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Abstract

Deep-learning methods for computational pathology require either manual annotation of gigapixel 

whole-slide images (WSIs) or large datasets of WSIs with slide-level labels and typically 

suffer from poor domain adaptation and interpretability. Here we report an interpretable weakly 

supervised deep-learning method for data-efficient WSI processing and learning that only requires 

slide-level labels. The method, which we named clustering-constrained-attention multiple-instance 

learning (CLAM), uses attention-based learning to identify subregions of high diagnostic value 

to accurately classify whole slides and instance-level clustering over the identified representative 

regions to constrain and refine the feature space. By applying CLAM to the subtyping of renal cell 

carcinoma and non-small-cell lung cancer as well as the detection of lymph node metastasis, we 

show that it can be used to localize well-known morphological features on WSIs without the need 

for spatial labels, that it overperforms standard weakly supervised classification algorithms and 

that it is adaptable to independent test cohorts, smartphone microscopy and varying tissue content.

Advances in digital pathology and artificial intelligence have presented the potential 

to analyse gigapixel whole-slide images (WSIs) for objective diagnosis, prognosis and 

therapeutic-response prediction[1, 2]. Apart from the immediate clinical benefits[3, 4, 

5, 6], computational pathology has demonstrated promise in a variety of different tasks 
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for quantifying the tissue microenvironment[7, 8, 9, 10, 11, 12], conducting integrative 

image-omic analysis[13, 14, 15, 16, 17, 18, 19], identifying morphological features of 

prognostic relevance[20, 21] and associating morphologies with response and resistance to 

treatment[22].

Although deep learning[23, 24] has revolutionized medical imaging by solving many image 

classification and prediction tasks[25, 26, 27, 28, 29, 30], whole-slide imaging is a complex 

domain with several unique challenges. Deep-learning-based computational pathology 

approaches require either manual annotation of gigapixel WSIs in fully supervised settings 

or large datasets with slide-level labels in a weakly supervised setting. Given that slide-level 

labels may only correspond to tiny regions of each large gigapixel image, most approaches 

have relied on pixel, patch or region-of-interest (ROI)-level annotations to saliently localize 

these ‘needles in a haystack’[31, 32, 33, 34]. Although promising results have been reported 

by assigning the same label to every patch in a WSI[35], this approach suffers from noisy 

training labels and is not applicable to problems that may have limited tumour content 

(for example, micro-metastasis). Furthermore, if only a subset of tissue regions in WSIs 

are sampled for training at the ROI or patch-level, the model may not generalize well 

at test time or provide useful slide-level interpretability. Recent work has demonstrated 

exceptional clinical-grade performance using slide-level labels for training binary classifiers 

for patient stratification in a weakly supervised setting[36] based on variants of multiple-

instance learning (MIL). However, this methodology was reported to require thousands of 

WSIs to achieve comparable performance to fully supervised and ROI-level classifiers. Such 

large datasets, although important and beneficial for capturing the immense diversity and 

heterogeneity present in histology, are difficult to curate for rare diagnoses where only a 

handful of examples may exist or for clinical trials where it may be useful to predict the 

outcome from a small cohort of patients. Moreover, to produce a slide-level prediction 

from ROI or patch-level predictions, weakly supervised whole-slide classification methods 

commonly require the selection of a fixed, predefined aggregation function (for example, 

max-pooling or averaging over ROIs) and may not be suitable for both binary tumour versus 

normal classification and multi-class tissue subtyping problems, where normal tissue slides 

are not available. In addition, the performance of deep-learning diagnostic models, when 

trained using patch-level supervision, has been shown to suffer when tested on data from 

different sources and imaging devices[35, 36]. Such methods also need to be interpretable, 

with the capability to saliently localize regions used to make predictive determinations. 

In summary, for the broader adaptation of computational pathology in both clinical and 

research settings, there is a need for methods that do not require manual ROI extraction, 

pixel/patch-level labelling or naive sampling, which are still data efficient, interpretable, 

adaptable and generally applicable to both binary classification and multi-class subtyping 

problems.

In this Article, we propose clustering-constrained-attention multiple-instance learning 

(CLAM) as a high-throughput deep-learning framework that aims to address the key 

challenges with the whole-slide-level computational pathology outlined above. In three 

separate analyses (renal-cell-carcinoma (RCC) and non-small-cell-lung-cancer (NSCLC) 

subtyping and the detection of lymph node metastasis) using both publicly available datasets 

as well as independent test cohorts, we show that our approach is data efficient and can 
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achieve high performance across different tasks while using a systematically decreasing 

number of training labels. We demonstrate the adaptability of CLAM by showing that 

models trained on tissue resection WSIs can be directly applied to biopsy WSIs as well as 

photomicrographs taken with a consumer-grade smartphone using data from independent 

test cohorts. We also demonstrate that CLAM can generalize to multi-class classification 

and subtyping problems in addition to the binary tumour versus normal classification 

tasks typically studied in weakly supervised settings. Our study presents a computational 

pathology framework that extends attention-based multiple-instance aggregation[37] to 

general multi-class weakly supervised WSI classification without requiring any pixel-level 

annotation, ROI extraction or sampling. We make this possible by first using transfer 

learning and a convolutional neural network (CNN) encoder with pre-trained parameters 

for dimensionality reduction, which also has the benefit of drastically increasing the 

speed of model training. Through the use of attention-based learning, CLAM is able to 

produce interpretable heatmaps that allow clinicians to visualize, for each slide, the relative 

contribution and importance of every tissue region to the predictions of the model without 

using any pixel-level annotations during training. These heatmaps show that our models 

are capable of identifying well-known morphological features used by pathologists to 

make diagnostic determinations, and show that the models are capable of distinguishing 

between tumour and adjacent normal tissue without any normal slides or ROIs used during 

training. CLAM is publicly available as an easy-to-use Python package over GitHub (https://

github.com/mahmoodlab/CLAM), and whole-slide-level attention maps can be viewed in 

our interactive demo (http://clam.mahmoodlab.org).

CLAM is a deep-learning-based weakly supervised method that uses attention-based 

learning to automatically identify subregions of high diagnostic value to accurately 

classify the whole slide, while also enabling the use of instance-level clustering over 

the representative regions identified to constrain and refine the feature space. Under 

the standard MIL formulation and the weakly supervised learning paradigm in general, 

one major challenge in developing high-performance machine-learning classifiers for 

computational pathology is the suboptimal usage of labelled WSI data. For example, when 

only the slide-level labels are known, despite having access to many (up to hundreds of 

thousands) instances or patches per WSI, the standard MIL algorithm uses max-pooling 

and thus uses the gradient signal from only a single instance in each slide to update 

the learning parameters of the neural network model. This drawback might partly explain 

why, empirically, a deep-learning model trained using MIL would require the observation 

of a large number of example WSIs that are annotated at the slide level to achieve 

high performance for relatively simple binary classification tasks[36]. On the other hand, 

although assigning the slide-level label to each and every patch in the slide and treating them 

as independent training examples maximizes the number of labelled data points, it might not 

benefit model performance as a result of the use of noisy labels.

For whole-slide-level learning without annotation, CLAM uses an attention-based pooling 

function to aggregate patch-level features into slide-level representations for classification. 

At a high level, during both training and inference, the model examines and ranks all patches 

in the tissue regions of a WSI, assigning an attention score to each patch, which informs 

its contribution or importance to the collective slide-level representation for a specific class 
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(Fig. 1). This interpretation of the attention score is reflected in the slide-level aggregation 

rule of attention-based pooling, which computes the slide-level representation as the average 

of all patches in the slide weighted by their respective attention score. Unlike the standard 

MIL algorithm[36, 37, 38], which was designed and widely used for weakly supervised 

positive/negative binary classification (for example, cancer versus normal), CLAM is 

designed to solve generic multi-class classification problems. A CLAM model has N parallel 

attention branches that together calculate N unique slide-level representations, where each 

representation is determined from a different set of highly attended regions in the image 

viewed by the network as strong positive evidence for the one of N classes in a multi-class 

diagnostic task (Fig. 1b,c). Each class-specific slide representation is then examined by a 

classification layer to obtain the final probability score predictions for the whole slide.

Beyond adopting the attention-based pooling[37] aggregation rule in favour of max-pooling, 

we explored additional means to address the data inefficiency in existing weakly supervised 

learning algorithms for computational pathology. Namely, we make use of the slide-level 

ground-truth label and the attention scores predicted by the network to generate pseudo 

labels for both highly and weakly attended patches as a technique to increase the supervisory 

signals for learning a separable patch-level feature space. During training, the network 

learns from an additional supervised learning task of separating the most- and least-attended 

patches of each class into distinct clusters. In addition, it is possible to incorporate domain 

knowledge into the instance-level clustering to add further supervision. For example, 

cancer subtypes are often mutually exclusive or assumed to be mutually exclusive during 

classification. If the mutual exclusivity assumption is adopted, in addition to supervising 

the attention branch for which the ground-truth class is present, the attention network 

branches corresponding to the remaining classes can be supervised by clustering their highly 

attended instances as ‘false positive’ (that is, negative) evidence for their respective classes. 

In practice, if one were to assume that only morphology corresponding to a single class 

is present in a given slide, one can also choose to use a simpler framework of having a 

single attention module instead of multiple branches by always treating the high-attention 

patches from the attention module as positive evidence for the ground-truth class and as false 

positive evidence for the remaining classes when computing the clustering loss.

To make CLAM a high-throughput pipeline that researchers can readily adopt and utilize 

without requiring dedicated high-performance compute clusters, we also propose and make 

available an open source easy-to-use WSI processing and learning toolbox. Our pipeline 

first automatically segments the tissue region of each slide and divides it into many smaller 

patches (for example, 256 × 256 pixels) so they can serve as direct inputs to a CNN 

(Fig. 1a). Next, using a CNN for feature extraction, we convert all tissue patches into 

sets of low-dimensional feature embeddings (Fig. 1b). Following this feature extraction, 

both training and inference can occur in the low-dimensional feature space instead of the 

high-dimensional pixel space. The volume of the data space is decreased nearly 200-fold 

and we can drastically reduce the subsequent computation required to train supervised 

deep-learning models. We found that working with a low-dimensional feature space enables 

training models on thousands of gigapixel-sized resection slides within hours on modern 

workstations with consumer-grade Graphics Processing Units (GPUs).
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In the proceeding sections, we demonstrate the data efficiency, adaptability and 

interpretability of CLAM on three different computational pathology problems: (1) RCC 

subtyping, (2) NSCLC subtyping and (3) the detection of breast-cancer lymph node 

metastasis. We also show that CLAM models trained on WSIs are adaptable to smartphone 

microscopy images and biopsy slides.

Results

Dataset-size dependent, cross-validated model performance.

We evaluated the slide-level classification performance of CLAM for the three clinical 

diagnostic tasks mentioned above using 10-fold Monte Carlo cross-validation. For each 

cross-validated fold, we randomly partitioned each public WSI dataset into a training set 

(80% of cases), a validation set (10% of cases) and a test set (10% of cases), stratified 

by each class. In the event that a single case has multiple slides, all of them are sampled 

together into the same set. In each fold, the performance of the model on the validation set 

is monitored during training and used for model selection while the test set is held out and 

referred to just once after training is complete to evaluate the model. On the Cancer Genome 

Atlas (TCGA) RCC dataset (Fig. 2a), the model achieved a 10-fold macro-averaged one-

versus-rest mean test area under the curve (AUC) ± s.d. of 0.991 ± 0.004 for the three-class 

RCC subtyping of papillary (PRCC), chromophobe (CRCC) and clear cell RCC (CCRCC) 

at ×20 magnification. For the per subtype one-versus-rest AUC, see Supplementary Fig. 

1. For the two-class NSCLC subtyping of lung adenocarcinoma (LUAD) and squamous 

cell carcinoma (LUSC) on the combined TCGA and Clinical Proteomic Tumor Analysis 

Consortium (CPTAC) NSCLC dataset, at ×20 magnification, the model achieved an 

average test AUC of 0.956 ± 0.020 (Fig. 2b). On the combined CAMELYON16 and 

CAMELYON17 dataset for breast-cancer-metastasis detection in axillary lymph nodes, 

the model achieved an average test AUC of 0.953 ± 0.029 at ×40 magnification (Fig. 

2c). Additional performance metrics are reported in Supplementary Tables 1–3. All of our 

training data are from publicly available sources, which, although they represent some of the 

largest public WSI datasets, are 5–10× smaller than the proprietary labelled datasets studied 

in several recent workscite[5, 36]. However, despite the moderate sizes of the datasets used 

(884, 1,967 and 899 total slides, respectively, of which only approximately 80% are used for 

training in each fold), the high performance (>0.95 AUC) on all three tasks indicates that our 

method can be effectively applied to solve both conventional positive-versus-negative cancer 

detection binary classification and more general multi-class cancer subtyping problems 

across a variety of tissue types.

Labelled WSI data are often difficult to acquire, and it may not be feasible to collect 

thousands of slides in the context of rare diseases (for example, CRCC), unusual findings or 

clinical trials. In light of these limitations, to investigate the data efficiency of our models, 

we sequentially sampled subsets of training data equal to 75, 50, 25 and 10% of the total 

number of cases in each training set created during cross-validation. For each subsampled 

training set, its corresponding test set was kept the same to investigate the dependency 

of the performance of the model on the amount of training data available. We also kept 

each corresponding validation set constant to avoid the introduction of the model selection 
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criteria as an additional confounding variable to the test performance of a model. When 

supervising CLAM models with the smaller sampled subsets of training data, we observed 

that the number of slides required to achieve satisfactory performance (AUC > 0.9) varies 

depending on the classification task. For example, merely 25% of the total available training 

cases (which represents an average of approximately 170 slides in each cross-validated fold) 

is sufficient to achieve an average test AUC above 0.94 on RCC subtyping, whereas 25% 

of the lung training set (419 slides) and 50% of the lymph-node-metastasis dataset (289 

slides) might be needed for NSLCC subtyping and the detection of lymph node metastasis, 

respectively. Finally, to investigate the value of attention pooling over max-pooling, we 

compared the performance of CLAM with MIL and the other popular weakly supervised 

method of naively assuming the same slide-level label for every patch, denoted as ‘same 

label’ (SL). We implemented a multi-class variant of MIL for three-class RCC subtyping, 

which we denote mMIL (see Methods for technical details). In our comparative study we 

found that CLAM consistently outperforms the max-pooling-based algorithms for all tasks 

and training-set sizes (Fig. 2d–f). The AUC difference between CLAM, max-pooling-based 

algorithms and SL are more pronounced when fewer slides are used for training. For 

example, SL demonstrates a reasonable performance for RCC subtyping at 100 and 75% 

of training data, probably because of the high tumour content present in the TCGA RCC 

dataset, which means most of the training labels used by SL will be correct when assigning 

the slide-level diagnosis to all regions in each WSI. On the other hand, SL performs 

poorly in the detection of lymph node metastasis, given that the areas of metastasis can be 

small and sparse, which leads to a high amount of label noise when naively assigning the 

slide-level label to every location of tissue in each slide. Overall, we note that CLAM is 

data efficient, as it is often able to achieve test AUC > 0.9 using only several hundred slides 

for training. To investigate whether the additional task of instance-level clustering in CLAM 

contributes to the increased data efficiency, we conducted ablation studies for all disease 

models across training sets of different sizes and observed that the additional instance-level 

supervision improves model performance over using bag-level supervision alone when the 

training-set size is small (Supplementary Table 4).

We also conducted experiments to assess the performance of different algorithms under 

data constraint using 60/10/30 and 40/10/50 partitions instead of 80/10/10 train/validate/test 

partitions, which allows for model evaluation on larger test sets (Supplementary Table 5). 

To enable comparisons with future studies, we conducted additional experiments using the 

publicly available TCGA, CPTAC and CAMELYON datasets (see Supplementary Table 6 

for details). Furthermore, we analysed the performance of CLAM in the context of the 

larger body of related works (Supplementary Table 7) evaluated on the public datasets that 

we used for the three different diagnostic tasks. First, we applied CLAM to the public 

CAMELYON16 lymph-node-metastasis detection challenge. We trained on the official 

training set (without using any of the pixel-level annotation provided) after splitting the 

270 WSIs into approximately 85% training and 15% validation. Our best model achieved a 

test AUC of 0.936 (95% confidence interval (CI): 0.890– 0.983) on the official test set of 

129 WSIs. This is an encouraging result given that no pixel-level labels were used during 

training. Similarly, we trained a CLAM model to perform NSCLC subtyping on just TCGA 

diagnostic WSIs, where 15% of cases (80 LUAD and 81 LUSC WSIs) were held out as 
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the test set and the remaining data were divided into 85% training and 15% validation. This 

model achieved a test AUC of 0.963 (95% CI: 0.937–0.990).

Generalization to independent test cohorts.

Due to differences in institutional standards and protocols for tissue processing, slide 

preparation and digitization, WSIs can vary greatly in image appearance. Therefore, it is 

important to validate that models trained under the CLAM weakly supervised framework 

using publicly available data sources of a moderate size are robust to data-specific variables 

and generalize to real-world clinical data from scanners and staining protocols that are not 

encountered during training. We collected and scanned a total of 135 RCC (CRCC, 43; 

CCRCC, 46; and PRCC, 46), 131 NSCLC (LUAD, 63; and LUSC, 68) and 133 lymph 

node (negative, 66; and positive, 67) whole slides at the Brigham and Women’s Hospital 

(BWH) as independent test cohorts to evaluate the generalization performance of our trained 

models (further explained in Methods and Supplementary Table 8). For each task and 

training-set size, the ten models trained during cross-validation on our public datasets were 

directly evaluated on the completely held-out independent test set. We observed that for 

smaller denominations of the training set, the variance in the cross-validation performance 

of different models were often much higher, in which case testing using a single best-

performing model may give the illusion of data efficiency although the performance of the 

algorithm on the independent test set would be inconsistent and vary highly across models 

developed using different random splits of training data. To accommodate this, we used 

the average performance of all ten models (instead of a single selected model) to estimate 

the performance of our algorithm for each training-set size. When testing on independent 

test cohorts, the 10-fold cross-validated CLAM models trained using 100% of the training 

set achieved an average one-versus-rest AUC (macro-averaged) of 0.972 ± 0.008 on RCC 

subtyping, and an average AUC of 0.975 ± 0.007 for NSCLC subtyping and 0.940 ± 0.015 

for the detection of axillary lymph node metastasis (Fig. 3a–c). In addition, we observed 

that even CLAM models trained on the smaller subsets of the full training set can achieve 

respectable performance (test AUC > 0.9) on data from independent sources after learning 

from just hundreds of slides (Fig. 3d–f). When compared with mMIL/MIL and SL, CLAM 

delivered improved performance across all tasks and training-set sizes (Fig. 3d–f, top and 

middle) and especially when constrained by limited training data. For example, when trained 

with 25% of the full training set, CLAM outperformed MIL/mMIL by 14.2, 5.77 and 29.2% 

in average test AUC on RCC subtyping, NSCLC subtyping and the detection of lymph 

node metastasis, respectively, and similarly outperformed SL by 7.32, 16.6 and 29.7% in 

these same respective experiments (for comparisons using additional classification metrics, 

see Supplementary Table 9–11). In addition, we observed that CLAM models became on 

average less confident as the size of the training set was reduced (Fig. 3d–f, bottom), which 

is in general more desirable than having inaccurate but overly confident models that severely 

and erroneously overfit on the small training set that they observe.

For NSCLC and RCC subtyping, the models trained on the public datasets of TCGA and 

CPTAC must also adapt to the different micrometre-per-pixel (m.p.p.) resolution produced 

by the in-house Hamamatsu scanner compared with the Aperio scanners used to digitize the 

training data. Whereas the vast majority of WSIs from TCGA RCC and NSCLC and CPTAC 

Lu et al. Page 7

Nat Biomed Eng. Author manuscript; available in PMC 2021 December 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NSCLC had a ×20 equivalent m.p.p. close to 0.5, the in-house WSIs had a ×20 equivalent 

m.p.p. of 0.44. On the in-house NSCLC lung dataset, we also tested a mechanism to 

standardize the resolution at test time by downscaling the image patches to an approximate 

m.p.p. of 0.5 before they were embedded by the CNN encoder during data processing. 

However, we only observed a small improvement in mean test AUC to 0.979 ± 0.005 when 

using this technique. To further investigate the impact of variability introduced by different 

scanner hardware, we digitized all of the in-house lung-resection slides using an additional 

3DHistech MiraxScan 150 scanner, which produces an m.p.p. of 0.328. We found that our 

models were able to achieve an average test AUC of 0.910 ± 0.022 when evaluating on the 

native scanning resolution of the new scanner despite the drastic difference in the m.p.p. 

resolution of the 3DHistech scanner in comparison to the Aperio scanners used to digitize 

the public training data (Supplementary Fig. 2). On the other hand, by standardizing the 

image patches from the 3DHistech scans to an m.p.p. of 0.5, we improved the test AUC to 

0.965 ± 0.006. These results reasonably demonstrate that our proposed weakly supervised 

learning framework is quite robust to variation in scanner hardware but also illustrates the 

potential importance of m.p.p. standardization when evaluating on slides from new data 

sources, especially when the m.p.p. difference between the training data and test data is 

large.

Overall, the results from our study are highly encouraging and serve as supporting 

evidence that using CLAM, datasets of a moderate size curated from multiple institutions 

(with source-specific variability) and a diverse patient distribution (for example, TCGA) 

are sufficient to develop accurate, weakly supervised computer-aided diagnostic models 

capable of generalization. For best performance during real-world clinical deployment, we 

additionally propose to ensemble the diagnostic predictions from multiple models instead 

of selecting a single model. This is computationally inexpensive to accomplish as we only 

have to perform feature extraction on our data once, unlike methods that require tuning 

a feature encoder for each model. The ensemble performance (with 95% CI) of trained 

CLAM models on all independent test cohorts is demonstrated in Supplementary Fig. 3 and 

Supplementary Tables 12–14.

Interpretability and whole-slide attention visualization.

Human-readable interpretability of the trained weakly supervised deep-learning classifier 

can validate that the predictive basis of the model aligns with well-known morphology 

used by pathologists and can also be used to analyse failure cases. In addition, whole-slide-

level heatmaps can be used for artificial-intelligence assisted human-in-the-loop clinical 

diagnoses. A CLAM model makes its slide-level prediction by first identifying and 

aggregating regions in the WSI that are of high diagnostic importance (high attention 

score) while ignoring regions of low diagnostic relevance (low attention score). To visualize 

and interpret the relative importance of each region in the WSI, we can generate an 

attention heatmap by converting the attention scores for the predicted class of the model 

into percentiles and mapping the normalized scores to their corresponding spatial location 

in the original slide. Fine-grained attention heatmaps can be created using overlapping 

patches (for example, 95% overlap) and averaging the attention scores in the overlapped 

regions (see Supplementary Fig. 4 for a discussion on the visual quality of heatmaps for 
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different degrees of overlap). Although pixel-level or patch-level annotation was never used 

during training to explicitly inform the model whether each region is tumour tissue (and, 

if so, which subtype of tumour), we observed that through weakly supervised learning 

using slide-level labels only, trained CLAM models are generally capable of delineating 

the boundary between tumour and normal tissue (Fig. 4a–c; see the interactive demo at 

http://clam.mahmoodlab.org for high-resolution heatmaps). This is an especially welcoming 

property given that for RCC and NSCLC subtyping, all training data collected from 

the TCGA are positive cases and contain tumour regions. The finding demonstrates that 

CLAM has the potential to be used towards meaningful whole-slide-level interpretability 

and visualization in cancer subtyping problems for clinical or research purposes, without 

the need to observe negative cases during training (which would require either collecting 

slides from adjacent normal tissue or manual annotation of negative regions in positive 

slides). Of equal importance, high-attention regions generally correspond with morphology 

already established and recognized by pathologists for all of the three classification tasks 

studied (Fig. 4a–c). For example, the CLAM model trained for NSCLC subtyping highlights 

prominent intercellular bridges and keratinization, and uses them as strong evidence (high 

attention) for LUSC (Fig. 4b), in concordance with human pathology expertise. In addition, 

we examined the attention heatmap of the model with corresponding cytokeratin (AE1/AE3) 

immunohistochemical staining to further validate its predictive basis for a representative 

case of lymph node metastasis (Supplementary Fig. 5). These heatmaps can also be 

used to analyse and investigate misclassified slides. We observed challenging cases in 

our in-house independent test data in which the high-attention patches selected by the 

model for prediction failed to clearly indicate the correct class due to poor differentiation 

in the tumour cells or the limited presence of contextual cues to delineate the tumour 

architecture (Supplementary Fig. 6). For the detection of lymph node metastasis, false 

positive predictions typically highlighted large epithelioid histiocytes that mimic tumour 

cells to some degree, whereas false negatives tended to result from small isolated clusters 

of tumour cells in micro-metastases and isolated tumour cells. Despite their practical 

usefulness, caution should be taken to not overly rely on the attention heatmaps with the 

expectation that they can serve as pixel-perfect segmentation masks; intuitively, the attention 

scores for each region in the slide are relative and simply represent the interpretation by the 

model of which regions are more important (relative to others) in determining the slide-level 

prediction. Nonetheless, this simple and intuitive interpretability and visualization technique 

can provide researchers insight into the morphological patterns driving the predictions of 

the model; after further quantitative investigation, we also found that the attention heatmaps 

exhibit a high level of agreement with the pathologist annotations of tumour regions across 

all tasks when evaluated on our in-house resection slides (Supplementary Fig. 7).

As a means of enhanced interpretability, we further investigated the patch-level feature 

space learned by the CLAM models. We randomly sampled a subset of patches from each 

slide in the independent test cohorts, reduced their learned instance-level 512-dimensional 

feature representations into two dimensions using principal component analysis (PCA) 

and examined their class predictions assigned by the clustering layers of the network 

(Supplementary Fig. 8). For the RCC and NSCLC slides, patches of different predicted 

classes are separated into distinct clusters in the feature space and exhibit morphology 
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characteristic of their respective subtype. For the detection of axillary lymph node 

metastasis, sampled patches predicted as the positive cluster include tumour tissue, whereas 

negative (agnostic) patches capture a wide array of morphologies, including normal tissue 

and dense immune cell populations.

Adaptability to smartphone microscopy images.

We also explored the ability of our models (which are trained exclusively on WSIs) to 

directly adapt to microscopy images captured using a smartphone camera (commonly known 

as photomicrographs). In resource-constrained areas with limited access to pathologist 

expertise, consult cases are often imaged using a smartphone attached to a conventional 

microscope[39]. Training a deep-learning classifier specifically based on smartphone 

microscopy images would probably require the time-consuming and laborious process of 

manually curating a large set of labelled ROIs. These ROIs should not only be representative 

of the underlying pathological conditions but also capture a wide range of tissue-site 

and patient-specific appearances and artefacts to ensure that the model can adapt to the 

heterogeneity inherently found in histopathology slides and WSIs. A robust model trained 

on WSIs that is capable of directly adapting to cellphone images (CPIs) and deliver accurate 

automated diagnosis is therefore of tremendous value to the wider adoption of telepathology. 

As part of our model adaptability study, 4–8 fields of view (FOVs) from each slide in 

our independent test cohorts were captured using a consumer-grade iPhone X smartphone 

camera and patches from all FOV ROIs were collectively used by the model to predict 

the slide-level label. A variable number of FOVs were selected from each slide to cover 

the necessary tissue area relevant for diagnosis. CLAM achieved an average test AUC of 

0.873 ± 0.025 on the NSCLC CPI dataset and an average one-versus-rest macro-averaged 

AUC of 0.921 ± 0.023 on the RCC CPI dataset (Fig. 5b,c and Supplementary Tables 15 

and 16). The drop in performance compared with testing on WSIs (Fig. 5d) can probably 

be attributed to the imperfect conditions under which CPIs are captured (poor focus, non-

uniform illumination, noise artefacts, vignetting, colour shift, magnification changes and 

so on). Although some of these adversities can potentially be reduced through the use of 

both conventional and deep-learning-based image-processing techniques (for example, stain 

normalization based on deep convolutional adversarial generative modelling[40]), we did not 

attempt to correct or normalize the images so as to test the robustness and adaptability of 

our models and keep the processing time and computational cost low to potentially allow 

inference directly on smartphone hardware. Despite these challenging variables, we found 

that in most cases, the model still accurately attends to regions in the FOV that exhibit 

well-known morphology characteristics of each cancer subtype (Fig. 5e,f). Furthermore, 

different classes are still visibly separated into distinct clusters in the feature space that 

the model has learned from WSIs (Fig. 5g,h). These results instil confidence with regards 

to the potential wider applicability of our weakly supervised learning framework to the 

telepathology domain.

Adapting networks trained on resections to biopsies.

The publicly available WSIs that we used for training in our study are all resections. 

Compared with resected tissue, core-needle-biopsied tissue is generally substantially smaller 

in size. The limited tissue content as well as the presence of cell distortion due to crush 
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artefact can challenge the diagnostic ability of the model. Accordingly, given that we 

did not use biopsy slides during training, it was important to investigate whether models 

trained solely on resections can adapt directly to biopsy slides and make accurate diagnostic 

predictions. We collected 110 lung (55 LUAD and 55 LUSC) and 92 kidney biopsy slides 

(53 CCRCC, 26 PRCC and 13 CRCC) at BWH as our independent test cohorts and directly 

tested our models that had been trained on the publicly available resection data. Each slide 

contains a variable number of embedded biopsy specimens, ranging from one to six for 

lung-biopsy WSIs and one to five for kidney-biopsy WSIs (Supplementary Table 17). For 

each WSI, tissue regions from all biopsy specimens embedded in the slide are provided 

to the model as input to make a single prediction for evaluation at the WSI level. On the 

lung-biopsy test set, CLAM achieved an average AUC of 0.902 ± 0.016 and on the kidney-

biopsy test set, the average one-versus-rest macro-averaged test AUC was 0.951 ± 0.011 

(Fig. 6b,c and Supplementary Tables 18,19). These results are highly encouraging because 

many biopsy slides, especially in the case of the lung-biopsy dataset, contained poorly 

differentiated tumours, which make them extremely difficult or impossible for pathologists 

to accurately diagnose based on the haematoxylin and eosin (H&E) stains alone (without 

immunohistochemistry). In addition, to assess the applicability of our models to potential 

real-world fully automated computer-aided diagnosis, when testing on biopsy slides, we did 

not manually select ROIs that contain high tumour content to avoid exposing the model 

to non-tumour features (blood vessels, inflammation, necrotic regions and so on)[35] that 

might lead to misclassification. We also did not perform any pre-processing techniques 

such as stain normalization on our test set and used the entire tissue region of each slide 

during evaluation. Using the same visualization and interpretability technique as before, 

we generated attention heatmaps for each subtype (Fig. 6d,e). We continued to observe a 

high similarity between the strongly attended regions highlighted by the trained CLAM 

models and the tumour regions annotated by the pathologist despite the tumours generally 

occupying smaller and more sparse tissue regions than in the resection slides.

Discussion

Altogether, we showed that CLAM addresses several key challenges in computational 

pathology. Specifically, our analysis demonstrated that CLAM can be used to train 

interpretable, high-performance deep-learning models for both binary and multi-class WSI 

classification using only slide-level labels without any additional annotation. We are 

encouraged to note that our approach overcomes the barrier of time-costly annotation while 

also being more data efficient; we showed that it achieves a strong performance and also 

has the ability to generalize to independent test cohorts, smartphone microscopy and varying 

tissue content using a reasonable number of slides for training. Using CLAM, we are 

also able to showcase high-resolution interpretability heatmaps for the entire WSI, which 

may be used as an interpretability tool in research applications to identify morphological 

features associated with response and resistance to treatment or as a visualization tool for 

a secondary opinion in anatomic pathology to highlight ROIs. Although the use of attention-

based pooling in CLAM provides the model with the flexibility of selectively aggregating 

information from multiple relevant ROIs to inform the slide-level diagnosis, a limitation 

of CLAM and MIL-based approaches in general for weakly supervised classification is 
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that they typically treat different locations in the slide as independent regions and do not 

learn potential nonlinear interactions between instances, which may help the model become 

more context-aware. One line of future work will focus on extending the proposed weakly 

supervised framework to additional problems in computational pathology and developing 

more context-aware approaches. In addition, while fine-tuning the feature encoder in an 

end-to-end manner and using extensive data augmentation will probably to lead to further 

improvement in performance, end-to-end training that involves working with the original 

data space of image pixels is expected to drastically increase the total training time and 

computational resources required. In contrast with such a resource-hungry undertaking, 

the use of low-dimensional feature representations enables large-scale experimentation 

and allows us to conduct a detailed analysis of the data efficiency of different weakly 

supervised learning algorithms using extensive 10-fold cross-validation across a variety 

of tasks. However, this leaves room for future methods that will be able to flexibly 

strike a balance between end-to-end training that seeks to maximize the expressiveness 

of the model (especially when large diverse datasets are available to curb overfitting) and 

computationally efficient usage of feature representations for the weakly supervised learning 

on gigapixel WSIs. Last, other challenges that remain to be addressed and investigated 

in future studies include developing data-efficient weakly supervised methods for survival 

prediction, learning in the presence of noisy labels, poorly differentiated cases, mixed cancer 

subtypes and from extremely limited number of labelled data (for example, fewer than ten 

cases), predictions with uncertainty estimates and human in-the-loop decision-making.

Weakly supervised computational pathology is closer to clinical adaption because it 

only requires slide- or patient-level labels that are collected for clinical purposes. The 

improvement in data efficiency brought forth by our approach helps reduce the trade-off 

between weak supervision and the number of labelled whole slides required for training. 

While large diverse datasets are valuable assets for capturing as much heterogeneity within 

the data distribution as possible, data- efficient whole-slide training is essential to enable 

the applicability of computational pathology for classification in rare conditions as well 

as patient stratification for clinical trials where it is valuable to predict the response or 

resistance to treatment from a small cohort of existing patient cases. Within the context of 

our study, we found that CLAM is indeed capable of stratifying patients into predominant 

and relatively rare classes (for example, CCRCC versus CRCC). As we look forward to 

validating CLAM on a wider array of problems, we are also optimistic about the potential 

utility of CLAM in applications beyond the classification of WSI resections. For instance, 

we have found that models trained using CLAM and weak supervision are highly adaptable 

to independent data sources, biopsy slides, different scanning hardware and smartphone 

microscopy images without using any form of domain adaptation or fine-tuning. These 

important properties should allow researchers to develop models using resection slides 

(average tissue coverage: 142 mm2, 11,182 patches), which maximizes the diversity of tissue 

content encountered during training, with the flexibility to later adapt to biopsies (average 

tissue coverage: 15.6 mm2, 1,225 patches). Similarly, CLAM models trained on WSIs 

covering large tissue volume can adapt to CPIs with a limited FOV and have the potential to 

enable the routine use of telepathology in remote resource-constrained settings with limited 

anatomic pathology expertise, where consult cases are often imaged via a consumer-grade 
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smartphone attached to brightfield microscopes. Overall, we hope our study and method 

will provide researchers with new ways to solve diagnostic and research problems using 

whole-slide images of routine histology specimens, thereby improving clinical care and 

facilitating knowledge discovery in computational pathology.

Methods

CLAM.

CLAM is a high-throughput deep-learning empowered toolbox designed to solve weakly 

supervised classification tasks in computational pathology, in which each WSI in the 

training set is a single data point with a known slide-level diagnosis but for which no class-

specific information or annotation is available for any pixel or region in the slide. CLAM 

builds on the MIL framework, which views each WSI (known as a bag) as a collection 

comprised of many (up to hundreds of thousands) smaller regions or patches (known 

as instances). The MIL framework typically restricts its scope to binary classification 

problems of a positive and a negative class based on the assumption that if at least one 

patch belongs to the positive class, then the entire slide should be classified as positive, 

whereas a slide should be classified as negative if all patches are of the negative class. 

This assumption is reflected in the rigid non-trainable aggregation function of max-pooling, 

which simply uses the patch with the highest predicted probability for the positive class 

for the slide-level prediction, rendering MIL unsuitable for both multi-class classification 

and binary classification problems in which no intrinsic positive/negative assumption can 

be made. Besides max-pooling, although other aggregation functions such as the mean 

operator, generalized mean, log-sum-exp, the quantile function, noisy-or and noisy-and[41, 

42, 43] can be used, they suffer from limited flexibility for problem and data-specific 

tuning and do not offer a simple, intuitive mechanism for model interpretability. In 

contrast, CLAM is generally applicable to multi-class classification and is built around 

the trainable and interpretable attention-based pooling function[37] to aggregate slide-level 

representations from patch-level representations for each class. In our design of multi-

class attention pooling, the attention network predicts N distinct sets of attention scores 

corresponding to the N classes in a multi-class classification problem. This enables the 

network to unambiguously learn which morphological features should be considered as 

positive evidence (characteristic of the class) versus negative evidence (non-informative, 

absent of class-defining characteristics) for each class and summarize N unique slide-level 

representations. Specifically, for a WSI represented as a bag of K instances (patches), 

we denote the instance-level embedding corresponding to the kth patch as zk. In CLAM, 

the first fully connected layer W 1 ∈ ℝ512 × 1024 further compresses each fixed patch-level 

representation zk ∈ ℝ1024 to a 512-dimensional vector hk = W1zk (for simplicity, all bias 

terms are implied and not explicitly written). The attention network consists of several 

stacked fully connected layers; if we consider the first two layers of the attention network 

Ua ∈ ℝ256 × 512 and V a ∈ ℝ256 × 512 and W1 collectively as part of the attention backbone 

shared by all classes, the attention network then splits into N parallel attention branches 

W a, 1, …, W a, N ∈ ℝ1 × 256. Similarly, N parallel, independent classifiers, Wc,1, … Wc,N 

are built to score each class-specific slide-level representation. Accordingly, the attention 
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score of the kth patch for the ith class, denoted ai,k, is given by equation (1) [37] and the 

slide-level representation aggregated per the attention score distribution for the ith class, 

denoted hslide, i ∈ ℝ1 × 512, is given by equation (2):

ai, k = exp W a, i tanh V ahk ⊙ sigm Uahk
∑j = 1

K exp W a, i tanh V ahj ⊙ sigm Uahj
(1)

hslide, i = ∑
k = 1

K
ai, khk (2)

The corresponding unnormalized slide-level score sslide,i is given via the classifier layer 

W c, i ∈ ℝ1 × 512 by sslide,i = Wc,ihslide,i. We use dropout (P = 0.25) after each layer in 

the model’s attention backbone for regularization. For inference, the predicted probability 

distribution over each class is computed by applying a softmax function to the slide-level 

prediction scores sslide.

Instance-level clustering.—To further encourage the learning of class-specific features, 

we introduce an additional binary clustering objective during training. For each of N classes, 

we place a fully-connected layer after the first layer, W1. If we denote the weights of the 

clustering layer that corresponds to the ith class as W inst, i ∈ ℝ2 × 512, the cluster assignment 

scores predicted for the kth patch, denoted by pi,k, is given as:

pi, k = W inst, ihk (3)

Given we do not have access to patch-level labels, we use the outputs of the attention 

network to generate pseudo labels for each slide in each iteration of training to supervise the 

clustering. Instead of clustering all the patches in the slide, we only optimize the objective 

over the subset of most and least attended regions. Let the entire label set be Y = 1, …, N , 

to avoid confusion, for a given slide, with ground truth class label Y ∈ Y, we refer to 

the attention branch that corresponds with this ground truth class (Wa,Y) as ‘in-the-class’, 

and the remaining N − 1 attention branches as ‘out-of-the-class’. If we denote the sorted 

list of in-the-class attention scores (in ascending order) as aY , 1, …, aY , K, we take the B 

patches with the lowest attention scores and assign them the negative cluster label (yY,b = 

0, 1 ≤ b ≤ B) while the B patches with the highest in-the-class attention scores receive the 

positive cluster label (yY,b = 1, B + 1 ≤ b ≤ 2B). Intuitively, because each attention branch is 

supervised by the slide-level label during training, the B patches with high attention scores 

(hence the positive cluster) are expected to be strong positive evidence for class Y, while the 

B patches with low attention scores (hence the negative cluster) are expected to be strong 

negative evidence for class Y. Therefore, the clustering task can be intuitively interpreted as 

constraining the patch-level feature space hk such that the strong characterizing evidence of 

each class is linearly separable from its negative evidence. For cancer subtyping problems, 

all classes are often assumed to be mutually exclusive (i.e. they cannot be present in the 

same slide), as we cluster the most attended and least attended patches of the in-the-class 
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attention branch into positive and negative evidence respectively, it makes sense to also 

impose additional supervision on the N − 1 out-of-the-class attention branches. Namely, 

given the ground truth slide label Y, ∀i ∈ Y\ Y , the B patches with the highest attention 

scores cannot be positive evidence for class i provided that we assume none of the patches 

on the slide is of class i (due to the mutual exclusivity). As a result, in addition to clustering 

the 2B patches selected from the in-the-class attention branch, we assign the negative cluster 

label to the top B attended patches in all out-of-the-class attention branches since they 

are assumed to be “false positive” evidence. On the other hand, if the mutual exclusivity 

assumption does not hold (e.g. cancer vs. no cancer problem, where a slide can contain 

patches from both tumor tissue and normal tissue), then we do not supervise the clustering 

of highly attended patches from out-of-the-class branches since we do not know if they are 

false positives or not. Using the aforementioned notations, the full instance-level clustering 

algorithm is summarized below in Algorithm 1.

Smooth SVM loss.—For the instance-level clustering task, we chose to use the smooth 

top1 SVM loss[44], which is based on the well-established multiclass SVM loss[45]. In a 

general N-class classification problem, neural network models output a vector of prediction 

scores s, where each entry in s corresponds to the model’s prediction for a single class. 

Given the set of all possible ground truth labels Y = 1, 2, …, N  and ground truth label 

y ∈ Y, the multiclass SVM loss penalizes the classifier linearly in the difference between 

the prediction score for the ground truth class and the highest prediction score for remaining 

classes only if that difference is greater than a specified margin α (equation (4)). The 

smoothed variant (equation (5)) adds a temperature scaling τ to the multiclass SVM loss, 

with which it has been shown to be infinitely differentiable with non-sparse gradients and 

suitable for the optimization of deep neural networks when the algorithm is implemented 

efficiently[44]. The smooth SVM loss can be viewed as a generalization of the widely used 

cross-entropy classification loss for different choices of finite values for the margin and 

different temperature scaling.

The introduction of a margin to the loss function has been empirically shown to reduce 

over-fitting when the data labels are noisy or when data are limited. During training, the 

pseudo labels we create to supervise the instance-level clustering task are expected to be 

noisy. Namely, the top attended patches might not necessarily correspond to the ground truth 

class and likewise, the least attended patches are also not guaranteed to be actual negative 

evidence of the class. Therefore, instead of the widely used cross-entropy loss (which is used 

for the slide-level classification task), we apply the binary top-1 smooth SVM loss to the 
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outputs of the clustering layers of the network. In all our experiments, α and τ are both set to 

1.0.

l s, y = max max
j ∈ Y ∖ y

sj + α − sy, 0 (4)

ℒ1, τ s, y = τ log ∑
j ∈ Y

exp 1
τ α1(j ≠ y) + sj − sy (5)

Training details.—During training, slides are randomly sampled and provided to the 

model using a batch size of 1. The multinomial sampling probability of each slide 

is inversely proportional to the frequency of its ground truth class (i.e. slides from 

underrepresented classes are more likely to be sampled relative to others) in order to 

mitigate class imbalance in the training set. Weights and bias parameters of the attention 

module are initialized randomly and trained end-to-end with the rest of the model using 

the slide-level labels since no ground truth attention is available. The total loss for a given 

slide ℒtotal is the sum of both the slide-level classification loss ℒslide and the instance-level 

clustering loss ℒpatch with optional scaling via scalar c1 and c2:

ℒtotal = c1ℒslide + c2ℒpatch (6)

To compute ℒslide, sslide is compared against the ground truth slide-level label using the 

standard cross-entropy loss and to compute ℒpatch the instance-level clustering prediction 

scores pk for each sampled patch are compared against their corresponding pseudo cluster 

labels using the binary smooth SVM loss (recall for non-subtyping problems there are a total 

of 2B patches sampled from the in-the-class branch while for subtyping problems there are 

2B patches sampled from the in-the-class branch and B patches sampled via each of N − 

1 out-of-the-class attention branches). Unless otherwise specified, for each disease model, 

we tuned for B ∈ {8, 16, 32, 64, 128} on a single random validation fold by training on 

a subset of the training data (50% of the full training set). We considered c1 + c2 = 1 and 

similarly, tuned for c1 ∈ {0.3, 0.5, 0.7, 0.9} for the chosen B. Specifically, for the main 

10-fold experiments, B = 8 was used for RCC subtyping and B = 32 for NSCLC subtyping 

and LN metastasis detection and c1 = 0.7 was used for all three tasks. We however did not 

observe a drastic difference in the validation performance for different values of B and c1 

(Supplementary Fig. 9). The model parameters are updated via the Adam optimizer with 

a learning rate of 2 × 10−4 and ℓ2 weight decay of 1 × 10−5. For all experiments, default 

coefficient values for computing running averages of the first and second moment of the 

gradient were used (β1 = 0.9 and β2 = 0.999) and ϵ term (for numerical stability) was set 

to 1 × 10−8 (the default value). A commonly used technique that may help improve model 

generalization when training data is limited is data augmentation. However, to investigate 

the data efficiency of CLAM we did not attempt to perform data augmentation.
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Model selection.—All models are trained for at least 50 epochs and up to a maximum 

of 200 epochs if the early stopping criterion is not metastasis Namely, the validation loss 

is monitored each epoch and when it has not decreased from the previous low for over 

20 consecutive epochs, early stopping is used. The saved model, which has the lowest 

validation loss, is then tested on the test set.

Computational hardware and software

We used multiple hard drives to store the raw files of digitized whole slides. Segmentation 

and patching of WSIs were performed on Intel Xeon CPUs (central processing units) 

and feature extraction using a pre-trained neural network model was accelerated through 

data batch parallelization across multiple NVIDIA P100 GPUs on Google Cloud Compute 

instances or 2080 Ti GPUs on local workstations. All weakly supervised deep-learning 

models were trained with a total of ten local, consumer workstation-grade NVIDIA 2080 Ti 

GPUs by streaming extracted features from fast local solid-state-drive storage. Our whole-

slide processing pipeline is implemented in Python (version 3.7.5) and takes advantage of 

image-processing libraries, such as openslide (version 3.4.1), opencv (version 4.1.1) and 

pillow (version 6.2.1). For loading data and training deep-learning models using CLAM, 

we used the Pytorch (version 1.3.1) deep-learning library. Based on our consumer-grade 

hardware, we also analysed the run time of CLAM for performing streamlined inference 

on our in-house WSI data. On a single local workstation and using two NVIDIA 2080 Ti 

GPUs, on average, using non-overlapping patches, CLAM requires 106.26 s (41.46 s for 

inference and 64.8 s for generating and saving a heatmap) for a ×20 resection WSI and 

15.65 s (4.42 s for inference and 11.23 s for heatmap generation) for a ×20 biopsy WSI. 

Note that the inference speed includes the time to perform tissue segmentation, extract 

patches, extract features and perform classification, and heatmaps are generated and saved 

at the ×10 magnification. High-overlap (95%) and high-resolution (×10) WSI heatmaps 

shown in our interactive demo require multiple runs divided into many mini-batches of 

patches and are created and saved in 5,445 s per ×20 resection slide and 279 s per ×20 

biopsy slide. The high compute time associated with generating high-resolution heatmaps 

based on a large number of overlapping patches can probably be substantially reduced using 

production-grade hardware and more efficient software parallelization.

All plots were generated using matplotlib (version 3.1.1) and seaborn (version 0.8.1). The 

AUC of the receiver-operating-characteristic curve was estimated using the Mann–Whitney 

U statistic, for which the algorithmic implementation is provided in the scikit-learn scientific 

computing library (version 0.22.1). The 95% confidence intervals of the true AUC were 

computed using DeLong’s method implemented by pROC (version 1.16.2) in R (version 

3.6.1).

WSI datasets.

A summary of all of the datasets used are included in Supplementary Table 8. For the 

in-house test data, the BWH pathology archives were queried and cases were randomly 

sampled and requested from in-house pathology archives (2016–2019). We requested 150 

resection cases for each problem, and 110 biopsy cases each for both NSCLC and RCC 

subtyping. We received slides based on their on-site availability at the time of study, 
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and scanned slides with substantial markings covering the tissue area, damaged slides as 

well as slides that did not contain tumour (for RCC and NSCLC) were excluded before 

testing performance on our models; no other slides were excluded. Further details about 

each cohort are given in the following subsections. For model development and evaluation 

on public datasets using 10-fold Monte Carlo cross-validation, random train/validate/test 

dataset partitions are created where slides from the same patient case are sampled together 

to ensure that, for example, different slides from the same case are not sampled into both 

the training and test set. The number of slides available for each patient case can differ, 

which means that although all ten folds always have the same number of cases in their 

train/validate/test set, the exact number of slides might differ. For brevity, when we refer to 

the number of slides in the training or test set for the cross-validation folds, we refer to the 

average number of slides across all folds.

Public RCC WSI dataset.—Our public RCC dataset consists of a total of 884 diagnostic 

WSIs from the TCGA RCC repository under the Kidney Chromophobe (TCGA-KICH), 

Kidney CCRCC (TCGA-KIRC) and Kidney Renal Papillary Cell Carcinoma (TCGA-KIRP) 

projects. There are 111 CRCC slides from 99 cases, 489 CCRCC slides from 483 cases and 

284 PRCC slides from 264 cases. The mean number of patches extracted per slide at ×20 

magnification is 13,907.

Independent BWH RCC WSI dataset.—Our internal RCC dataset consists of a total of 

135 WSIs from 133 cases, of which 43 slides are CRCC, 46 are CCRCC and 46 are PRCC. 

The mean number of patches extracted per slide at ×20 magnification is 20,394. Our RCC 

biopsy dataset consists of a total of 92 WSIs from 79 cases, of which 13 slides are CRCC, 

53 are CCRCC and 26 are PRCC. The sample sizes for the CRCC biopsies were limited by 

the availability of patient cases for this rare condition (represents approximately 5% of all 

RCC cases with only a few biopsy cases). The mean number of patches extracted per slide at 

×20 magnification is 1,709. Our RCC smartphone dataset comprises 4–8 FOVs per slide for 

each of the 135 slides. The mean number of patches extracted for each set of FOVs is 419. 

All slides were collected and processed at the BWH between 2016 and 2019.

Public NSCLC WSI dataset.—Our public NSCLC dataset consists of 993 diagnostic 

WSIs from the TCGA NSCLC repository under the TCGA-LUSC and TCGA-LUAD 

projects. There are 507 LUAD slides from 444 cases and 486 LUSC slides from 452 cases. 

In addition, we collected a total of 1,526 WSIs from the TCIA CPTAC Pathology Portal 

at the time of study that have lung as the topological site. From these WSIs, 668 slides 

from 223 cases are labelled as LUAD and 306 slides from 108 cases are labelled as LUSC. 

The remaining 552 slides are labelled as normal tissue and were excluded. Accordingly, our 

public lung dataset contains a total of 1,967 WSIs (1,175 LUAD slides from 667 cases and 

792 LUSC cases from 560 patients). The mean number of patches extracted per slide at ×20 

magnification is 9,958.

Independent BWH NSCLC WSI dataset.—Our internal NSCLC dataset consists of a 

total of 131 resection (63 LUAD and 68 LUSC) and 110 biopsy (55 LUAD and 55 LUSC) 

slides. Each slide comes from a unique case. The mean number of patches extracted per 
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biopsy slide and per resection slide at ×20 magnification is 820 and 24,714, respectively. 

All slides were collected and processed at the BWH between 2016 and 2019. Our lung 

smartphone dataset comprises 4–8 FOVs per slide for each of the 131 resection slides. The 

mean number of patches extracted for each set of FOVs is 406. In addition, lung resection 

slides were scanned with a 3DHistech MiraxScan 150 to investigate adaptability to different 

scanning hardware and varying m.p.p.

Public lymph node WSI dataset.—CAMELYON16 and CAMELYON17 [46] are two 

of the largest publicly available, annotated breast-cancer lymph-node-metastasis detection 

datasets. CAMELYON16 consists of 270 annotated whole slides for training and another 

129 slides as a held-out official test set collected at the Radboud University Medical 

Center and the University Medical Center Utrecht in the Netherlands. On the other hand, 

CAMELYON17 consists of a total of 1,000 slides from five different medical centres 

in the Netherlands. Because slide-level labels for the 500 slides in the official test set 

of CAMELYON17 were not yet publicly available, we used just the training portion of 

CAMELYON17, which consists of 500 slides (with corresponding slide-level diagnosis) for 

100 cases. We combined CAMELYON16 and CAMELYON17 into a single dataset with a 

total of 899 slides (591 negative and 308 positive) from 499 cases. The mean number of 

patches extracted per slide at ×40 magnification is 41,802.

Independent BWH lymph node metastasis (breast cancer) WSI dataset.—Our 

internal breast-cancer lymph node metastasis dataset consists of a total of 133 WSIs from 

131 cases (66 negative slides and 67 positive slides). The mean number of patches extracted 

per slide at ×40 magnification is 51,426. These slides were collected at BWH between 2017 

and 2019.

Public Lymph Node WSI Dataset.—Camelyon16 and Camelyon17[46] are two of the 

largest publicly available, annotated breast cancer lymph node metastasis detection datasets. 

Camelyon16 consists of 270 annotated whole slides for training and another 129 slides as 

a held-out, official test set collected at the Radboud University Medical Center and the 

University Medical Center Utrecht in the Netherlands. On the other hand, Camelyon17 

consists of a total of 1000 slides from 5 different medical centers in the Netherlands. 

Because slide-level labels for the 500 slides in the official test set of Camelyon17 were not 

yet publicly available, we used just the training portion of Camelyon17, which consists 

of 500 slides (with corresponding slide-level diagnosis) for 100 cases. We combined 

Camelyon16 and Camelyon17 into a single dataset with a total of 899 slides (591 negative 

and 308 positive) from 499 cases. The mean number of patches extracted per slide at 40 

magnification is 41802.

Independent BWH Lymph Node metastasis (Breast Cancer) WSI Dataset.—Our 

internal breast cancer lymph node metastasis dataset consists of a total of 133 WSIs from 

131 cases (66 negative slides and 67 positive slides). The mean number of patches extracted 

per slide at 40× magnification is 51426. These slides were collected at BWH between year 

2017 and 2019.
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WSI processing

Segmentation.—For each digitized slide, our pipeline begins with automated 

segmentation of the tissue regions. The WSI is read into memory at a downsampled 

resolution (for example, 32× downscale), converted from RGB to the HSV colour space. 

A binary mask for the tissue regions (foreground) is computed based on thresholding the 

saturation channel of the image after median blurring to smooth the edges and is followed 

by additional morphological closing to fill small gaps and holes. The approximate contours 

of the detected foreground objects are then filtered based on an area threshold and stored 

for downstream processing while the segmentation mask for each slide is made available 

for optional visual inspection. A human-readable text-file is also automatically generated, 

which includes the list of files processed along with editable fields containing the set of 

key segmentation parameters used. Although the default set of parameters are generally 

sufficient for reliable tissue segmentation, they can also be easily manually edited for any 

individual slide should the user find its segmentation results unsatisfactory.

Patching.—After segmentation, for each slide, our algorithm exhaustively crops 256 × 256 

patches from within the segmented foreground contours at the user-specified magnification 

and stores stacks of image patches along with their coordinates and the slide metadata using 

the hdf5 hierarchical data format. Depending on the size of each WSI and the specified 

magnification, the number of patches extracted from each slide can range from hundreds 

(biopsy slide patched at ×20 magnification) to hundreds of thousands (large resection slide 

patched at ×40 magnification).

Feature extraction.—Following patching, we use a deep CNN to compute a low-

dimensional feature representation for each image patch of each slide. Namely, we take 

a ResNet50 model pre-trained on ImageNet[47] and use adaptive mean-spatial pooling 

after the third residual block of the network to convert each 256 × 256 patch into a 

1,024-dimensional feature vector using a batch size of 128 per GPU across multiple GPUs. 

The benefits of using extracted features as inputs to deep-learning models for supervised 

learning include a drastically faster training time and lower computational cost. This enables 

us to train a deep-learning model on thousands of WSIs in a matter of a few hours once 

the features have been extracted. Compared with using raw pixels, using low-dimensional 

features also makes it feasible to fit all patches in a slide (up to 150,000 or more) into 

memory simultaneously on a single consumer-grade GPU, thus avoiding the need for 

sampling patches and using noisy labels.

Visualization.

Visualizing slide-level feature space.—For each public WSI dataset, a model trained 

on one of the ten training sets created for cross-validation was used to compute a 512-

dimensional slide-level feature representation for every slide in its corresponding validation 

and test set for the slide-level prediction of the model. The resulting set of slide-level feature 

vectors were reduced to two-dimensional space for visualization through transformation via 

PCA and each point was shaded by its ground-truth slide-level label. We then repeated 

this procedure for the models trained on 25, 50 and 75% of the same training set. We 
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also performed the same analysis on the slides in each independent test cohort using the 

best-performing model for each training-set size.

Interpreting model prediction via attention heatmap.—To interpret the relative 

importance of different regions in a slide to the final slide-level prediction of the model, 

we computed and saved the unnormalized attention scores (before they were converted to 

probability distribution by applying the softmax function) for all of the patches extracted 

from the slide, using the attention branch that corresponded to the predicted class of the 

model. These attention scores were converted to percentile scores and scaled to between 

zero and 1.0 (with 1.0 being most attended and zero being least attended). The normalized 

scores were converted to RGB colours using a diverging colourmap and displayed on top of 

their respective spatial locations in the slide to visually identify and interpret regions of high 

attention displayed in red (positive evidence, high contribution to the prediction of the model 

relative to other patches) and low attention displayed in blue (low contribution to prediction 

of the model relative to other patches). To create more fine-grained heatmaps, we tiled the 

slides or smaller ROIs (for example, 8,000 × 8,000) into 256 × 256 patches using an overlap 

and calculated the raw attention score for each patch. We then followed a similar procedure 

and used the same colourmap as above to convert the raw score of each patch in the ROI to 

RGB colours. To ensure that the normalized attention scores computed for patches produced 

with an overlap were directly comparable to those for the set of non-overlapping patches 

used by the model for prediction, we referred to the set of unnormalized attention scores 

over the entire slide (without overlap) when calculating the percentile score of each patch. 

The ROI heatmaps were overlaid over the original WSI with a transparency value of 0.5 to 

simultaneously visualize the underlying morphological structures in the original H&E slide. 

Biopsy and ROI heatmaps were produced with an overlap of 95%. To produce fine-grained 

heatmaps for CPIs, a 95% overlap was used and attention scores were normalized over each 

image.

Visualizing patch-level feature space.—For each slide in the independent test cohort, 

we uniformly randomly sampled 2% of its tissue patches and recorded their clustering 

probability predictions, made by each of the N clustering branches in addition to their 

512-dimensional feature representations after the first fully connected layer. For subtyping 

problems, patches for which all clustering branches predicted a positive probability of less 

than 0.5 (in other words, the clustering branch of every class considers them as negative 

evidence for its respective class) were labelled as class-agnostic, whereas the remaining 

patches were labelled with the class for which its positive probability is the highest. For 

metastasis detection in axillary lymph nodes, the clustering branch corresponding to the 

positive class was used to label patches as positive (positive probability greater than or equal 

to 0.5) and class-agnostic (positive probability less than 0.5). Using the same technique 

above for visualizing the slide-level feature space, we reduced each patch-level feature 

vector to two dimensions using PCA.

Quantitative evaluation of attention heatmaps.—While the attention heatmaps 

generated from CLAM models trained in a weakly supervised learning fashion are not 

designed or intended to perform pixel-level annotation of ROIs, to assess the possibility 

Lu et al. Page 21

Nat Biomed Eng. Author manuscript; available in PMC 2021 December 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of using the heatmaps as an assistive annotator in a clinical or research setting as well as 

the correctness of attention, we evaluated the predicted attention heatmaps produced by a 

single CLAM model against the pathologist annotations using quantitative metrics including 

the Dice score, intersection over union and Cohen’s κ for each disease model. For all 

resection slides in the in-house dataset of each disease model, two anatomic pathologists 

were asked to independently and exhaustively annotate the tumour regions in all slides 

using the annotation tool Automated Slide Analysis Platform (ASAP). No time constraints 

were placed and for the annotation of metastasis in axillary lymph nodes, AE1/AE3 

immunohistochemistry were used to assist in the annotation and ensure small tumour 

regions (micro-metastasis) were not missed. For evaluation, all heatmaps were generated 

by tiling patches at a 75% overlap. Binary masks were produced from heatmaps after 

dynamic thresholding, in concordance with the probable real-world scenario where a human 

operator can freely adjust the display threshold for the desired range to identify contiguous 

and dense regions of high attention. Each heatmap was thresholded without assistance 

from the pathologist annotations. Following binarization, simple post processing techniques 

including morphological closing and opening are applied to reduce fragmentation, close 

small cavities and suppress small artefacts. We did not apply closing and opening for lymph 

node metastasis, due to the presence of micro-metastasis, which can make up pixel-islands 

of extremely small area that are easily destroyed by such operations. We instead slightly 

dilated the foreground to connect neighbouring fragments and filter out pixel-islands for 

which all pixels have an attention of less than 0.95. Finally, despite extensive thoroughness, 

it is not possible to exclude all negative pixels that are present inside regions of tumour, 

thus we apply a tissue segmentation algorithm to detect large cavities inside the tissue 

and exclude such regions from the evaluation of the heatmaps. However, we note that this 

cannot automatically identify all regions of cavity, especially if they are small, and also does 

not take into account small areas of normal tissue inside an annotated tumour region. The 

results for both sets of pathologist annotations for all disease models are summarized in 

Supplementary Fig. 7.

Comparative analysis using MIL.

The most well-known MIL decision rule involves a diagnostic model making a prediction 

for every patch in a whole slide and the patch with the highest predicted probability for 

the positive class is selected to both inform the final diagnostic decision for the entire 

slide as well as gradient signals during training. In addition to using MIL, which simply 

takes the highest probability patch, the authors of a recent study[36] introduced a recurrent-

neural-network-based aggregation that sequentially passes the top S patches ranked on 

the basis of their predicted probability for the positive class through a recurrent neural 

network to obtain the final slide-level prediction. However, on three different large datasets 

(prostate cancer, skin cancer basal cell carcinoma and lymph node metastasis detection), 

they noted a test AUC ranging from marginal improvement to no improvement using 

recurrent-neural-network-based aggregation. In light of these findings, we used the widely 

adopted max-pooling MIL formulation as our baseline for comparison. For each slide, 

during training, feature embeddings of all patches in the slide are read into memory at 

once, which corresponds to an input into the MIL network of shape K × 1,024. K is the 

number of patches (known as the bag size), which varies from slide to slide, and each patch 
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is described by a fixed 1,024-dimensional vector representation zk, produced previously in 

the feature-extraction step using a pre-trained ResNet50 model. The MIL network has one 

fully connected layer with 512 hidden units and is followed by rectified linear unit (ReLU) 

activation and the classification layer. If we denote the weights and bias of each layer as 

W 1 ∈ ℝ512 × 1024, b1 ∈ ℝ512 and W 2 ∈ ℝ2 × 512, b2 ∈ ℝ2, respectively, the unnormalized 

prediction score sk, 1 ≤ k ≤ K for each patch can therefore be defined as:

sk = W 2 ReLU W 1zk + b1 + b2 (7)

According to the max-pooling aggregation rule, the patch whose predicted probability 

score for the positive class is the highest is then selected to represent the final slide-level 

prediction.

As previously mentioned, this MIL algorithm was designed specifically for binary 

classification. To compare the performance of CLAM against MIL in the multi-class setting, 

we also implemented a multi-class variant of MIL, which we call mMIL; mMIL has a 

fully connected layer of the same dimension as our binary MIL network but we adjust the 

binary classification layer to instead be W 2 ∈ ℝN × 512 to predict the N-class probability 

distribution of every patch in the slide. Similar to performing max-pooling in the binary 

case, based on the raw scores, we select the patch with the highest single class probability 

score across all classes as the slide-level prediction. For both the MIL and mMIL models, we 

used dropout (P = 0.25) after the model hidden layer for regularization.

Training details.—During training, for each slide, scores of the patch selected via 

max-pooling are passed to the cross-entropy loss function and the model parameters are 

optimized via stochastic gradient descent using a batch size of one and the Adam optimizer 

with the same hyperparameters as CLAM. Namely, we use a learning rate of 2 × 10−4, 

weight decay of 1 × 10−5, with β1 set to 0.9, β2 set to 0.999 and ϵ set to 1 × 10−8. Similarly, 

we use the same mini-batch sampling strategy and early stopping and model selection 

criteria for MIL/mMIL as for CLAM. For inference, the predicted probability distribution 

over each class is computed by normalizing the raw predicted scores of the max-pooled 

patch using the softmax function.

Comparative analysis using the slide-level label assigned to every patch.

Another weakly supervised learning framework used in computational pathology when 

pixel- or ROI-level annotations are not available is to simply sample patches from the tissue 

regions of each WSI and assign the slide-level label to each and every patch retrieved from 

that slide. We refer to this technique as SL in this study. By following this procedure, 

patches sampled from all WSIs in the training set can simply be treated as independent 

labelled data points during training. Without any annotation to guide the sampling process, 

this procedure implies that it is possible to infer the slide-level label from every patch 

sampled from that slide, which cannot be reasonably substantiated in most classification 

problems performed on WSIs and results in noisy labels. For example, in a positive lymph 

node containing a micro-metastasis, only a tiny fraction of the patches sampled from the 
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slide would contain tumour and hence be responsible for the slide-level label, while all 

remaining negative patches will be mislabelled as positive for the purpose of training. 

Therefore, one would expect the performance of SL to be limited by the level of label 

noise, which is closely related to the signal-to-noise ratio of patches in each WSI. We 

used the 1,024-dimensional feature vector representation for each patch in our datasets as 

per CLAM and MIL/mMIL. The SL models consist of a stack of fully connected layers 

W 1 ∈ ℝ512 × 1024 and W 2 ∈ ℝN × 512 (with the same dimensions as those in the MIL/mMIL 

networks) for mapping each patch embedding into N-class probability scores following 

softmax activation. Consistent with the CLAM and MIL/mMIL models, we used dropout (P 
= 0.25) after the hidden layer of the SL model.

Training details.—During training, patches are randomly sampled from slides in the 

training set using a batch size of 512. For inference during validation and test time, to 

get the slide-level prediction, we followed a previous study[35] by using the model to first 

make a prediction for every patch in the slide and then averaging their probability scores. 

We validate the model after every 100,000 patches and use early stopping on the model 

when the validation loss does not decrease for 20 consecutive validation epochs. The model 

checkpoint with the lowest validation loss is used for evaluation on the test set, which is 

consistent with the model selection criteria we use for MIL/mMIL and CLAM. Similarly, we 

use the cross-entropy loss function, and the model parameters are optimized via stochastic 

gradient descent using the Adam optimizer with a learning rate of 2 × 10−4 and weight decay 

of 1 × 10−5, with β1 = 0.9, β2 = 0.999 and an ϵvalue of 1 × 10−8.

Data availability

The TCGA diagnostic whole-slide data (NSCLC, RCC) and corresponding labels are 

available from the NIH genomic data commons (https://portal.gdc.cancer.gov). The 

CPTAC whole-slide data (NSCLC) and the corresponding labels are available from the 

NIH cancer imaging archive (https://cancerimagingarchive.net/datascope/cptac). Metastatic-

lymph-node data are publicly available from the CAMELYON16 and CAMELYON17 

website (https://camelyon17.grand-challenge.org/Data). We included links to all public data 

in Supplementary Table 20. All reasonable requests for academic use of in-house raw 

and analysed data can be addressed to the corresponding author. All requests will be 

promptly reviewed to determine whether the request is subject to any intellectual property 

or patient-confidentiality obligations, will be processed in concordance with institutional and 

departmental guidelines and will require a material transfer agreement.

Code availability

All code was implemented in Python using PyTorch as the primary deep learning library. 

The complete pipeline for processing whole slide images and training and evaluating deep 

learning models is available at https://github.com/mahmoodlab/CLAM and can be used to 

reproduce the experiments of this paper. All source code is provided under the GNU GPLv3 

free software license.
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Fig 1. Overview of the CLAM conceptual framework, architecture and interpretability.
a, Following segmentation (left), image patches are extracted from the tissue regions of 

the WSI (right). b, Patches are encoded once by a pre-trained CNN into a descriptive 

feature representation. During training and inference, the extracted patches in each WSI are 

passed to a CLAM model as feature vectors. An attention network is used to aggregate 

patch-level information into slide-level representations, which are used to make the final 

diagnostic prediction. c, For each class, the attention network ranks each region in the slide 

and assigns an attention score based on its relative importance to the slide-level diagnosis 

(left). Attention pooling weighs patches by their respective attention scores and summarizes 

patch-level features into slide-level representations (bottom right). During training, given 

the ground-truth label, the strongly attended (red) and weakly attended (blue) regions can 

additionally be used as representative samples to supervise clustering layers that learn a rich 

patch-level feature space separable between the positive and negative instances of distinct 
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classes (top right). d, The attention scores can be visualized as a heatmap to identify ROIs 

and interpret the important morphology used for diagnosis.
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Fig 2. Performance, data efficiency and comparative analysis.
a–i, The 10-fold Monte Carlo cross-validation prediction results and test performance of 

CLAM models are analysed for RCC subtyping (a,d,g; n = 86), NSCLC subtyping (b,e,h; 

n = 196) and the detection of lymph node metastasis (c,f,i; n = 89). a–c, Mean test AUC ± 

s.d. of CLAM models using 100, 75 and 50% of cases in the training set. The confidence 

band shows ±1 s.d. for the averaged receiver-operating-characteristic curve. For multi-class 

RCC subtyping, the macro-averaged curve and AUC is reported. Insets: zoomed-in view 

of the curves. d–f, The dataset-size-dependent performance of various weakly supervised 

classification algorithms, in terms of the 10-fold test AUCs (top) and balanced error scores 

(middle) is shown using box plots for each training-set size (100, 75, 50, 25 and 10% of 

cases). The boxes indicate the quartile values and the whiskers extend to data points within 

1.5× of the interquartile range. Mean confidence (± 1 s.d.) of the predictions made by the 

CLAM models for correctly and incorrectly classified slides (bottom). g–i, Visualization of 
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the learned slide-level feature space for CLAM models; following PCA, the final slide-level 

feature representation used for the prediction of the model is plotted for each slide in both 

the validation and test set for a single cross-validated fold. PC, principal component. d–i, 
The number of slides used for each training-set size is shown in parentheses.
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Fig 3. Adaptability to independent test cohorts.
a–i, Independent test cohorts from BWH for RCC (a,d,g), NSCLC (b,e,h) and lymph node 

metastasis (c,f,i) are used to assess and analyse the capability of CLAM models trained on 

public datasets to generalize to new data sources that are not encountered during training. 

a–c, Performance of the CLAM model in terms of 10-fold mean test AUCs ± s.d. for 

RCC subtyping (n = 135), NSCLC subtyping (n = 131) and the detection of lymph node 

metastasis (n = 133). Insets: zoomed-in view of the curves. d–f, For each training-set size, 

the test AUCs (top) and balanced error scores (middle) of ten models are reported for 

CLAM, MIL (mMIL for RCC subtyping) and SL using box plots. The boxes indicate the 

quartile values and the whiskers extend to data points within 1.5× of the interquartile range. 

The results demonstrate that CLAM models can generalize to new data sources after training 

on a limited number of labelled slides and outperform other weakly supervised baselines 

with high consistency. Mean confidence (±1 s.d.) of CLAM model predictions for correctly 
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and incorrectly classified slides (bottom). In general, CLAM models become less confident 

when trained using fewer data. g–i, Visualization of the slide-level feature space in two 

dimensions for select models from different training-set sizes. d–i, The number of slides 

used for each training-set size is shown in parentheses.
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Fig 4. Interpretability and visualization.
a,b, For RCC (a) and NSCLC (b) subtyping, a representative slide from each subtype 

was annotated by a pathologist (left), who roughly highlighted the tumour tissue regions. 

c, Similarly, regions of metastasis are highlighted for a case of lymph node metastasis 

(left). a–c, A whole-slide attention heatmap corresponding to each slide was generated 

by computing the attention scores for the predicted class of the model over patches tiled 

with a spatial overlap of 25% (second column); the fine-grained ROI heatmap, which 

highlights parts of the tumour normal boundary, was generated using a 95% overlap and 

overlaid onto the original H&E image (third column; zoomed-in view of the regions in the 

black squares in the images to its left). Patches of the most highly attended regions (red 

border) generally exhibit well-known tumour morphology and low-attention patches (blue 

border) include normal tissue among different background artefacts (right). Green arrows 

highlight specific morphology corresponding to the textual description. High-resolution 
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WSIs and heatmaps corresponding to these slides may be viewed in our interactive demo 

(http://clam.mahmoodlab.org).
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Fig 5. Adaptability to smartphone microscopy images.
a, CLAM models trained on WSIs are adapted to CPIs taken with a consumer-grade 

smartphone camera without domain adaptation, stain normalization or further fine-tuning. 

b,c, An average test AUC of 0.873 ± 0.025 and 0.921 ± 0.023 was achieved for the BWH 

NSCLC (b; n = 131) and BWH RCC (c; n = 135) independent test sets, respectively. For 

each slide, patches extracted from all FOVs are collectively used by the CLAM model 

to inform the slide-level diagnosis. Insets: zoomed-in view of the curves. d, A drop in 

performance is expected when directly adapting models trained on data from one imaging 

modality (WSIs) to another (CPIs). We noted a decrease of 0.102 and 0.051 in the mean 

test AUC (relative to the performances on the corresponding WSI independent datasets) for 

NSCLC (top) and RCC (bottom) subtyping, respectively, when evaluating CLAM models 

(using 100% of the training set) on our CPI datasets. The boxes indicate the quartile 

values and the whiskers extend to data points within 1.5× of the interquartile range. e,f, 
The attention heatmaps (shown for NSCLC (e) and RCC (f) subtyping) help make model 

predictions interpretable by highlighting the discriminative regions in each FOV used by 

the model to make the slide-level diagnostic prediction. We observed that the model attends 

strongly to tumour regions and largely ignores normal tissue and background artefacts, as 

expected. However, due to the circular-shaped cutout of each FOV, patches near the border 
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inevitably encapsulate varying degrees of black space in addition to the tissue content, which 

can mislead the model towards assigning weaker attention to those regions than it would 

otherwise. Zoomed-in views of the boxed regions are shown on the right. g,h, As additional 

validation that CLAM models trained on WSIs are directly applicable to the classification 

of CPIs, we visualized the attention-pooled feature representation of each set of CPIs and 

observed that there is visible separation between distinct classes in both the NSCLC (g) and 

RCC (h) smartphone datasets.
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Fig 6. Adaptability to biopsy slides.
a, Compared with resection WSIs, biopsy WSIs generally contain a much lower tissue 

content (for example, the average number of patches extracted from the tissue regions 

of each slide is 820 in our BWH lung biopsy dataset compared with 24,714 in the lung-

resection dataset). The presence of crush artefacts as well as poorly differentiated and 

sparsely distributed tumour cells can further challenge accurate diagnosis. b,c, We observed 

that CLAM models trained on resections are directly adaptable to biopsy WSIs, achieving 

a respectable average test AUC of 0.902 ± 0.016 and 0.951 ± 0.011 on our NSCLC (b; n 
= 110) and RCC (c; n = 92) biopsy independent test cohorts, respectively, without further 

fine-tuning or ROI extraction. Insets: zoomed-in view of the curves. d,e, Attention heatmap 

visualization for NSCLC (d) and RCC (e) biopsy slides. H&E slide with annotation by the 

pathologist for tumour regions (left). Heatmap for patches tiled with a 95% overlap (middle). 

Zoomed-in view of tumour regions attended by the CLAM model (right). Consistent with 

our findings on the resection and smartphone datasets, the regions that were most strongly 

attended by the model consistently correspond to tumour tissue. The attention heatmaps 

also tend to clearly highlight the tumour–normal tissue boundaries, despite the fact that 

no patch-level or pixel-level annotation was required or used during training. f,g, The 

slide-level feature representations of the biopsy datasets are visualized in two dimensions 
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using PCA. We observed that the feature space learned by the CLAM model from resections 

remains visibly separable among the distinct subtypes when it is adapted to biopsy slides for 

both NSCLC (f) and RCC (g). A high-resolution version of these biopsy whole slides and 

heatmaps may be viewed our interactive demo (http://clam.mahmoodlab.org).
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