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A B S T R A C T

COVID-19 has put all of humanity in a health dilemma as it spreads rapidly. For many infectious diseases,
the delay of detection results leads to the spread of infection and an increase in healthcare costs. COVID-
19 diagnostic methods rely on a large number of redundant labeled data and time-consuming data training
processes to obtain satisfactory results. However, as a new epidemic, obtaining large clinical datasets is still
challenging, which will inhibit the training of deep models. And a model that can really rapidly diagnose
COVID-19 at all stages of the model has still not been proposed. To address these limitations, we combine
feature attention and broad learning to propose a diagnostic system (FA-BLS) for COVID-19 pulmonary
infection, which introduces a broad learning structure to address the slow diagnosis speed of existing deep
learning methods. In our network, transfer learning is performed with ResNet50 convolutional modules with
fixed weights to extract image features, and the attention mechanism is used to enhance feature representation.
After that, feature nodes and enhancement nodes are generated by broad learning with random weights to
adaptly select features for diagnosis. Finally, three publicly accessible datasets were used to evaluate our
optimization model. It was determined that the FA-BLS model had a 26–130 times faster training speed than
deep learning with a similar level of accuracy, which can achieve a fast and accurate diagnosis, achieve
effective isolation from COVID-19 and the proposed method also opens up a new method for other types
of chest CT image recognition problems.
1. Introduction

Globally, the COVID-19 pandemic is causing concern for human-
ity’s survival and has greatly impacted society, medicine, economy,
especially with the increasing medical burden [1], rapid and accurate
diagnosis is essential to control the spread of an epidemic. Reverse
transcriptase polymerase chain reaction (RT-PCR) is considered the
standard for timely diagnosis of COVID-19 infections. However, RT-
PCR has low accuracy and a long cycle, requiring multiple tests to
confirm the results [2]. Shortening the critical period from diagnosis
to confirm infection can greatly control the spread of the epidemic and
protect people’s health.

The use of computer-aided diagnostic devices can detect minute
differences that are not detectable by the human eye [3]. They have
taken an irreplaceable place in the diagnosis of chest disease. The
use of chest CT scans as a quick and accurate COVID-19 screening
approach has been demonstrated [2,4]. Rapid availability of results
with CT imaging in the emergency setting may be utilized before
receipt of RT-PCR results to prevent false negative reporting. However,
the increased number of COVID-19 patients places a heavy strain on
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manual diagnosis, and the precision of the diagnosis results cannot be
guaranteed, putting patients at the danger of infection [5,6].

In order to detect COVID-19, the deep convolutional neural net-
work (DCNN) approach has been developed, which will help doctors
diagnose COVID-19. Mortani Barbosa et al. used logistic regression and
random forest to interpret features to achieve automated diagnosis of
COVID-19 in large multicenter cohorts, and conducted experiments on
a dataset consisting of 2446 chest CT scans [7]. Wang et al. used CNN
to extract specific graphic features for CT image screening of COVID-
19, analyzed 1065 representative images examined by two radiologists
and achieved 89.5% detection accuracy in the case of a small-scale
dataset [8]. [9] proposed a deep model with for COVID-19 diagnosis,
creating an experimental dataset from 852 CT scans and discussed the
results with advanced supervised learning methods. Currently, studies
on COVID-19 detection with small-scale datasets still account for a large
proportion [10], but deep learning models cannot perform better with-
out access to high-quality data [11]. Small-scale datasets can reduce the
burden of models and hardware devices, but how to use small data to
achieve better model performance is still a problem to be solved. [12]
comprehensively explained the deep model from different angles, and
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applied the architecture to COVID-19 diagnosis, forming a dataset of
6233 CT images to evaluate and explain the diagnosis model. [13]
proposed a 3D convolution network to evaluate the performance of
COVID-19 recognition in a large-scale dataset containing 4982 CT
images. In order to accomplish precise recognition and reliable feature
extraction, [14] added three more layers to the ResNet50 architecture,
using 5427 infected COVID-19 and 2628 healthy CT images evaluation
model. There are also studies that select large-scale datasets for multi-
classification tasks [15–18]. However, due to the complexity of the
deep learning model and the high hardware necessities [11], the price
of medical instrumentality can directly increase. Moreover, thanks to
the continual change of the disease, the model often needs to be
retrained to adapt to the CT characteristics of patients in the current
time or region, the delay of detection results leads to the spread of
infection and an increase in healthcare costs. In order to effectively
detect coronavirus infection and deal with the unbalanced economic
development in various regions, it is necessary to develop a simple,
efficient and economical application.

On the basis of breaking through these problems, we propose a
novel diagnostic method for COVID-19 by combining deep and broad
neural networks. (1) Transfer learning can be effectively to handle a
small-scale public dataset [19], which uses network weights trained on
a large general dataset to extract data features of the application do-
main. We can get good characteristic representations through transfer
learning. (2) In response to the need for rapid COVID-19 diagnosis, we
provide a broad learning system as an alternative to DCNN to provide
the performance of rapid diagnosis. Convolutional networks are used
in feature extraction and broad learning is used in fast diagnosis in
our method. Feature extraction model improve the accuracy of using
existing small-scale datasets. Because broad learning is a single-layer
network with fewer parameters, the complexness of the network is
greatly reduced compared with the deep model. The FA-BLS for COVID-
19 diagnosis can reduce the training time by 26–130 times compared
with other algorithms, and has the similar level of accuracy as deep
network. The main contributions of this study are as follows:

∙ We propose a new end-to-end model (FA-BLS) as an alternative
to complex deep learning for COVID-19 diagnostic task with
small-scale datasets.

∙ This method can extract image features more effectively. It uses
ResNet50 with generalization feature extraction ability after pre-
training to extract features, so as to reduce the impact of ran-
domly generated weights in BLS on performance and extract rich
discrimination information.

∙ We conducted a comprehensive experimental evaluation of the
model and selected three publicly available datasets for validation
to demonstrate the rapidity and accuracy of our technique. The
results demonstrate that the speed of FA-BLS is greatly improved
with comparable accuracy.

2. Related works

In this section, we discuss the following aspects that are closely
related to our work: transfer learning and feature extraction, broad
learning system and artificial intelligence for COVID-19.

2.1. Transfer learning and feature extraction

Transfer learning (TL) is the process of transferring the learned and
trained model parameters to a new model [20]. In image processing,
TL mainly uses a large general dataset to obtain fixed weights, and
uses the weights to extract data features from the dataset of the object
under study. In special cases such as epidemic outbreaks, it is difficult
to obtain large public datasets, so TL is popular for small-scale dataset
tasks [11]. Wang et al. proposed a chest image classification model
2

using pre-trained deep networks for transfer learning and added an
attention module [21]. Li et al. proposed objective metaplasia (GIM)
recognition model based on transfer learning, which uses different
modules to learn feature weights and then perform feature fusion [22].
In the study by Ahuja et al. four different pre-trained CNN models
are utilized to detect COVID-19 [23]. By combining 15 pre-trained
CNN architectures with an ensemble method based on transfer learning,
Gifani et al. further improved the recognition ability of COVID-19 [24].

Although the pre-trained weights on the ImageNet dataset can
effectively extract data features, not all features contribute to the
classification work, and the attention mechanism can help extract
meaningful features from many features [25]. [26] propose a ‘‘Residual
Attention Network’’, which uses the attention-aware function gener-
ated by the attention module for image classification. Zhou et al.
combined U-net with attention mechanism, used re-weighted features
to better-acquired features, and proved the effectiveness of attention
mechanism [27]. [28] propose prior-attention strategy to highlight
diseased regions in the lung for COVID-19 diagnosis. [29] innovatively
fused CT and X-ray images and demonstrated that convolutional atten-
tion modules have a positive effect on diagnostic accuracy. In response
to the loss of detail, Xia et al. extract semantic information around the
target by introducing multi-scale and context attention modules [30].
Inspired by the above work, we add an attention mechanism and
transfer learning to the diagnosis network to improve the network
performance for the feature extraction problem with limited datasets.

2.2. Broad learning system

Broad learning (BL) [31] is evolved on the basis of random vec-
tor functional-link neural network (RVFLNN). BL with a single layer
network structure was proposed as an alternative to DCNN, BL can
use fewer neurons to achieve higher test recognition accuracy [32].
BLS has been widely utilized in various fields due to its fast learning
ability [33–35], such as image recognition [36,37], classification and
regression [38], and data modeling [39]. Although BL has achieved the
most advanced performance in many applications, the original BLS still
has many limitations when dealing with complex tasks. It uses arbitrary
continuous probability distribution to randomly generate node weights,
which cannot effectively extract the deep features of the image and
is not suitable for the pathological diagnosis task of chest CT images.
Therefore, in this study, we used convolutional networks to capture
more features to make up for the shortage of BL, and then BL was
utilized to efficiently diagnose COVID-19.

2.3. Artificial intelligence for COVID-19

Artificial intelligence has made considerable strides in image pro-
cessing over the past few years. In the field of medical image process-
ing, AI can effectively classify different images to assist diagnosis and
reduce the rate of misdiagnosis. [40] proposed a lightweight neural net-
work framework called COVID-Net, which improves the transparency
and reliability of predictions and proposes an open benchmark X-
ray image dataset. Gozes et al. combine deep models of different
dimensions with clinical understanding to enable automated diagno-
sis of COVID-19 [41]. Shan et al. achieve a precise description of
COVID-19 condition by quantifying infected area [42]. Kollias D et al.
introduced a new large CT scanning database and used CNN-RNN
architecture for COVID-19 diagnosis [43]. In [44], visual features were
extracted from the image to distinguish COVID-19 from community-
acquired pneumonia and healthy individuals. Fan et al. propose a
semi-supervised deep network (Inf-net) to segment pulmonary infection
by combining parallel decoder and attention mechanism [45]. It turns
out that the convolutional layer in DCNN is very suitable for extracting

these features from images.
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Fig. 1. The architecture of our proposed FA-BLS.
3. Methods

In this section, we introduce FA-BLS in detail from the perspective
of network structure and constituent modules. In our work, we com-
bined transfer learning, attention mechanism and BLS to perform the
diagnostic. Firstly, the original CT images were input to the feature
fusion module with attention mechanism to efficiently extract the
image features. Then the extracted features are input into BLS, and the
speedy diagnosis is achieved through randomly generated functional
nodes. The following subsections describe each part in detail.

3.1. Framework

The network framework we proposed is shown in Fig. 1. This
system includes two parts, the feature fusion module is used for feature
extraction and feature fusion, and we add the spatial attention module
to strengthen the target area. The extracted features are then sent to
the BLS for definitive diagnosis.
3

3.2. Feature extraction module based on residual attention mechanism

Feature extraction is the elementary work of image extraction. It can
be seen from the aforementioned article that the convolutional layer
in DCNN is very suitable for extracting these features from images.
Therefore, in our network FA-BLS, for the case where the dataset is
difficult to obtain, we use ResNet50 for feature extraction. As shown in
Fig. 2, the backbone network ResNet50 [46] is pre-trained on ImageNet
to obtain weights with generalization ability, which are used to extract
COVID-19 features in the form of transfer learning.

ResNet50 stands for 50-layer residual network, which uses the
residual structure of skip connection and implements identity mapping
between layers, enabling the network to achieve better performance
with an increased number of layers of the convolutional network. Com-
pared with CNN stacked by other convolutional layers, it addresses the
problems of insufficient training data and deep network degradation to
a certain extent. The ResNet50 convolution module, pre-trained based
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Fig. 2. Structural diagram of feature attention fusion module.
on a large dataset Imagenet, despite efficient extraction of generaliza-
tion features, has degraded the performance of the model in the target
domain due to the particularities of medical images. The introduction of
attention mechanism can provide performance improvements to models
by assigning more weight parameters to important features, and using
this mechanism feature extraction module could retain more important
information and reduce the interference caused by redundant content
to the network.

The spatial attention module (SAM) utilizes two pooling operations
to generate two 2-dimensional features for channel information of
feature maps. SAM is based on the global average pooling channel as
well as the global biggest pooling operation, produced two represent
different characteristics of figure, the merged by another larger recep-
tive field 7 × 7 convolution of feature fusion, and then the weight graph
is generated by operation and combined with the features extracted
in the previous step so that the target area can be strengthened. The
formula for calculating SAM is:

𝑀𝑠(𝐹 ) = 𝜎(𝑓 7𝑥7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹 )]; [𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹 )]))

= 𝜎(𝑓 7𝑥7([𝐹𝑎𝑣𝑔 ;𝐹𝑚𝑎𝑥]))
(1)

3.3. Broad learning system

The biggest difference between broad learning and deep learning
lies in the number of network layers and the way of data process-
ing. Fig. 3 shows the differences between the two image processing
methods. CNN uses a convolution kernel of appropriate size to extract
features by calculating pixels of each image one by one. While BL
stretches each image pixel into a row, all pixels collectively make
up a large matrix for operation, which makes BL’s model complexity
greatly reduced compared to DL, and operation speed improved sig-
nificantly. But single-layer network which is concise and efficient also
brings some disadvantages, it cannot extract image deep features like a
convolutional neural network, so this research combined CNN with BL
to synthesize the advantages of both for better performance of detection
tasks.

The structure of the system is shown in Fig. 4. The input, feature
node, enhancement node, and output make up the entire network. In
this section, the output of the feature extraction layer will be used
as the input matrix X of BLS, then 𝑋 = [𝑥1,… , 𝑥𝑛]𝑇 ∈ 𝑅𝑁×𝐵 ,output
𝑌 = [𝑦1,… , 𝑦𝑛]𝑇 ∈ 𝑅𝑁×𝐶 , N represents the total number of samples, B
represent the dimension of samples, C represents the total number of
classes.
4

Fig. 3. Data processing with different structures.

Fig. 4. The model structural of broad learning networks.

For n feature maps, each map generates n nodes, then the 𝑖th feature
node can be expressed as follows:

𝑍 = 𝜑 (𝑋𝑊 + 𝛽 ), 𝑖 = 1,… , 𝑛 (2)
𝑖 𝑖 𝑒𝑖 𝑒𝑖
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𝑦

𝑆

Where 𝑊𝑒𝑖 and 𝛽𝑒𝑖 are both randomly generated weights and off-
sets,Since 𝜑 is a linear activation function, the mapping feature is
linear. The sparse autocoding method is used by BLS to optimize the
input weights in order to get over the unpredictable nature of random
initialization.

𝑍𝑛 ≡ [𝑍1,… , 𝑍𝑖] is used to symbolize each feature node, and for m
enhanced nodes, the 𝑗th enhanced node can be expressed as:

𝐻𝑗 ≡ 𝜉𝑗 (𝑍𝑛𝑊ℎ𝑗 + 𝛽ℎ𝑗 ), 𝑗 = 1,… , 𝑚 (3)

𝜉 is a nonlinear activation function where Typically, it can be
configured as a hyperbolic tangent function:

𝜉(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) (4)

All enhancement nodes are represented as𝐻𝑚 ≡ [𝐻1,… ,𝐻𝑗 ], there-
fore, the BLS model can be expressed as the following equation:

𝑌 = [𝑍1,… , 𝑍𝑖][𝜉(𝑍𝑛𝑊ℎ1 + 𝛽ℎ1 ),… , 𝜉(𝑍𝑛𝑊ℎ𝑗 + 𝛽ℎ𝑗 )]𝑊

= [𝑍1,… , 𝑍𝑖][𝐻1,… ,𝐻𝑗 ]𝑊

= [𝑍𝑛 ∣ 𝐻𝑚]𝑊 (5)

Where 𝑊 = [𝑍𝑛 ∣ 𝐻𝑚]+ is the connection weight between the hid-
den layer of the broad structure and the output layer. 𝑊𝑒𝑖 , 𝛽𝑒𝑖 , 𝑊ℎ𝑗 and
𝛽ℎ𝑗 are all functional nodes randomly generated and fixed throughout
the whole process. By solving the ridge regression approximation of
[𝑍𝑛 ∣ 𝐻𝑚]+, 𝑊 can be easily computed.

We choose L2-norm regularization to solve this optimal problem,
which has convexity and good generalization performance. The objec-
tive function of BLS is:

𝑎𝑟𝑔𝑚𝑖𝑛(‖𝑌 − 𝑌 ‖2 + 𝜆
2
‖𝑊 ‖

2) (6)

Where, 𝜆 is the regularization coefficient, and 𝑌 is the prediction
result, it is easy to obtain:

𝑊 = (𝐴𝑇𝐴 + 𝜆𝐼)−1𝐴𝑇 𝑌 (7)

The identity matrix is denoted by I in the equation, while 𝐴𝑇

represents A permutation and A pseudo-inversion is denoted by 𝐴+

= lim𝑥→0(𝐴𝑇𝐴 + 𝜆𝐼)−1𝐴𝑇 , formula (7) can be written as 𝑊 = 𝐴+𝑌 .
For the label Y, 𝑦𝑖 represents the probability that the system predicts

each category, which can be defined as

̂𝑗𝑖 (𝑥𝑖) =
𝑦𝑗𝑖 (𝑥𝑖) − 𝑚𝑖𝑛𝐵∈1,2,…,𝐶𝑦𝐵𝑖 (𝑥𝑖)

∑𝐶
𝐵=1 𝑦

𝐵
𝑖 (𝑥𝑖)

(8)

Finally, the probability output is

�̂�𝑖(𝑥𝑖) =
⎛

⎜

⎜

⎝

�̂�1𝑖 (𝑥𝑖)
⋮

�̂�𝐶𝑖 (𝑥𝑖)

⎞

⎟

⎟

⎠

(9)

4. Experiments and analysis

In this section, we conduct a series of experiments to demonstrate
the effectiveness of the planned FA-BLS in COVID-19 diagnosis.

4.1. Data description

In this paper, we select three publicly available COVID-19 datasets
to obtain more reliable evaluation results (as shown in Table 1). Fig. 5
indicates the CT images of COVID-19 patients and non-infected cases.

∙ CC-CCII [47] is obtained from the China Consortium of Chest CT
Image Investigation. All images were divided into novel coron-
avirus pneumonia (NCP) caused by SARS-CoV-2 virus infection,
common pneumonia and a normal control group, 750 with labels
5

are selected for study in this paper.
Table 1
A summary of public COVID-19 imaging datasets.
Datasets Total COVID-19 Non COVID-19

CC-CCII 750 549 201
COVID-CT-Dataset 812 349 463
SARS-COV-2 2482 1252 1230

Table 2
Confusion matrix representation.

Actual Predicted

Yes No

Yes TP FN
No FP TN

Where TP denotes ‘‘True Positive’’, TN
denotes ‘‘True Negative’’, FN represents
‘‘False Negative’’, and FP represents ‘‘False
Positive’’.

∙ COVID-CT-Dataset [48] is collected from COVID19-related papers
from medRxiv, bioRxiv, NEJM, JAMA, Lancet, etc. It includes 349
CT scans with COVID-19 and 463 CT scans without COVID-19,
and a senior radiologist confirmed the validity of the dataset.

∙ SARS-CoV-2 dataset [49] is a public CT scanning dataset con-
structed by Soares and others, including 1252 CT images infected
with COVID-19 and 1230 CT images uninfected with COVID-19,
with a total of 2482 CT images. These datas was collected from
actual patients in hospitals.

4.2. Evaluation metrics

The comparison of diagnostic test results with the gold standard can
reflect the pros and cons of diagnostic methods. Some evaluation indi-
cators are commonly used in medical diagnosis, this paper selects the
following popular indicators to evaluate our method: Accuracy(Acc),
Sensitivity(Sen) and Specificity(Spec). They are defined as follows. A
confusion matrix is represented as in Table 2.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(10)

𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(11)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(12)

4.3. Implementation details

We did our experiments in Python 3.6, the process runs on a 2.2 GHz
Core i5 processor with 4 GB of RAM. All datasets are divided into
training and testing datasets according to 8:2, and the final evalua-
tion results are obtained through five-fold cross-validation. Bayesian
optimization is employed to optimize the hyperparameters during our
technique. The hyperparameters of the BLS principally embrace the
quantity of feature windows (N1 = 100), the number of nodes within
each feature window (N2 = 8) and the number of enhancement nodes
(N3 = 2084).

4.4. Quantitative analysis

In this section, FA-BLS is compared with the classical DCNN method
to prove its rapidity. To quantify the improved effect of FA-BLS, the
same hyperparameters are used to train the ordinary BLS. Some classic
deep CNN, such as VGG16 [50], ResNet50, Xception [51] and Efficient-
net [52] also use the same hyperparameters as ResNet50 in feature
fusion layer(Batch size = 16, Optimizer = Adam, Activation function =

Softmax, Loss function = Binary crossentrop). Meantime, the weights
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Fig. 5. CT images of healthy and patients with COVID-19 pneumonia. The red clippers represent a typical ground-glass opacity (GGO) in the area affected by COVID-19.
Table 3
Classification results of each algorithm in CC-CCII dataset under the same
hyperparameter.
Models Training Acc (%) Testing Acc (%) Training time (s)

ResNet50 93.68 92.80 24246.13
Xception 90.42 88.63 45440.04
Efficientnet 88.58 87.11 27345.64
VGG16 95.60 93.32 9147.86
BLS 84.72 65.33 56.29
FA-BLS 99.31 93.93 363.34

Table 4
Five cross-validation classification results of each algorithm in CC-CCII dataset.
Models Training Acc (%) Testing Acc (%) Training time (s)

ResNet50 95.71 93.80 26531.34
Xception 96.35 92.18 47361.70
Efficientnet 93.06 90.85 28909.14
VGG16 96.45 93.79 9682.35
BLS 89.64 69.58 68.13
FA-BLS 99.31 93.93 363.34

of all methods are obtained by pre-training ImageNet, and the training
of deep learning is performed only around the last layer. In Table 3, the
classification results of each method under CC-CCII dataset are given.
The accuracy of ordinary BLS identification is only 65.3%, far lower
than that of classical DCNN, but the accuracy of FA-BLS proposed by
us reaches 93.9%, 28.6% higher than that of ordinary BLS in the case of
small-scale datasets. DCNN runs a long time period thanks to additional
parameters, but our FS-BLS introduces a broad structure to reach high
identification accuracy with few parameters for limited datasets.

For ordinary BLS and different deep convolutional neural networks,
setting the same hyperparameters as our model cannot show the best
performance of the network, and may also produce an overfitting phe-
nomenon. We selected appropriate hyperparameters for each network
6

Table 5
Five cross-validation classification results of each algorithm in COVID-CT-Dataset.
Models Training Acc (%) Testing Acc (%) Training time (s)

ResNet50 96.12 94.15 25970.47
Xception 95.97 92.54 50672.64
Efficientnet 93.47 91.12 30788.08
VGG16 97.20 94.25 10359.15
BLS 87.69 69.25 75.62
FA-BLS 99.42 93.98 378.24

Table 6
Five cross-validation classification results of each algorithm in SARS-CNV-2
dataset.
Models Training Acc (%) Testing Acc (%) Training time (s)

ResNet50 97.82 94.53 71416.52
Xception 98.52 94.21 141374.88
Efficientnet 95.17 92.34 86514.28
VGG16 98.15 93.860 29007.27
BLS 89.82 71.11 253.24
FA-BLS 99.47 94.05 998.25

to more objectively evaluate the performance results of our model as
shown in table Tables 4 to 6. The deep network has achieved better
performance improvement at the cost of training time, but it can be
observed from the table that the network improvement of DCNN under
the small-scale datasets is still not ideal, just achieving the same level
of performance as FA-BLS. A key challenge for deep networks is that
the total amount of data in this task is too small to meet the needs of
network learning, so even using the most appropriate hyperparameter
will not achieve the excellent performance of deep models under large
dataset tasks. In contrast to this, the training time of FA-BLS is signifi-
cantly reduced compared with that of the deep network. It is 130 times
faster than the Xception network and 66 times faster than ResNet50
while processing the same data. In the deep model, VGG16 provides
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Table 7
Compare our results with other advanced algorithms.

Research group Dataset used Technique Overall Acc (%) Sen (%) Spec (%)

Wang et al. [8] C-19: 740 Inception 89.5 88 87NC: 325

Pathak et al. [9] C-19: 413 ResNet50 93.02 94.78 91.46NC: 439

Li et al. [53] C-19: 1980 Efficientnet 93.46 90.57 90.87NC: 1164

Altan et al. [54] C-19: 142 VGG16 – 97.62 78.57NC: 142

Oluwasanmi et al. [55] C-19: 700 ResNet50 + VGG16 94.00 96.00 92.00NC: 700

FA-BLS(CC-CCII) C-19: 549 ResNet50 + BLS 93.93 91.23 90.61NC: 201

FA-BLS(COVID-CT-Dataset) C-19: 349 ResNet50 + BLS 93.98 92.13 91.60NC: 463

FA-BLS(SARS-CNV-2) C-19: 1252 ResNet50 + BLS 94.05 92.57 91.92NC: 1230
Table 8
Diagnosis accuracy of different mapping parameters.

Feature nodes Enhancement
nodes

Testing Acc
(%)

Training
time (s)

64×8 2000 89.33 126.45
100×8 200 92.73 252.07
100×8 800 92.96 256.13
100×8 1200 93.25 170.62
100×8 2000 93.50 298.29
100×16 2000 92.73 421.42
100×32 2000 93.24 271.29
100×64 2000 93.30 243.42
200×8 2000 93.68 188.07
500×8 2000 93.91 140.07
1000×8 2000 92.83 967.50

better results, as it trains fewer parameters and takes less time to train
samples. The proposed model has similar performance compared to the
competing model, but when we applied the proposed model to larger
populations, the algorithmic speed increase could keep more people
from getting sick.

4.5. Effectiveness analysis

To prove the effectiveness of the planned framework, the analysis
results of the planned framework and other advanced classifiers used
to observe COVID-19 were compared in Table 7, where C-19 denotes
‘‘COVID-19’’, NC denotes ‘‘Non COVID-19’’. The reported results for the
comparator methods were taken from their papers as we were unable
to reproduce their codes. The performance of each model was esti-
mated according to three different variables: accuracy, specificity and
sensitivity. At present, most classification researchers seek to improve
the performance, but seldom report the model training time in the
paper. Therefore, this section does not discuss speed, focusing on the
performance comparison of our model with other advanced methods.

The results show that our study can distinguish between COVID-
19 positive and healthy patients who are not infected, a potential
reason being that our feature fusion module provides robust feature
representation. In terms of ACC, the use of multiple datasets also further
ensures the credibility of our proposed COVID-19 diagnosis model. It
can be seen from the Table 7 that when the total amount of data
is similar, the classification accuracy of our method has significantly
improved compared with the network using ResNet50 only [9]. In
addition, our strategy of combining ResNet50 with BLS and the method
of combining two deep models [55] have achieved approximate perfor-
mance. However, from the discussion of training time in the previous
section, it is known that our model has considerable advantages in
terms of training speed. The evaluation results of FA-BLS performance
with three datasets show that the size of input data has little impact
on the performance of this method, as an auxiliary diagnostic tool, our
7

proposed method may serve as a reliable clinical adjunct to COVID-19
diagnosis.

4.6. Broad learning parameter analysis

For additional study the classification performance of FA-BLS, we
have a tendency to explore the influence of various variety of functional
nodes on the experimental results, as shown in Table 8. It is obvious
that with the rise of the amount of nodes, the training time progres-
sively becomes longer, however, it is not the model with more nodes
that has higher classification accuracy. The selection of nodes is the
determinant of the experimental accuracy.

5. Conclusion

By analyzing chest CT images, a new model(FA-BLS) for the diag-
nosis of COVID-19 is developed, which can accurately classify images.
Our approach utilizes a broad structure to improve diagnosis speed
and alleviate the shortage of high-quality label data through transfer
learning. In this paper, we used three publicly available datasets with
a total of 4044 CT images for testing and training. In the experimental
results, we have proved the effectiveness of the proposed method in
CT image diagnosis of COVID-19. Our network gets the advantages of
a simple structure, significantly reduced parameters and low hardware
requirements, so it has great application potential in the diagnosis of
COVID-19. Compared with DCNN, this method has less calculation and
faster training speed than 26 times. This model can achieve the same
level of accuracy as the deep learning model under the small-scale
dataset task, and make up for the shortcomings and weaknesses of the
recognition task based on deep learning.

Our network provides clinical value in two aspects: (1) During the
speedy spread of COVID-19, it will get the diagnosis result quicker than
RT-PCR and DCNN, which might effectively cut down the spread. (2)
Our model has low requirements for hardware, which helps to popu-
larize in a large area. It is more suitable for replacing expert doctors
to complete the diagnosis of COVID-19 independently in rural areas
with limited resources, and effectively reduces the medical burden of
the government on the premise of ensuring accuracy. At the same time,
the proposed method opens up a new method for other types of chest
CT image recognition, and also provides guidance for the accurate
recognition of small group diseases and regional diseases based on CT
images.
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