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Abstract

Purpose: Intracerebral Hemorrhage (ICH) is one of the most devastating types of strokes with 

mortality and morbidity rates ranging from about 51%−65% one year after diagnosis. Early 

hematoma expansion (HE) is a known cause of worsening neurological status of ICH patients. 

The goal of this study was to investigate whether non-contrast computed tomography imaging 

biomarkers (NCCT-IB) acquired at initial presentation can predict ICH growth in the acute stage.

Materials and Methods: We retrospectively collected NCCT data from 200 patients with acute 

(<6 hours) ICH. Four NCCT-IBs (blending region, dark hole, island, and edema) were identified 

for each hematoma, respectively. HE status was recorded based on the clinical observation 

reported in the patient chart. Supervised machine learning models were developed, trained, and 

tested for 15 different input combinations of the NCCT-IBs to predict HE. Model performance was 

assessed using area under the receiver operating characteristic curve and probability for accurate 

diagnosis (PAD) was calculated. A 20-fold Monte-Carlo cross validation was implemented to 

ensure model reliability on a limited sample size of data, by running a myriad of random training/

testing splits.

Results: The developed algorithm was able to predict expansion utilizing all four inputs with an 

accuracy of 70.17%. Further testing of all biomarker combinations yielded PAD ranging from 0.57, 

to 0.70.

Conclusion: Specific attributes of ICHs may influence the likelihood of HE and can be 

evaluated via a machine learning algorithm. However, certain parameters may differ in importance 

to reach accurate conclusions about potential expansion.

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2022 September 07.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2022 ; 12036: . doi:10.1117/12.2610672.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Intracerebral hemorrhage; hematoma; machine learning; keras neural network; non-contrast 
computed tomography; receiver operating characteristic curve

1. INTRODUCTION

Research within this study aims to develop a method to identify patients at risk for 

HE, which may result in rapid neurological decline. According to the American Heart 

Association, ICH is a subtype of stroke which is the 3rd highest cause of death and the 

leading cause of disability worldwide [1]. Hemorrhagic strokes occur when one of the blood 

vessels within the brain ruptures causing blood to leak into the surrounding brain tissue. This 

bleeding induces an increase in intracranial pressure, exerting damaging force on structures 

within the brain. This pressure can limit blood flow, forcefully kill brain cells (axons, glial 

cells), and lead to herniation within the brain [17]. As the injury progresses the body will 

initiate responses to combat the bleeding, and further deteriorate surrounding brain cells in 

the process. Intracerebral hemorrhage includes five main types of hemorrhage: (1) epidural 

hematoma, (2) subdural hematoma, (3) subarachnoid hemorrhage (SAH), (4) intraventricular 

hemorrhage (IVH), (5) intracerebral/intraparenchymal hemorrhage (ICH). ICH accounts for 

10–15% of all strokes and carries one of the highest morbidity and mortality rates. Half 

of the ICH deaths occur within the first two days following onset. At one year post onset, 

mortality ranges from 51% to 65% depending on the location of the hemorrhage. At six 

months post onset, only 20% of patients are expected to be functioning independently.[2] 

The incidence of hemorrhage increases exponentially with age and is higher in men than in 

women.[3] Despite significant advances in neuroimaging and treatment these mortality and 

morbidity numbers have not changed over the last 30 years.

There is currently no reliable treatment or therapy to fully combat an ICH. At best, medical 

professionals have utilized methods of coagulation, reducing intracranial pressure, or even a 

craniotomy [8]. Preventing further HE is the main objective that physicians aim to achieve in 

ICH cases to minimize further disease progression. Studies have shown limiting/preventing 

HE has an upside in decreasing hematoma volume and potentially evolving into a form 

of treatment for ICH [16]. In order to do so, one must understand the physiology of HE, 

and with that the mechanisms that are responsible. It is generally thought that a hematoma 

expands due to one specific blood vessel within the brain continuing to leak and adding 

to the volume of blood in the tissue. However, studies have produced evidence that more 

accurately describe what is occurring during expansion [16]. It is suggested that the initial 

hemorrhage actually induces secondary ruptures in vessels within close proximity of the 

initial tear. The event then acts as an ‘avalanche’, or chain reaction where a number of vessel 

walls shear and break down, adding to the hematoma volume. This can be corroborated 

using computed tomography angiography (CTA), which displays small white dots, or spot 

signs, that indicate the source of bleeding within the brain. Substantially, these images may 

contain multiple spot signs, indicating that the bleed is coming from multiple sources.
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To be effective against such rapid and devastating effects, ICH severity diagnosis must be 

accurate and precise to allow for early identification of patients prone to rapid neurological 

decline. Computed tomography (CT) imaging is typically the standard technique used due 

to its widespread availability; thus, CT was utilized in this study. Other growing methods of 

imaging modalities include CTA, and CT perfusion. Studies have proven each to be effective 

in identifying biomarkers for expansion predictions [15]. Currently, these two modalities 

are limited to a select number of facilities and are not typically physicians ‘go-to’ imaging 

techniques when dealing with such a time sensitive case. Over the last decade, several 

non-contrast CT imaging biomarkers (NCCT-IBs) have been developed for the identification 

and characterization of HE (HE) after ICH, such as hypodensities, blend sign, satellite sign, 

island sign (IS), and shape irregularity. The aforementioned signs are indicated in Figure 

1.[4,5]

Different groups have studied the use of singular biomarkers to predict HE and have 

achieved moderate probability for accurate diagnosis (PAD) between 60% and 65% [5]. 

There is a myriad of possible permutations of imaging biomarkers that have been utilized 

in previous studies. One in particular describes using NCCT images within 6 hours of onset 

of symptoms to identify dark hole signs, blend signs, island signs, and swirl signs. Swirl 

signs are defined as the presence of swirling hypodensities that sweep across and through 

hematomas, often irregular in shape [15]. This group was able to yield a peak area under 

the receiver operator characteristic curve of 0.568 with 414 cases used in the analysis. Note 

this group statistically analyzed the data to make predictions rather than taking advantage 

of a deep learning network to aid in analysis and predictions. They also focused on the 

effectiveness of each sign independent from one another to truly analyze the predictive 

capabilities of these biomarkers.

Recent studies have demonstrated the ability of the AI-driven algorithms to use neuro-

imaging biomarkers to improve diagnosis [6–9], assess the disease severity [10–12] and 

provide accurate prognosis of delayed treatment outcome [13,14]. We hypothesize that 

there are interdependent NCCT-IBs which could be used with machine learning algorithms 

to improve the diagnosis accuracy. To investigate this, we designed a study which used 

multiple combinations of the previously mentioned parameters as inputs for supervised 

machine learning models and tested the accuracy to predict HE. Specifically, this study 

analyzed prediction capabilities with four imaging biomarkers: blend signs, dark hole 

(black) signs, island signs, and edema. Each biomarker has been proven to be an indicator of 

HE in some capacity [18–21]. All of these signs can be identified consistently and with ease.

2. MATERIALS AND METHODS

This study was approved by the IRB at the University at Buffalo. In accordance with the 

approved protocol. NCCT DICOM files for 326 subjects with ICH were retrospectively 

collected. Each DICOM file consisted of individual CT image slices with a thickness of 

5 mm. The data was originally acquired with a 512×512 pixel column detector. In-plane 

resolution was 0.4 mm. During acquisition, the tube voltage and current ranges were 120 to 

135 kV, and 43.6 to 55.5 mGy, respectively. Overall time from scan to full reconstruction 

was around 1–2 minutes. Using brain tissue window level, the hematoma was located and 
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analyzed. The presence/absence of the imaging biomarkers including blend signs, dark hole 

(black) signs, island signs, and edema (Figure 1) was recorded for each patient. Expansion 

data for each subject was provided from the acting physician on each case. This data 

was concatenated alongside feature presence in a binary format (1- present/expanded, 0- 

absent/no expansion).

Blend signs are associated with heterogenous hematomas, which is shown by differing 

densities of blood within the hematoma. These contrasting attenuations can be attributed to 

blood of different age. Hypo attenuated regions (appears bright, white) describe actively 

bleeding blood, where darker, hyper attenuated regions show older blood which has 

undergone clotting. Thus, these heterogenous hematomas can often show signs of continued 

bleeding, leading to HE.

Black hole signs are delineated as hypo attenuated areas fully encompassed by the 

remaining, more attenuated hematoma. The difference in attenuation should be clearer and 

more obvious than the blend signs. Similar to the concept described for blend signs, this 

heterogenous nature hints towards an active bleeding site with differently aged volumes of 

blood within the hematoma.

Island signs are defined as scattered and irregular groupings of what appear to be smaller 

hematoma ‘islands’ that amalgamate into a cohesive, larger hematoma. The main factor in 

island signs that increases the risk of expansion is the irregularity of the hematoma shape 

and how it originally formed in these individual ‘pockets’ of blood. Multiple studies have 

found that added irregularities can lead to a heightened risk of further expansion.

Edema is present in the form of significantly darker regions within the CT images of a 

patients’ brain, often surrounding the edges of the hematoma itself. Edema is an indicator 

of the many secondary injuries that follow the initial hemorrhage, further deteriorating the 

patient’s status and health. Thus, edema is associated with poor outcomes with respect to 

hematomas, giving the ability to predict further expansion. A limiting factor with strictly 

using edema as an indicator is its common nature in these cases. With bleeding in the brain, 

most cases will have edema present, complicating the machine learning algorithm’s ability 

to properly predict HE.

Of the cases in which HE occurred, there were 57 instances of blend signs, 40 black signs, 

53 island signs, and 68 signs of edema. As for those that did not expand, 51 instances of 

blend signs, 44 black signs, 53 island signs, and 113 signs of edema were witnessed (Figure 

2). Of the 326 cases, 116 experienced HE, and 210 did not experience HE.

Keras [22], Google LLC, Menlo Park (CA) python machine learning framework and a 

backend to TensorFlow, was used to develop a deep learning neural network (DNN) in 

Python 3.8 [23]. The network had four input nodes, which were the four signs/features 

mentioned above (blend, black, island, edema). This was followed by 3 dense layers with 20, 

12, and 8 fully connected neurons, respectively. Each layer was activated with relu except 

the final layer, and the overall model was optimized with adam. This architecture is further 

described in Figure 3. The model was tasked with predicting whether or not a hematoma 

would expand based on its features. The model was compiled with the Adam optimizer and 
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binary cross entropy as the loss function guide to the training. The data was split so that 70% 

was utilized for training, and 30% was utilized for testing (228 training, 98 testing). Twenty 

iterations of Monte Carlo cross-validation were conducted to determine the variability of 

the results. The model was evaluated using prediction accuracy and receiver operating 

characteristic (ROC) curve. Furthermore, each feature was independently tested, as well as 

all possible permutations of features within the same algorithm to evaluate the impact of 

each feature on the ability to detect HE. In order to optimize the performance of the deep 

learning neural network, callbacks were initiated into the model. These include a method 

of only saving training progresses that improve on the previous epoch, and adjusting the 

learning rate depending on how the model is training on the dataset. Additionally, there is an 

added callback to stop the training progress once the model has ended its improvements on 

the training set. Also, a validation split of 0.2 was used. A validation split takes a percentage 

of the training set (in this case 20%) and separately evaluates the loss and accuracy This 

adds to the efficiency and quickness of the code’s runtime.

3. RESULTS

A total of 326 cases were analyzed by the machine learning code in order to predict HEs. 

The designed algorithm successfully reads and interprets the constructed datasets, predicting 

expansion for each given case. In the trial containing each of the four parameters, the model 

garnered an accuracy of 70.17%, and printed a ROC curve (Figure 4) with an area under the 

ROC curve (AUROC) of 0.70 as shown in Table 1. The AUROC combined with the standard 

deviation can be reanalyzed as the probability of accurate diagnosis (PAD). In this case, all 

four parameters show PAD = 70±2. As each combination of features was tested, the results 

varied in performance. Notably, edema alone performed the worst, showing a PAD = 57±3. 

For all of the independent tests (utilizing one parameter as input), the strongest feature was 

island sign, with a PAD of 64±3. Of the trials with three inputs, blend, black, and edema 

performed the best yielding a PAD of 70±4 whereas black, island, and island performed at 

69±2. Furthermore, for tests with two inputs, blend and island outputted the best results 

alongside blend and black at 68±3 and 68±5 respectively. The lowest performance of two 

input parameter tests was 61±3 from using blend and edema.

4. DISCUSSION

The results of the study show improved prognosis accuracy for HE when using AI-driven 

methods based on multiple imaging biomarkers. Additionally, this data is able to be 

efficiently and effectively interpreted using the created DNN. The network was able to 

utilize the combinations of present biomarkers to make accurate decisions on whether or not 

a hematoma may expand. Typically, the more input parameters involved in consideration, the 

more accurate the algorithm is able to perform. In that regard, with more cases the artificial 

intelligence model will be able to better fit unto the dataset and make more informed 

decisions. Although more input parameters could complicate the model, enough cases to 

provide data can help increase model accuracy and overall performance.

Some adverse results, such as the performance of edema, can be contributed to the fact that 

a great deal of cases involved this feature (181/326). This creates challenge for the network 
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as it is not clear how the presence of edema leads to either outcome, with 113 and 68 edemas 

present in no expansion and expansion cases respectively. As for a feature such as blend 

signs, there is a strong correlation between expansion and its presence. This is displayed 

when using blend as the only network input as the network was able to perform with a 

64.29% accuracy. These results coincide with the percentage of blend sign in expansion 

(49%) and no expansion (24%). This distinct difference in percentage of presence allows the 

network to more easily identify patterns within the data and more closely correspond a blend 

sign presence with expansion. This increases when looking at hematomas with multiple 

markers present, as it is significantly more likely for hematomas to expand when containing 

more than one biomarker.

When looking at specific cases that successfully predicted expansion, specifically below in 

Figure 5, there are typically clear indicators of hematomas at high expansion risks. The case 

on the left shows a massive hematoma with a blend sign, and a number of island signs, as 

well as surrounding edema present. With three of the four indicators, the model was able to 

easily flag this as an expansion case. Looking at the case to the right, you see a much less 

significant hematoma with only a slight degree of edema surrounding the blood within the 

brain. The model predicted that this case would not expand, and had done so successfully. 

Here are two examples of proper prediction, with one being a true positive, and the other a 

true negative.

It is important to also analyze some cases in which the algorithm predicted incorrectly in 

order to understand how to improve performance and mitigate the probabilities of inaccurate 

diagnosis. Looking at Figure 6 below, on the left is an example where the algorithm 

predicted expansion, when no expansion occurred (false positive). Surprisingly, this case 

shows a great deal of islands throughout the hematoma, as well as edema cutting in and 

around the masses of blood within the brain. A black spot can also be found in the upper 

left corner of the hematoma. Based on instincts, one may think such a heterogenous pool 

of blood, especially at this size would be prone to expansion. However, the data states this 

case did not undergo any further expansion, resulting in a false positive. According to this 

case, one may justify the incorrect case based on the fact that such a serious and complex 

hematoma may have already reached its maximum volume upon the imaging taking place. 

Therefore, according to the physician, the hematoma did not expand beyond this point. 

Perhaps if the scan were done sooner, biomarkers may have still been present, allowing for 

the model to identify an expansion case, which in turn would have actually been correct.

The example case on the right-hand side shows a scenario where the model predicted a 

false negative. In looking at this case, there is a relatively smaller hematoma in comparison, 

with no true presence of the biomarkers been screened for. As a result, the model concluded 

this specific hematoma would not expand based on its training. Again, this was incorrect. 

One could hypothesize this specific ICH was found so early in its onset, that potentially 

upon the imaging the hematoma had yet to develop into a clearer state of disease with more 

information in and around the site of the ICH.

Within this work we demonstrated that specific attributes of intracranial hemorrhages may 

influence the prognosis of HE using supervised machine learning. We also demonstrate 
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that certain parameters (i.e., blending region, dark hole, island, and edema) may be more 

influential to reach accurate conclusions about potential expansion. These insights into 

expansion predictions can lead to quick and efficiently informed decisions about hemorrhage 

treatments.

5. CONCLUSION

Utilizing DNN models to predict HE using biomarkers found in NCCT images shows 

potential for further investigation into a more automated method for HE. The network 

was able to predict the occurrence of an expansion with a peak accuracy of 70.17%, and 

probability of accurate diagnosis of 70±2%. This technology could aid physicians with 

probabilities of expansion, in order to assist in decision making on how to progress with 

treatment on a patient-to-patient basis.
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Figure 1: 
This figure demonstrates examples of specific features within non-contrast computed 

tomography images of hematoma cases, of which can demonstrate likelihood of hematoma 

expansion.
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Figure 2: 
Project design demonstrating the step by step thought process from initial data collection to 

results.
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Figure 3: 
Machine Learning Algorithm Design
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Figure 4: 
Receiver operator characteristic curve demonstrating algorithm performance for each 

permutation. Curves demonstrate better performance with multiple parameters, with peak 

prognosis probability predictions of 70% for all parameters, and blend, black, and edema. 

*A. Blend, Black, Island, Edema, B. Blend, C. Black, D. Island, E. Edema, F. Blend, Black, 

Island, G. Blend, Black, Edema, H. Blend, Island, Edema, I. Black, Island, Edema, J. 
Island, Edema, K. Black, Edema, L. Black, Island, M. Blend, Edema, N. Blend, Island, O. 
Blend, Black*.
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Figure 5: 
Examples of properly predicted hematoma cases.
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Figure 6: 
Examples of incorrect HE predictions.
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Table 1:

Performance Data on each biomarker permutation. The peak accuracy and probability of accurate diagnosis 

occurred utilizing all four parameters, and achieved 70.17% and 70±2, respectively. Typically, as input 

parameters increased, as did performance.

NCCTBI Combination Accuracy Mean AUROC STD PAD (%)

Blend, Black, Island, Edema 70.17 0.70 0.02 70±2

Blend 64.29 0.63 0.02 63±2

Black 63.88 0.60 0.02 60±2

Island 69.18 0.64 0.03 64±3

Edema 64.29 0.57 0.03 57±3

Blend, Black, Island 69.39 0.69 0.02 69±2

Blend, Black, Edema 68.57 0.70 0.04 70±4

Blend, Island, Edema 69.80 0.67 0.04 67±4

Black, Island, Edema 68.37 0.67 0.02 67±2

Island, Edema 68.57 0.65 0.03 65±3

Black, Edema 68.57 0.64 0.05 64±5

Black, Island 66.53 0.67 0.02 67±2

Blend, Edema 64.29 0.61 0.03 61±3

Blend, Island 68.57 0.68 0.03 68±3

Blend, Black 65.10 0.68 0.05 68±5
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