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Abstract

Primary open-angle glaucoma (POAG) is one of the leading causes of irreversible blindness in 

the United States and worldwide. POAG prediction before onset plays an important role in early 

treatment. Although deep learning methods have been proposed to predict POAG, these methods 

mainly focus on current status prediction. In addition, all these methods used a single image 

as input. On the other hand, glaucoma specialists determine a glaucomatous eye by comparing 

the follow-up optic nerve image with the baseline along with supplementary clinical data. To 

simulate this process, we proposed a Multi-scale Multi-structure Siamese Network (MMSNet) to 

predict future POAG event from fundus photographs. The MMSNet consists of two side-outputs 

for deep supervision and 2D blocks to utilize two-dimensional features to assist classification. 

The MMSNet network was trained and evaluated on a large dataset: 37,339 fundus photographs 

from 1,636 Ocular Hypertension Treatment Study (OHTS) participants. Extensive experiments 

show that MMSNet outperforms the state-of-the-art on two “POAG prediction before onset” tasks. 

Our AUC are 0.9312 and 0.9507, which are 0.2204 and 0.1490 higher than the state-of-the-art, 

respectively. In addition, an ablation study is performed to check the contribution of different 

components. These results highlight the potential of deep learning to assist and enhance the 

prediction of future POAG event. The proposed network will be publicly available on https://

github.com/bionlplab/MMSNet.
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1 Introduction

Primary open-angle glaucoma (POAG) is one of the leading causes of blindness worldwide 

[1]. In the United States, POAG is the most common form of glaucoma and is the leading 

cause of blindness among African-Americans [22] and Hispanics [11]. POAG can be 

asymptomatic until very advanced stages. Fortunately, most blindness caused by POAG can 

be avoided by early identification and treatment [23]. Therefore, early prediction of eyes that 
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will develop POAG plays an important role in patient monitoring and medical and surgical 

treatments [5,21].

Fundus photography provides a convenient and inexpensive way to record the optic nerve 

head structure, which is the gold standard for showing a classic glaucomatous appearance. 

Unfortunately, the low prevalence of glaucoma, the limited number of trained physicians, 

and the complex logistics of traditional screening programs are obstacles to timely screening 

for many patients [14]. Therefore, it is crucial to develop automatic models with high 

accuracy to assist clinicians in predicting future glaucoma event from fundus photographs, 

which can help many patients avoid blindness.

Recently, deep learning models have been successfully applied to biology and medicine 

[3,6–9,18,20,25,26]. In the ophthalmology domain, several models have been proposed to 

detect POAG from fundus photographs [2,4,16,17]. All of these studies predict the current 

glaucomatous status of a patient.

In this study, we seek to predict the probability of POAG onset from fundus photos. Such 

prediction may identify patients appropriate for early treatment. The Ocular Hypertension 

Treatment Study cohort (OHTS) [12], a large-scale clinical trial from 22 centers in the 

United States, includes longitudinal fundus photographs and disease assessment over a 

period of approximately 16 years. It provides an unprecedented opportunity to investigate 

POAG onset prediction using the dynamic fundus images.

To the best of our knowledge, only two previous works have focused on prediction of 

future POAG event [15,24]. However, the input to all these approaches is a single image, 

which might affect the performance of the model. In clinical practice, patients usually have 

follow-up visits to screen for glaucoma progression. Therefore, the glaucoma specialists 

compare the follow-up with the baseline image (the image taken at the first visit of a study) 

to trace the relevant feature, as shown in Fig. 1.

In this study, we used fundus images to predict an eye’s progress to POAG (which may 

never occur) within specific inquired durations from the current visit. The inquired duration 

was selected in advance (2-year or 5-year), and it was relative to the time when the image 

was taken, not to the time of the baseline visit. Unlike prior studies, for one eye, the inputs 

included one fundus image taken at the baseline (first visit), and one image was taken at 

the current visit (follow-up image). Therefore, our proposed method is suitable for screening 

patients during follow-up visits. We never need “future images” to screen people. The output 

was the probability that the time to POAG onset exceeds the inquired duration. To handle the 

pair of images, we proposed a novel Siamese network model with side output and additional 

convolution, called multi-scale multi-structure Siamese network (MMSNet), by comparing 

the differences between two input images. Different from previous Siamese work, MMSNet 

used the additional 2D features by convolution operation together with cosine similarity, 

instead of the cosine similarity only to measure the similarity between two outputs of the 

network instead of the cosine similarity between the two outputs. In addition, the MMSNet 

also consists of side output [19] to ease the vanishing gradient problems in training deep 

models and to drive the hidden layers for favoring discriminative features. To the best of our 
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knowledge, it is the first time in the ophthalmology domain that two fundus images have 

been utilized and compared for automated glaucoma prediction before onset by Siamese 

networks.

Our work has the following contributions: (1) We proposed a model to compare the 

similarity between baseline and follow-up images. The model simulates the glaucoma 

screening process in clinical practice. To the best of our knowledge, no previous studies 

tackle the glaucoma prediction before onset problem this way. (2) We use the 2D features 

by convolution operation together with cosine similarity, instead of the cosine similarity only 

to measure the similarity between the outputs of two networks. (3) We incorporate the side-

output to improve the performance further. The side-output can ease the vanishing gradient 

problems in training deep models and drive the hidden layers to favor discriminative 

features. (4) Our approach achieves superior POAG prediction 2-year and 5-year before 

onset results (93.12% and 95.07% in AUC) against several competitive baselines on the 

large, multi-institutional benchmarks.

2 Methods

2.1 MMSNet Architecture

MMSNet comprises two convolutional blocks that share the weight and two prediction 

blocks (Fig. 2). In the beginning, two fundus images x1 and x2 are passed through the 

convolutional neural network, DenseNet-201 [10], respectively. We used the output of last 

(Fd4 and Fd4n) and second to last Dense Blocks (Fd3 and Fd3n). For each output, we feed the 

outputs into the prediction block. Each prediction block has two paths to generate prediction 

results. For the first path, we got the feature embedding by average pooling, followed by 

cosine similarity to measure the similarity of feature embedding, which is a traditional 

Siamese network operation. We got the prediction result by sigmoid activation. Another 

path is the 2D block. We concatenated two outputs, followed by a 1 × 1 convolution, a 

batch normalization (BN), and rectified linear units (ReLU). In the end, a global average 

pooling and a fully connected layer with sigmoid activation are attached. The average of 

the predicted values of the two paths is used as the final output of each prediction block, 

regarded as the side output.

2.2 Loss Function

In this study, we use binary cross-entropy as the loss function in the MMSNet. In addition, 

to overcome the severe class imbalance for the POAG classification, we apply the weighted 

cross-entropy, a commonly used loss function in classification. The adopted weighted cross-

entropy was as follows:

ℒ = − 1
N ∑

n = 1

N
βyn log yn xn, θs + (1 − β) 1 − yn log 1 − yn xn, θs (1)

N is the number of training examples. β is the balancing factor between positive and 

negative samples. Here, we used inversely proportional to POAG frequency in the training 
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data. yn is the observe value, ŷ is the probability predicted by the classifier, and θs 

represents the parameters of the neural network.

The overall loss function is the average of the losses associated with the prediction from the 

two prediction blocks:

ℒs = αℒ(1) + (1 − α)ℒ(2), (2)

2.3 Data Augmentation

In this work, we sequentially apply the following augmentation techniques on the fly during 

training: (1) random rotation between 0◦ and 10◦, (2) random translation: an image was 

translated randomly along the x- and y-axes by distances ranging from 0 to 10% of width or 

height of the image, and (3) random flipping.

3 Results

3.1 Datasets

In this study, we include one independent dataset (Table 1). This database is a large-scale, 

cross-sectional, longitudinal, and population-based study.

The dataset is obtained from the Ocular Hypertension Treatment Study (OHTS). OHTS 

is one of the largest longitudinal clinical trials in POAG (1,636 participants and 37,399 

images) from 22 centers in the United States. This study does not need Institutional Review 

Board approval because it does not constitute human subjects research.

The participants in this dataset were selected according to both eligibility and exclusion 

criteria. The gold standard POAG labels were graded at the Optic Disc Reading Center. 

In brief, two masked certified readers were arranged to independently detect the optic disc 

deterioration. If there was a disagreement between two readers, a senior reader reviewed it 

in a masked fashion. The POAG diagnosis in a quality control sample of 86 eyes (50 normal 

eyes and 36 with progression) showed test-retest agreement at κ = 0.70 (95% confidence 

interval [CI], 0.55–0.85). More details of the reading center workflow have been described 

in [12]. For the OHTS dataset, we split the entire dataset randomly at the patient level. We 

take one group (20% of total subjects) as the hold-out test set and the remaining as the 

training set.

We compare the baseline image with each follow-up image and they compromise pairs 

separately. In each pair, the follow-up image and the baseline image come from the 

same eye. In this study, all eligible subjects are non-POAG at baseline. For 2-year POAG 

prediction before onset, in POAG pair, x1 refers to the baseline image and x2 refers to the 

follow-up image that coverted to POAG within two years. In normal pair, x1 refers to the 

baseline image and x2 refers to the follow-up image that did not convert to POAG within two 

years no matter whether it converts to POAG eventually. The definition of the POAG pair 

and the normal pair in the 5-year POAG prediction before onset can be derived similarly.
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3.2 Evaluation Metrics

To evaluate the performance of POAG within a certain duration, we compute accuracy, 

sensitivity, specificity, and AUC (Area Under the ROC curve).

3.3 Experimental Settings

We first trained DenseNet-201 on POAG prediction using a single image as input. Then we 

initialized the subnets in the MMSNet using the DenseNet-201 and fine-tuned the entire 

network in an end-to-end manner.

All images are resized to 224 × 224 × 3 as input of the proposed model. The models were 

implemented by Keras with a backend of Tensorflow. The proposed network was optimized 

using the Adam optimizer method [13]. The learning rate is 5 × 10−5 and α is 0.8. The 

experiments were performed on Intel Core i9-9960 X 16 cores processor and NVIDIA 

Quadro RTX 6000 GPU. The training time was 103 mins, and the testing time was 12 mins.

3.4 Results and Discussion

We compare our method with six models on POAG prediction on the OHTS dataset, 

including the DenseNet-201 with a single image as input, MobileV2 with a single image 

as input [24], the traditional Siamese network with an absolute difference, the traditional 

Siamese network with cosine similarity, MMSNet using the last DenseNet Block (MMSNet 

w/o side output), and MMSNet without 2D Block (MMSNet w/o 2D block).

2-Years POAG Prediction Before the Onset.—Table 2 shows the performance 

comparison for 2-year POAG prediction before onset. Our model achieved the best results, 

with an accuracy of 0.9337, a sensitivity of 0.6485, a specificity of 0.9414, and an AUC of 

0.9312. Compared to DenseNet-201, which is the best model among those baseline models 

with a single image as input, the proposed MMSNet possesses 27.90% higher accuracy, 

28.70% higher specificity, and 22.04% higher AUC, let alone MobileV2 which also uses 

a single image as input that is used in [24]. The result obtained by the Siamese network 

with cosine similarity is better than the results obtained by the DenseNet-201, indicating 

that the Siamese network, which imitates the clinical process (with multiple inputs), is more 

precise for 2-year POAG prediction before onset. As the results listed in row 3 and row 4, 

the Siamese network with cosine similarity works better than the Siamese network with an 

absolute difference.

5-Year POAG Prediction Before the Onset.—Table 3 compares the results of 

MMSNet with 6 state-of-the-art models on the OHTS dataset for POAG prediction 5-

years before onset. Our model obtained the best results, with an accuracy of 0.9414, 

a sensitivity of 0.7530, a specificity of 0.9520, and an AUC of 0.9507. Compared 

to the baseline (DenseNet-201), MMSNet has higher accuracy (12.48% improvement), 

sensitivity (12.80% improvement), specificity (12.46% improvement), and AUC (14.90% 

improvement). Analogously, in this 5-year task, the result obtained by the Siamese network 

with cosine similarity is better than the results obtained by the DenseNet-201, indicating that 

the imitation of the clinical process (with multiple inputs) is superior to single-visit input. As 
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the results listed in row 3 and row 4 of Table 3, the Siamese network with cosine similarity 

works better than the Siamese network with an absolute difference.

3.5 Ablation Studies

In this section, we conduct the ablation study to analyze the effect of the two components 

(1) using multi-scale features by side output; (2) using multi-structure features with the 2D 

block integrated into the proposed network. Note that MMSNet will reduce to the traditional 

Siamese network with cosine similarity by removing the side output and the 2D block. The 

results obtained by the Siamese network with cosine similarity are listed in the fourth row of 

Table 2 and Table 3. The 5 and 6 rows list the performance obtained by MMSNet without 

side output and MMSNet without 2D block, respectively. The results demonstrated that 

both the side output mechanism and 2D block utilize convolution to measure the similarity 

between two outputs could boost the performance of MMSNet. The last row lists the results 

obtained by the proposed method that consists of both side output and 2D block, and the 

results improve further.

4 Conclusions

In conclusion, this study proposed a new end-to-end deep learning network that simulates 

the process for automatic POAG prediction within a certain duration from fundus 

photographs. It is a first attempt to predict the POAG before onset by simulating the 

glaucoma screening process. The proposed network consists of a 2D block and side output. 

The 2D block via convolution operation utilizes the 2D features and cosine similarity 

to measure the similarity between two outputs. The side output drives the hidden layer 

for favoring discriminative features. One large dataset from multi-institutions was used to 

evaluate the proposed model. The results demonstrated that the proposed network performs 

well on POAG prediction before onset.
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Fig. 1. 
Longitudinal fundus images of a patient.
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Fig. 2. 
The architecture of the proposed MMSNet.
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Table 1.

Characteristics of the OHTS.

Train Val Test

Participants 2,503 115 654

2-year prediction

POAG 463 133 163

Normal 23,315 1,557 6,113

5-year prediction

POAG 961 284 336

Normal 22,817 1,406 5,940
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Table 2.

Comparisons on the test set of the OHTS dataset for 2-years POAG prediction before onset.

Method Accuracy Sensitivity Specificity AUC

DenseNet-201 0.6547 0.6667 0.6544 0.7108

MobileV2 0.8368 0.1697 0.8549 0.5114

Siamese network (absolute difference) 0.8634 0.4424 0.8748 0.8089

Siamese network (cosine similarity) 0.9423 0.4121 0.9566 0.8798

MMSNet w/o side output 0.9047 0.7515 0.9089 0.9085

MMSNet w/o 2D block 0.9132 0.6848 0.9193 0.8987

MMSNet 0.9337 0.6485 0.9414 0.9312
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Table 3.

Comparisons on the test set of the OHTS dataset for 5-years POAG prediction before onset.

Method Accuracy Sensitivity Specificity AUC

DenseNet-201 0.8166 0.625 0.8274 0.8017

MobileV2 0.5915 0.6667 0.5872 0.6799

Siamese network (absolute difference) 0.9312 0.5536 0.9525 0.9109

Siamese network (cosine similarity) 0.9433 0.6250 0.5412 0.9210

MMSNet w/o side output 0.9111 0.7292 0.9219 0.9238

MMSNet w/o 2D block 0.9348 0.6012 0.9535 0.9363

MMSNet 0.9414 0.7530 0.9520 0.9507
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