CNV mutation rate. First, we use the number of ascertainment-
adjusted segregating sites in the CEU samples, 5437, as input to the Watterson etstimator
of the population-scaled mutation rate (Watterson, 1975). Assuming an effective population
size of 10,000, this translates into an estimate of .03175 CNV events per haploid autosomal



genome per generation. Fitting a Beta distribution corresponding to the expected station-
ary allele frequency distribution to the adjusted SFS, described above, yields a value of θ
corresponding to .035 de novo CNVs per genome per generation. Both of these estimate this
agrees with what has been observed in the few studies of large de novo events which have
produced observations of one de novo event per 1− 10% of trios examined (Marshall et al.,
2008; Sebat et al., 2007).

8 LD Analyses

8.1 Phasing

We investigated several methods for phasing CNV genotype calls onto haplotypes defined by
HapMap SNPs, including PHASE 2.1, fastPHASE 1.2, and BEAGLE 3.0.3 (Marchini et al.,
2006; Scheet and Stephens, 2006; Browning and Browning, 2007). BEAGLE 3.0.3 was the
best fit to our need of an accurate phasing algorithm that uses trio information, provides
imputation, and is computationally efficient.

Imputation is a particularly important aspect of phasing for our data, because genotyping
accuracy for CNVs is still much lower than that for SNPs. Our strategy to improve the overall
call quality of the CNV genotypes is to combine highly accurate SNP genotype calls with a
model of haplotype structure to impute CNV status for individuals with noisy or ambiguous
intensity data.

To assess the performance of BEAGLE, we conducted a series of analyses using the Phase
II HapMap CEU genotype calls and our CNV genotype calls from chromosome 22; in this
section we will simply use “genotypes” to refer to this combined set unless the label “CNV”
or “SNP” is explicitly given. We chose to restrict our analyses to chromosome 22 as, in
addition to defining a small data set, it has one of the highest recombination rates of all
chromosomes, and thus may represent a lower bound on expected imputation and phasing
accuracy.

First we used the family structure of the CEU trios to determine the phase of our geno-
type calls at all sites that can be unambiguously determined. Genotypes were phased with
BEAGLE 3.0.3 using the “trios=” option and default settings. Sites of data missing in the
empirically phased haplotypes (due to phase ambiguity) were set to missing data in the
BEAGLE-phased haplotypes as well.

The following procedure was run for both sets of haplotypes. All monomorphic sites were
removed, and 500 loci were selected at random from the remaining data. For each of these
500 “target” loci, a window of 200kb was defined that centered on the start of the locus,
and pairwise r2 was calculated between the “target” and all variants inside the window,
producing a set of 127,000 r2 values.

Comparison of these paired r2 values reveals that the model-based phasing implemented
in BEAGLE 3.0 is extremely accurate (Figure 2.25). Eighty-three percent of all r2 pairs are
identical, and 86.3% of r2 pairs with both r2 > 0.5 are identical. One important analysis in



the paper is the identification of tag SNPs for the CNVs on the genotyping array. Among
the 2768 variant pairs with r2 > .85 in the empirical haplotype set, only 10 (0.3%) of these
have r2 < .7 in the model-based haplotype set.

Figure 2.25: Comparison of r2 estimates from empirical and model-based phasing.

To measure the imputation accuracy of BEAGLE 3.0.3 we created artificial missing data
by masking a subset of the unphased genotypes and then counted concordance between
the true and imputed genotypes for these masked observations. In detail, we masked 10%
of the genotypes of each parent in the CEU trio sample. The entire CEU data (parents
and offspring) were phased twice, once with and once without using the family information.
Imputation accuracy averaged across all loci and samples was extremely high: the median
genotype concordance rate was 99.66%, and the minimum was 99.2%. Curiously, the trio
information only added an extremely small boost to imputation accuracy, changing concor-
dance rates at the fourth decimal place (hundreths of percents). Computation time was cut
in half when using trio information (from 7 minutes to 3.5 minutes for 55000 markers).

8.2 Tagging

CNVs with integer-value copy number were integrated into genotypes from HapMap release
23a. All genotypes in the integrated set of SNPs and CNVs leading to a Mendelian error
in one of the CEU or YRI trios were replaced with missing data (in the Mendelian error
trio, only), and all variants with minor allele frequency < 5% were removed (on a by-
population basis). After this cleaning step, genotypes were phased using BEAGLE 3.0.3



with the “trios=” setting for CEU and YRI samples, and “unphased=” setting for the
JPT+CHB samples.

The 15 June, 2009 release of the NHGRI GWAS association table was used to identify
GWAS hit SNPs in high LD with HapMap CNVs. Two sets of correlations were estimated
for each population: Pearson correlation between CNV intensities and hit-SNP genotypes
and r2 between phased CNV and SNP alleles.

For all tagging analyses, we used a dynamic window size to search for tag SNPs to each
CNV. The left end of the window was defined as the first recombination hotspot from the
Oxford genetic map 5’ from the left end of the CNV, or 100kb from the left end of the CNV,
whichever was larger; the right end was defined likewise in the 3’ direction.

9 Selection analyses

9.1 Population differentiation

We calculated Vst for using the log2 ratios for each probe on the 42M discovery array, omitting
individual NA15510 (who is of unknown ancestry) and including a datapoint for NA10851
(the Caucasian reference individual). Vst calculations were the same as described in (Redon
et al., 2006).
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Figure 2.26: Population differentiation does not depend on functional content of
CNV.



9.2 Frequency spectrum

The site frequency spectrum of variation (SFS) in a sample of chromosomes contains infor-
mation about the history of mutation, demography and selection in the genealogy of those
chromosomes. We used the Poisson Random Field (PRF) methodology implemented by
the program prfreq (Boyko et al., 2008) to model the site frequency spectrum of CNVs
ascertained in the discovery phase and thus make inferences on the population genetic forces
acting on CNV.

A central strength of the discovery project is that it allows careful consideration of the as-
certainment of our variants. The models implemented in prfreq are predicated on unbiased
ascertainment of variation in the sample under study.

The extent to which CNV conforms to the standard neutral model is a fundamental
unanswered question, as is the relative impact on fitness of SNPs and CNVs. A typical
population genetics convention is to describe the reproductive disadvantage associated with
samples that are heterozygous s, or homozygous, 2s, for a mutant allele. We wanted to test
the hypothesis that the scaled selection coefficient γ = 4Nes is equal to 0 for various classes
of CNV, and compare estimates of γ for CNV and SNPs.

In order to accurately resolve the various forces acting on the SFS it is necessary to
consider demography and mutation as well. Due to their ease of genotyping, multitude and
lower mutation rate, SNPs are far better than CNVs for characterizing demography. We
chose to use the demographic model fitted to sequencing data from 20 Europeans that was
reported in (Boyko et al., 2008). We therefore restrict our analyses in this section to CNV
ascertained from the 20 CEU samples in our discovery panel.

We fitted the “single point mass” model of γ for to the ascertainment-adjusted SFS for 3
categories of CNV: exonic, intronic, and intergenic. A maximum likelihood estimate of γ was
obtained by exploring over a grid of γ values using multinomial likelihoods. The likelhood of
the data at this MLE is Lγ. To test the null hypothesis of γ = 0 we calculate the likelihood
of the data at γ = 0 (call it L0) and compare the likelihood ratio test statistic, 2 log(Lo/Lγ),
to a chi-square distribution with 1 degree of freedom.

In Figure 5a of the main text, we plot the expected SFS for the different CNV classes.
Here, in Figure 2.27 and Figure 2.28, we present the observed SFS and ascertained-adjusted
SFS for each class.
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Figure 2.27: Raw SFS.
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9.3 Haplotype-based statistics

A separate dataset of phased haplotypes was constructed for calculating haplotype-based
selection statistics. Prior to phasing, all SNPs with a MAF < 0.05 and SNPs not present in
all 3 populations were removed.

Assignment of ancestral states was made using data from dbSNP to find chimp/orang/macaque
orthologous alleles where possible. In the small number of cases where outgroup data was
not available the YRI major allele was taken as the ancestral state. Calculation of raw iHS
and XP-EHH scores was performed using C programs kindly provided by Joe Pickrell and
Sridhar Kudaravalli (U. Chicago).

Unstandardized iHS scores were standardized by binning all variants (CNVs and SNPs)
in 20 equally-spaced bins of derived allele frequency and performing a Z transformation on
the data in each bin separately (following (Voight et al., 2006)). An interesting open question
is wether the strength of selection differs between CNVs and SNPs; key to answering this
question will be carefully understanding differences in ascertainment between the two forms
of variants in any given dataset. In Figures 2.29 and 2.30 we compare the distribution of
XPEHH and iHS scores for SNPs and CNVs.

We observed that the distributions of XPEHH for CNVs and SNPs the CEU-ASN distri-
butions are similar, but for CEU-YRI and ASN-YRI they are quite different. For example,
the P values by t-test are:
ceu vs. yri: 3.11× 10−49

asn vs. yri: 6.66× 10−46

ceu vs. asn: 0.62

In the significant cases, XPEHH values for CNVs are more negative than for SNPs, which
in some convoluted way is telling us that the ratio of YRI/non-YRI homozygosity is greater
around CNVs than for SNPs.

For standardized iHS P values for different means between SNPs and CNVs are non-
significant for CEU and ASN, and < 3 × 10−6 for YRI. CNVs are more negative, which in
this context suggest less HH on CNV haplotypes than SNP haplotypes (our iHS signs are
flipped compared to Voight et al). We are not at all confident that these differences are
meaningful, and further investigation is warranted into possible biases in the calculation of
iHS/XPEHH related to variant “type” (ie. CNV or SNP).



Figure 2.29: Comparison of XP-EHH scores for CNVs and SNPs.

Figure 2.30: Comparison of iHS scores for CNVs and SNPs.
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A Chip Design

Subarray Chromosome start end nprobes
1 1 475 50709675 715628
2 1 50709740 98108291 715628
3 1 98108371 167887865 715628
4 1 166969764 214451478 715628
5 1 214451493 247199522 486747
5 2 321 13525448 211749
5 1 random 721 1663161 17130
6 2 13525508 61054388 715628
7 2 60130420 112298804 715628
8 2 112298874 159094964 715628
9 2 159094989 206387661 715628
10 2 random 21 185461 2517
10 3 35001 9635816 148082
10 2 205538945 242751081 565027
11 3 9635841 58089043 715628
12 3 58089103 109394892 715628
13 3 108551013 156060868 715628
14 4 191 3788423 55682
14 3 156060908 199446763 650573
14 3 random 16 749178 9371
15 4 3788463 54403787 715628
16 4 53433714 102075332 715628
17 4 102075392 149508703 715628
18 4 149508773 191262999 636740
18 4 random 51 842554 9953
18 5 64840 4266715 68933
19 5 3410784 53774183 715628
20 5 53774243 101836135 715628
21 5 101836220 149483558 715628
22 6 5001 14966339 228940
22 5 random 11 143239 1884
22 5 148564081 180837747 484802
23 6 14966429 66433733 715628
24 6 66433803 114882138 715628
25 6 113990973 161301866 715628
26 6 161301921 170896931 150611
26 6 random 36 1875467 28251
26 7 34011 35840154 536764
Table 2.10: Layout of probe content for 42M dis-
covery chip design



Subarray Chromosome start end nprobes
27 7 35840209 89208956 715628
28 7 88309601 136525724 715628
29 8 46 24580495 376985
29 7 random 66 549184 7170
29 7 136525734 158821274 331471
30 8 24580565 76247638 715628
31 8 75353347 122880886 715628
32 8 122880926 146273053 361503
32 8 random 46 943728 6813
32 9 461 23010846 347310
33 9 23010931 90815313 715628
34 9 89838829 138192328 715628
35 9 random 377 1146355 9362
35 9 138192343 140273167 31023
35 10 50046 49461074 675241
36 10 49461129 97318956 715628
37 11 50031 7976157 119694
37 10 random 36 113198 1399
37 10 96254670 135374563 594533
38 11 7976222 59706518 715628
39 11 59706608 108056759 715628
40 11 106997474 134451799 422588
40 11 random 46 215199 1841
40 12 17346 19710657 291197
41 12 19710702 70436337 715628
42 12 70436377 118929957 715628
43 13 17918001 52120092 512456
43 12 117963955 132289468 203171
44 13 52120439 98008972 715628
45 13 random 6 186783 2830
45 13 98009052 114127916 245392
45 14 18070191 50012244 467404
46 14 48964632 97018727 715628
47 14 97018742 106360491 143517
47 15 18260026 57641897 572110
48 15 random 1 784271 8799
48 16 48 4845208 67243
48 15 57641972 100338484 639584
49 16 3749927 63858540 715628
50 16 random 51 105389 1137
Table 2.10: Layout of probe content for 42M dis-
covery chip design



Subarray Chromosome start end nprobes
50 16 63858580 88822197 366179
50 17 16 24980012 348310
51 17 24980087 76245228 715628
52 18 633 43385437 641021
52 17 random 41 2617363 26067
52 17 75301540 78654689 48538
53 18 43385497 76117073 511827
53 19 11046 16954743 203727
53 18 random 16 4181 72
54 19 random 66 301747 3040
54 19 16955393 63806569 509071
54 20 8016 13395778 203515
55 21 9719783 13692255 11968
55 20 12525859 62435704 703659
56 22 14430011 27555339 185829
56 21 13692355 46944152 510708
56 21 random 1 1679594 19089
57 22 random 21 257239 3048
57 22 27555434 49591382 316279
57 M 1 16480 299
57 X 62 27551770 395999
58 X 26641154 82175954 715628
59 X 82175999 132113557 715628
60 X 132113732 154912731 337210
60 X random 6 1719088 17967
60 Y 62 57771911 360443

Table 2.10: Layout of probe content for 42M dis-
covery chip design



B Aneuploidies

name chr median q25 q75 norm
1 NA10842 1 0.90 0.74 1.26 norm4
2 NA06991 1 0.96 0.83 1.12 norm4
3 NA19139 1 1.04 0.78 1.35 norm4
4 NA10842 2 0.88 0.72 1.20 norm4
5 NA10843 2 -0.05 -0.16 0.06 norm1
6 NA12234 2 0.94 0.80 1.12 norm4
7 NA19222 2 0.09 -0.02 0.21 norm1
8 NA11832 2 0.95 0.79 1.17 norm4
9 NA12875 2 1.07 0.92 1.26 norm4

10 NA19139 2 1.05 0.79 1.38 norm4
11 NA19160 2 1.06 0.91 1.23 norm4
12 NA10842 3 0.87 0.73 1.18 norm4
13 NA06997 3 1.03 0.81 1.35 norm4
14 NA19139 3 1.09 0.85 1.41 norm4
15 NA10842 4 0.86 0.71 1.18 norm4
16 NA18540 4 0.13 0.00 0.26 norm1
17 NA19139 4 1.10 0.83 1.43 norm4
18 NA10842 5 0.91 0.72 1.35 norm4
19 NA10843 5 0.09 -0.01 0.19 norm1
20 NA18506 5 1.06 0.85 1.29 norm4
21 NA18608 5 1.06 0.84 1.35 norm4
22 NA18991 5 0.96 0.79 1.17 norm4
23 NA19139 5 1.06 0.79 1.39 norm4
24 NA10842 6 0.89 0.72 1.25 norm4
25 NA10843 6 -0.05 -0.16 0.06 norm1
26 NA12234 6 0.95 0.81 1.13 norm4
27 NA19178 6 -0.04 -0.19 0.10 norm1
28 NA18973 6 0.95 0.77 1.18 norm4
29 NA19139 6 1.07 0.81 1.41 norm4
30 NA10842 7 0.89 0.72 1.26 norm4
44 NA10847 2 9 0.05 -0.07 0.18 norm1
45 NA10847 3 9 0.04 -0.09 0.18 norm1
31 NA10843 7 -0.05 -0.16 0.06 norm1
32 NA18540 7 0.11 -0.02 0.24 norm1
33 NA07019 7 0.94 0.78 1.15 norm4
34 NA18506 7 1.06 0.83 1.33 norm4
35 NA19139 7 1.04 0.77 1.38 norm4
36 NA10842 8 0.90 0.73 1.26 norm4



37 NA10843 8 -0.05 -0.15 0.06 norm1
38 NA12145 8 -0.04 -0.15 0.08 norm1
39 NA12234 8 0.95 0.81 1.14 norm4
40 NA19139 8 1.07 0.82 1.38 norm4
41 NA19160 8 1.07 0.90 1.23 norm4
42 NA10842 9 0.93 0.76 1.29 norm4
43 NA10843 9 0.09 -0.01 0.19 norm1
46 NA12248 9 0.06 -0.05 0.18 norm1
47 NA12249 9 -0.04 -0.17 0.07 norm1
48 NA12341 9 -0.04 -0.17 0.08 norm1
49 NA12814 9 0.08 -0.05 0.20 norm1
50 NA12878 1 9 0.03 -0.09 0.19 norm1
54 NA18540 9 0.12 -0.01 0.26 norm1
55 NA18563 9 0.03 -0.10 0.18 norm1
56 NA18940 9 -0.04 -0.17 0.08 norm1
57 NA18953 9 -0.05 -0.17 0.08 norm1
58 NA18999 9 -0.04 -0.17 0.08 norm1
59 NA19000 9 0.03 -0.11 0.19 norm1
60 NA19005 9 0.03 -0.09 0.18 norm1
61 NA19208 9 0.13 -0.00 0.25 norm1
62 NA19238 9 -0.04 -0.17 0.08 norm1
63 NA19249 9 0.03 -0.10 0.18 norm1
64 NA18857 9 1.07 0.89 1.26 norm4
65 NA19139 9 1.06 0.81 1.37 norm4
66 NA10842 10 0.93 0.75 1.37 norm4
67 NA10843 10 0.09 -0.01 0.18 norm1
68 NA18540 10 0.96 0.81 1.14 norm4
69 NA06997 10 1.01 0.78 1.32 norm4
70 NA18506 10 1.04 0.83 1.28 norm4
71 NA19139 10 1.04 0.79 1.35 norm4
72 NA10842 11 0.91 0.74 1.28 norm4
73 NA10843 11 -0.04 -0.14 0.08 norm1
74 NA12234 11 0.94 0.81 1.12 norm4
75 NA12274 11 0.11 -0.03 0.26 norm1
76 NA18924 11 0.08 -0.03 0.19 norm1
77 NA19222 11 0.09 -0.03 0.21 norm1
78 NA19139 11 1.07 0.81 1.40 norm4
79 NA07435 12 0.12 0.02 0.22 norm1
80 NA10842 12 0.02 -0.11 0.15 norm1
81 NA10843 12 0.10 0.01 0.19 norm1
82 NA11992 12 0.04 -0.07 0.16 norm1
83 NA12057 12 0.04 -0.07 0.14 norm1



84 NA12248 12 0.07 -0.04 0.19 norm1
85 NA12274 12 -0.02 -0.16 0.09 norm1
86 NA12348 12 0.04 -0.07 0.15 norm1
87 NA12739 12 0.35 0.24 0.47 norm1
88 NA18540 12 -0.03 -0.15 0.08 norm1
89 NA19193 12 0.17 0.04 0.32 norm1
90 NA18522 12 1.05 0.86 1.26 norm4
91 NA19139 12 1.02 0.77 1.34 norm4
92 NA10842 13 0.90 0.73 1.28 norm4
93 NA10843 13 -0.04 -0.15 0.07 norm1
94 NA11918 13 -0.06 -0.17 0.06 norm1
95 NA11992 13 0.07 -0.05 0.19 norm1
96 NA06997 13 1.05 0.82 1.39 norm4
97 NA19139 13 1.11 0.85 1.43 norm4
98 NA06984 14 0.06 -0.10 0.26 norm1
99 NA07051 14 0.03 -0.11 0.18 norm1

100 NA10842 14 0.92 0.73 1.42 norm4
101 NA12154 14 0.04 -0.09 0.18 norm1
102 NA12248 14 0.07 -0.06 0.19 norm1
103 NA12341 14 0.04 -0.10 0.22 norm1
104 NA12829 14 0.04 -0.09 0.18 norm1
105 NA18540 14 0.07 -0.04 0.20 norm1
106 NA18990 14 0.04 -0.08 0.19 norm1
107 NA19098 14 1.06 0.88 1.26 norm4
108 NA10843 15 0.09 -0.03 0.20 norm1
109 NA11891 15 0.22 0.08 0.39 norm1
110 NA10842 16 1.02 0.79 1.52 norm4
111 NA10851 16 1.07 0.87 1.28 norm4
112 NA11832 16 1.02 0.83 1.27 norm4
113 NA12005 16 1.05 0.85 1.29 norm4
114 NA18571 16 1.05 0.85 1.28 norm4
115 NA18973 16 1.05 0.86 1.30 norm4
116 NA10842 17 1.04 0.79 1.61 norm4
117 NA10851 17 1.09 0.89 1.30 norm4
118 NA12005 17 1.06 0.86 1.31 norm4
119 NA18571 17 1.07 0.85 1.33 norm4
120 NA18948 17 1.08 0.90 1.30 norm4
121 NA18973 17 1.07 0.86 1.34 norm4
122 NA18991 17 1.07 0.87 1.31 norm4
123 NA06984 18 -0.07 -0.23 0.08 norm1
124 NA10842 18 0.90 0.74 1.32 norm4
125 NA10843 18 -0.04 -0.14 0.08 norm1



126 NA10856 18 0.06 -0.07 0.20 norm1
127 NA11918 18 -0.04 -0.15 0.08 norm1
128 NA18972 18 -0.04 -0.15 0.09 norm1
129 NA06997 18 1.05 0.80 1.39 norm4
130 NA18973 18 0.95 0.79 1.20 norm4
131 NA10842 19 1.07 0.80 1.61 norm4
132 NA12057 19 1.07 0.91 1.24 norm4
133 NA12145 19 0.09 -0.03 0.21 norm1
134 NA12234 19 1.07 0.89 1.29 norm4
135 NA07019 19 1.06 0.87 1.31 norm4
136 NA10835 19 1.11 0.91 1.29 norm4
137 NA10851 19 1.11 0.89 1.34 norm4
138 NA10859 19 1.05 0.87 1.28 norm4
139 NA11832 19 1.10 0.88 1.34 norm4
140 NA11882 19 1.09 0.92 1.24 norm4
141 NA12005 19 1.08 0.86 1.36 norm4
142 NA12342 19 1.05 0.88 1.25 norm4
143 NA18537 1 19 1.06 0.90 1.25 norm4
144 NA18571 19 1.08 0.86 1.34 norm4
145 NA18948 19 1.09 0.91 1.32 norm4
146 NA18960 19 1.08 0.89 1.30 norm4
147 NA18973 19 1.09 0.88 1.39 norm4
148 NA18991 19 1.08 0.88 1.31 norm4
149 NA10842 20 0.99 0.78 1.54 norm4
150 NA19139 20 0.99 0.76 1.30 norm4
151 NA10842 21 0.88 0.71 1.29 norm4
152 NA10843 21 -0.06 -0.17 0.06 norm1
153 NA12234 21 0.01 -0.12 0.18 norm1
154 NA18540 21 0.08 -0.05 0.20 norm1
155 NA06997 21 1.01 0.79 1.35 norm4
156 NA19103 21 1.05 0.84 1.28 norm4
157 NA10842 22 1.01 0.76 1.51 norm4
158 NA11832 22 1.13 0.87 1.40 norm4
159 NA19238 23 1.56 1.11 1.87 norm4
161 NA10861 23 1.58 1.21 1.81 norm4
162 NA10863 23 1.58 1.13 1.79 norm4
163 NA12156 23 1.59 1.10 1.82 norm4
164 NA12239 23 1.57 1.15 1.77 norm4
165 NA18576 23 1.56 1.14 1.85 norm4



C Genotype Cluster Plots

On the following pages, we present cluster plots for the final genotyping models used in our
analyses. For each chromosome we have selected at random 10 CNVs to plot. Each plot is
labelled with its CNV name. The data shown within each plot is the normalized, un-logged
Cy5/Cy3 intensity ratios (histogram), the mixture model fit (blue lines), and the genotype
calls (colored dots: black, red, green, etc.). The first set of 10 plots come from the novel
insert sequences.


















































