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A B S T R A C T

Chest imaging can represent a powerful tool for detecting the Coronavirus disease 2019 (COVID-19). Among
the available technologies, the chest Computed Tomography (CT) scan is an effective approach for reliable and
early detection of the disease. However, it could be difficult to rapidly identify by human inspection anomalous
area in CT images belonging to the COVID-19 disease. Hence, it becomes necessary the exploitation of suitable
automatic algorithms able to quick and precisely identify the disease, possibly by using few labeled input data,
because large amounts of CT scans are not usually available for the COVID-19 disease. The method proposed
in this paper is based on the exploitation of the compact and meaningful hidden representation provided by
a Deep Denoising Convolutional Autoencoder (DDCAE). Specifically, the proposed DDCAE, trained on some
target CT scans in an unsupervised way, is used to build up a robust statistical representation generating a
target histogram. A suitable statistical distance measures how this target histogram is far from a companion
histogram evaluated on an unknown test scan: if this distance is greater of a threshold, the test image is labeled
as anomaly, i.e. the scan belongs to a patient affected by COVID-19 disease. Some experimental results and
comparisons with other state-of-the-art methods show the effectiveness of the proposed approach reaching a top
accuracy of 100% and similar high values for other metrics. In conclusion, by using a statistical representation
of the hidden features provided by DDCAEs, the developed architecture is able to differentiate COVID-19 from
normal and pneumonia scans with high reliability and at low computational cost.
1. Introduction

Since its inception, medical imaging has been a valid tool for
making non-invasive medical diagnoses (Suetens, 2009). Among the
different techniques, Computed Tomography (CT) has assumed a very
important role (Hsieh, 2009). In fact, CT images represent a powerful
investigation tool because they contain more detailed information than
conventional X-rays. Unlike a conventional X-ray, this computerized
version uses a mobile X-ray source that rotates around the patient and
generate cross-sectional images of the body, called slices.

Recently, CT scans have been adopted to identify the novel coro-
navirus pneumonia (NCP) due to SARS-CoV-2 viral infection of the
COVID-19 pandemic (Kwee & Kwee, 2020). In this regard, this method
has demonstrated a high potentiality, showing a high sensitivity for
detection of the disease (Adams et al., 2020; Lerum et al., 2020). Since
COVID-19 is spreading rapidly all over the world, a fast and accurate
screening is of primary importance for controlling the pandemic.

To this purpose, many researchers have highlighted that the COVID-
19 pneumonia is different from other viral (common) pneumonia
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(CP) (Sharma, 2020). In this regard, some works have shown that
cases of NCP tend to affect the entire lungs, unlike common diseases
that are limited to small regions (Chen et al., 2020; Sharma, 2020).
Pneumonia caused by the COVID-19 shows a typical hazy patch on
the outer edges of the lungs. For this reason, CT scans appear to work
well, as they are able to bring out three distinctive hallmarks: (i) while
normal lung scans appear black, those related to COVID-19 show lighter
colored spots or gray; (ii) the lung airspaces are full of fluids due
to inflammation (consolidation); and, (iii) pleural effusion is present,
i.e. liquid in the spaces around the lungs.

However, CT scans are not always easy to read and interpret by
radiologists. In addition, in order to reduce the massive dose of radia-
tion and avoid harmful consequences (such as tumors), it is preferable
to perform scans with a low emission of radiation (Chen et al., 2020).
In this case, unfortunately, the scanned images often have a degraded
quality (such as blur, background noise and low contrast) that can make
interpretation ambiguous and difficult to take a certain and precise
diagnosis (Al-Ameen & Sulong, 2016).
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In order to solve all the above problems, very recently many studies
have been directed towards the use of automatic image classifica-
tion techniques through Deep Learning (DL) algorithms (Shen, Wu,
& Suk, 2017; Zhou et al., 2017), a branch of machine learning that
uses architectures that possess many layers of processing (Goodfellow
et al., 2016). The author in Sharma (2020) has recently hypothesized
that machine learning techniques applied to CT scans can certainly
become the first alternative screening test to the real-time reverse
transcriptase-polymerase chain reaction (RT-PCR) in the near future.

Although DL techniques have been applied with great success to
identify cases of the NCP (Sharma, 2020; Shen, Wu, & Suk, 2017;
Zhou et al., 2017), there are nevertheless a number of challenges to
be solved (Chen et al., 2020; Hammer et al., 2020). First of all, many
solutions have been proposed in the literature, each of which has its
own advantages and disadvantages, providing very different results:
that is, there is no single solution to the problem (Sarv Ahrabi et al.,
2021). Furthermore, the DL architectures have a very large number of
free parameters that must be adapted by the optimization algorithm
and, in order to achieve the convergence, it is necessary to have a large
amount of data, which is not always possible in practice (Goodfellow
et al., 2016). Also because it is not certain that having lots of scans
available is enough to be of quality (Aiello et al., 2019).

This situation is further worsen by the fact that, since the CPN is a
relatively recent disease, the proportion of CT scans related to COVID-
19 is very limited with respect to the number of images available
in the datasets freely available on the web (Chen et al., 2020). In
this regard, the identification of CT scans affected by COVID-19 is
a problem more similar to the anomaly detection rather than the
traditional classification, since the small number of data present in
each dataset (Chandola et al., 2009). It would therefore be advisable to
provide an anomaly detection algorithm, light from the computational
point of view and capable of identifying CT scans related to COVID-19
with high accuracy.

Motivated by these considerations, in this paper we propose an
autoencoder-based approach for the detection of COVID-19 CT scans.
Specifically, the denoising version of a deep convolutional autoencoder,
here called DDCAE, is proposed to learn a compact and meaningful
representation of the normal and common pneumonia CT scans in an
unsupervised manner. Autoencoders (AEs), in fact, are unsupervised
architectures trained to copy its input to the output; they possess an
internal layer (the hidden features or feature vector) that is used to
efficiently represent the input (Goodfellow et al., 2016). Generally, an
AE is composed of two main sections: an encoder that maps the input
into the hidden features, and a decoder that maps the hidden features
to a reconstruction of the input. When the encoder and decoder are
composed of several layers, the AE is called deep (DAE) (Goodfellow
et al., 2016). In image processing, usually convolutional layers have
been employed (Masci et al., 2011), particularly appropriate to extract
meaningful information from images. This results in a deep convo-
lutional AE (DCAE). In the denoising version, DDCAE, the input is
stochastically corrupted, usually using a Gaussian additive noise, while
the uncorrupted input is still used as the target for the optimization of
the parameters (Alain & Bengio, 2014; Vincent et al., 2008).

After the proposed DDCAE has been trained on a target class (the
normal or the common pneumonia), the hidden features are used
to construct an average and robust statistical representation of the
target class. This is accomplished by averaging all the hidden features
obtained by passing the whole training set in the encoder part and then
evaluating the histogram of the mean representation. This histogram is
used as a reference in the inference phase. For each new test CT scan,
the related hidden features are evaluate by using the trained encoder
and a test histogram is obtained. At this stage, a suitable measurement
of the distance between two distributions is used: if the resulting
distance is below a certain threshold, the test image is classified as the
same of the target class, otherwise it is considered as an anomaly and
2

labeled as COVID-19.
Specifically, the main contributions of this paper are:

• we propose an ad hoc DDCAE architecture optimized for the
detection of anomaly CT scans. The proposed architecture is
composed of three convolution layers in order to keep limited the
computational complexity while obtaining sufficiently good and
robust hidden features to obtain a high discrimination between
their statistical representation;

• we propose a statistical distance-based approach to label a test
image either as anomaly or not. The employed distance measure-
ments should be suitable for discriminating histograms belong-
ing to different classes. In this paper, we compare between the
Kullback–Leibler divergence, the Bhattacharyya distance, and the
Euclidean one;

• we perform numerical results on a well-known dataset available
in the literature and compare the proposed approach to other
state-of-the-art deep architectures. We expect that the proposed
approach is able to obtain excellent results by keeping limited the
training and inference time.

Let us remark that statistical representations of target classes and
autoencoders are well known approaches for the anomaly detection
problem. However, in literature these methods are used in a different
way (see, for example, Chandola et al., 2009, and references therein).
Specifically, the statistical representation is used to characterize the
probability density or evaluating some peculiar moments of the in-
stances by directly working on the input space. Autoencoders are
typically used in anomaly detection problems by thresholding the
reconstruction error (i.e., by comparing the input and the output di-
rectly). These state-of-the-art approaches have been demonstrated to
be ineffective for the CT scans of COVID19 disease, as pointed out
in Section 5.2. On the contrary, the approach proposed in this paper
works directly on the latent space generated by the autoencoder. This
means that the statistical representation is evaluated on the hidden
feature vector, while the final classification is obtained by thresholding
suitable-designed inter-histogram distances. To the best of the authors’
knowledge and on the basis of the broad overview of the related
literature of Section 2, the proposed approach is novel and not used
up to date for the classification of CT scans of infected lungs.

The rest of the paper is organized as follows. Section 2 presents
the recent literature on the topic. Section 3 describes the proposed
approach in terms of both used architecture and suitable distribution
distances. Section 4 introduces the experimental setup, while Section 5
shows the obtained numerical results and their comparison with other
state-of-the-art approaches. Finally, Section 6 concludes the paper and
outlines some future works.

2. Related work

In recent years, a great attention on automatic classification of
medical images has been devoted to the application of Deep Learning
approaches. Although many recent works are addressed to traditional
x-Ray images (Chandra et al., 2021; Ismael & Şengür, 2020, 2021)
and use transfer learning (Vidal et al., 2021), lots of novel methods
working on CT scans have been proposed. Two recent and comprehen-
sive reviews embrace several methodologies currently used in medical
screening (Ozsahin et al., 2020; Rahman et al., 2021). Obviously,
automatic CT scans classification is applied for diverse diseases, as
the lung nodule malignancy suspiciousness classification (Shen et al.,
2017), but during the last year the main contributions focused on the
COVID-19 disease. Among these works, studies are divided into two
main families: those based on segmentation and those that perform the
classification task directly.

Approaches based on segmentation are usually based on U-Net type
architecture to identify relevant part of the CT scans and perform
classification focusing the attention only on these sections (Fan et al.,

2020; Saood & Hatem, 2021; Vidal et al., 2021; Yao et al., 2021).
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Specifically, the work in Vidal et al. (2021) is based on U-Net exploit-
ing a multi-stage transfer learning idea to quickly develop computer
aided diagnosis systems that can be used in real-time on smart-phones.
Similarly, Saood and Hatem (2021) performs CT scan segmentation
exploiting both the U-Net and the SegNet. The authors of Fan et al.
(2020), instead, propose Inf-Net, an ‘‘Infection segmentation deep Net-
work’’ introduced to automatically identify infected regions from chest
CT slices. Differently form these works, our proposed approach does
not resort to image segmentation. Finally, Yao et al. (2021) proposes
NormNet, an approach able to recognize normal tissues and separate
them from possible COVID-19 lesions. Like our approach, NormNet
is trained in an unsupervised manner, however, differently from the
proposed work, it uses synthetic lesions constructed by using a set of
simple operations and then inserted into normal CT lung scans, while
the prediction is performed by a U-Net type architecture. Moreover, the
results shown in Yao et al. (2021) do not overcome a precision of 0.905
for the COVID-19 cases and hence it does not outperform our proposed
idea.

The main works of the second family are based on the binary classi-
fication problem of COVID/NON-COVID images (Elmuogy et al., 2021;
Mishra et al., 2020; Shah et al., 2021; Tan et al., 2021). Specifically,
the work in Shah et al. (2021) is based on deep Convolutional Neural
Networks (CNNs) and proposes a specific configuration called CTnet-
10 while comparing the results with well-known CNN architectures,
such as DenseNet-169, VGG-16, ResNet-50, InceptionV3, and VGG-19.
Similarly, in Tan et al. (2021) a ‘‘super-resolution’’ variant of VGG-16
neural network has been introduced. The super-resolution of chest CT
images has been obtained by exploiting the SRGAN neural network. The
authors in Elmuogy et al. (2021) propose an automatic classification
architecture based on a deep neural network called Worried Deep
Neural Network (WDNN) that uses transfer learning and provide results
by using different pre-trained models. Differently, the paper in Mishra
et al. (2020) is based on a fusion approach. The main idea of the
fusion approach is that the classification errors made by individual
models may be mitigated by combining the individual predictions
via a majority voting approach. The baseline models used in Mishra
et al. (2020) include VGG16, InceptionV3, ResNet50, DenseNet121, and
DenseNet201. Similarly, Silva et al. (2020) proposes a voting-based
approach for the screening of COVID-19 by exploiting and extending
the EfficientNet neural network along with a data augmentation process
and transfer learning. Differently from our approach, works in Elmuogy
et al. (2021), Mishra et al. (2020), Shah et al. (2021), Silva et al. (2020)
and Tan et al. (2021) are all supervised, hence they have to be trained
on both the COVID and NON-COVID images.

Moreover, we point out that there are some few approaches that
exploit the deep AEs in medical images (Chen et al., 2017; Li et al.,
2020; Xu et al., 2016). Specifically, the work in Xu et al. (2016)
proposes a Stacked Sparse Autoencoder (SSAE) plus a softmax classifier
for identifying the presence or absence of nuclei in individual image
patches related to the breast cancer. Authors in Chen et al. (2017)
applied a deep convolutional autoencoder to pulmonary CT scans to
detect lung nodules. Once again, the final detection is performed by
a softmax classifier. Interestingly enough, the approach in Chen et al.
(2017) has been extended for similarity measurement of lung nodules
images. Topic of Li et al. (2020) is the COVID-19 diagnosis from chest
CT scans exploiting a stacked autoencoder detector model. Authors
propose a novel cost function to train the stacked autoencoder, regu-
larized in a different manner for each layer, then the detection is again
done by a softmax classifier. Differently from our approach, works
in Chen et al. (2017), Li et al. (2020) and Xu et al. (2016) use the
autoencoder to automatically construct a set of features and then use
a softmax classifier on the top. We instead use the hidden features
to construct a statistical representation of the input scans. Moreover,
differently from Li et al. (2020) and Xu et al. (2016) that implement
stacked autoencoders (trained in a layer-wise fashion), we exploit a
3

deep autoencoder that is computationally more efficient. n
In addition, there exist some approaches based on traditional Ma-
chine Learning (ML) methods. To this aim, the main goal of the
contribution in Gomes et al. (2020) is to check the actual effectiveness
of some low-complexity shallow supervised classifiers (namely, Support
Vector Machine (SVM), Multi-Layer Perceptron (MLP) and Random
Forest (RF)) to detect COVID-19 diseases by texture analysis of chest X-
ray images. The goal is to properly classify COVID-19, viral pneumonia,
bacterial pneumonia and healthy radiographic images by running the
mentioned ML approaches on a set of features composed by the Haral-
ick and Zernike moments. Interestingly enough, the numerical results
reported in Gomes et al. (2020) support the conclusion that SVMs
equipped with 2–3 degree polynomial kernels are the most performing
ones and, in the carried out tests, obtain a good average accuracy,
recall, precision and specificity.

Finally, the follow-up paper in Gomes et al. (2021) extends the
utilization of shallow ML approaches to the classification of DNA
sequences of 25 different virus classes. Specifically, the paper proposes
a technique for representing DNA sequences in which each sequence
is partitioned into shorter mini-sequences that partially overlap in a
pseudo-convolutional fashion, in order to be represented by suitable
co-occurrence matrices. These last are the extracted features utilized as
input to five types of shallow supervised classifiers, namely, SVM, RF,
MLP, Naïve Bayes classifier and Instance-Based-K (IBK) learner (Alpay-
din, 2014). Interestingly, the multiclass classification tests carried out
in Gomes et al. (2021) support the conclusion that RF classifiers are the
most performing ones and they attain average accuracies around 94%.

An overview of the related work is provided in Table 1 that briefly
summarizes the main approaches. Overall, on the basis of the car-
ried out overview, we conclude that our approach is unique in: (i)
applying a statistical representation of the hidden feature vector, es-
timated in an unsupervised manner; and, (ii) performing classification
by thresholding suitable inter-histogram distances.

3. Proposed approach and related deep denoising CAE architec-
tures

The proposed approach is based on a denoising version of a Deep
Convolutional Autoencoder (DCAE), here called DDCAE.

Although Autoencoders (AEs) have been introduced at the end of
80s (Bourlard & Kamp, 1988), only recently their deep versions have
been exploited in practical applications (Goodfellow et al., 2016). In
brief, a Deep AE (DAE) is a feed-forward neural network with 2𝐿 +

hidden layers trained to (quasi) reproduce its input at the output
ayer. In this regard, the aim of a DAE is to learn a compact and
eaningful representation 𝑣 (encoding, also called hidden features or

eature vector) for a set of (possibly, noisy) input data, using a set of
eight parameters. Then, an estimate of the input data is recovered

decoding), usually using tied weights (Goodfellow et al., 2016).
However, when used on image data, it is more convenient to resort

o the convolutional version of the DAE. In the Deep Convolutional
E (DCAE) (Masci et al., 2011), each fully connected layer is re-
laced by a cascade of a suitable number of convolutional, pooling and
ormalization layers, as described in the following.

Moreover, in literature it is often used a robust variant of the AE,
alled Denoising AE (Alain & Bengio, 2014; Vincent et al., 2010), in
hich a stochastically corrupted version of the input is employed to

eed the AE (usually, using a Gaussian additive noise with zero mean
nd variance 𝜎2), while the uncorrupted input is still used as the target
or the optimization of the parameters. The general idea of a DDCAE is
raphically depicted in Fig. 1.

Fig. 1 shows that the encoder of a DDCAE is composed of the
ascade of 𝐿 Convolutional, Max Pooling, and Batch Normalization
BN) layers, plus and eventual final Dense layer. Not all the depicted
ayers are used in some specific configurations of the proposed DDCAE.

Although, the role of these layers is well-known in literature, we
rovide a short description of each of the involved layers to help the

on expert reader.
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Table 1
Summary of the main related work. The last column indicates whether the learning is of supervised (S)
or unsupervised (U) type. See also Ozsahin et al. (2020) and Rahman et al. (2021) for a review on the
diagnosis of COVID-19 from radiography images.
Family Work Approach Type

X-ray Ismael and Şengür (2020) Multiresolution S
Ismael and Şengür (2021) Deep learning S
Chandra et al. (2021) Majority voting S
Vidal et al. (2021) U-Net + Transfer Learning S
Gomes et al. (2020) Shallow ML S

CT segmentation Yao et al. (2021) NormNet U
Saood and Hatem (2021) U-Net + SegNet S
Fan et al. (2020) InfNet S

CT binary Shah et al. (2021) CNN (CTnet10) S
classification Tan et al. (2021) VGG-16 S

Elmuogy et al. (2021) WDNN S
Mishra et al. (2020) Fusion + Majority voting S
Silva et al. (2020) Fusion + Majority voting S

Autoencoders Xu et al. (2016) SSAE + Softmax S
Chen et al. (2020) CAE + Softmax S
Li et al. (2020) SSAE + Softmax S
Our approach DDCAE + hidden features U
Fig. 1. The considered DDCAE reference architecture. The input noise is present only in the DDCAE training phase while it is zeroed in the validation and test phases. Furthermore,
depending on the actually considered DDCAE architecture, the innermost flattening and dense layers may be absent. Accordingly, 𝐿 + 1 is the depth of the Encoder, while 𝐿 is
the number of the corresponding Convolutional+Pooling+Batch Normalization (BN) layers. Finally, the taxonomy: 𝑀 ×𝑁 × 𝐹 indicates a convolutional layer (or a filter kernel or
an input image) of spatial dimension: 𝑀 ×𝑁 which embraces 𝐹 feature maps.
First of all, let  =
{

𝑋𝑘
}𝑁𝑇
𝑘=1 be the training set composed of a

sequence of 𝑁𝑇 images of normal or CP diagnostics. Each 𝑘th image
𝑋𝑘 is a tensor of dimension 𝑀 × 𝑁 × 3, representing the number of
rows, columns, and colors.

The 𝑙th convolutional layer, which is responsible for the extraction
of local features, implements a set of 𝐹𝑙 convolutions by using 𝐹𝑙
filters (also called kernels) to produce a certain number of feature
maps. Specifically, a kernel function 𝑊𝑙 is convolved with a specific
region of the image of the same size of the kernel to produce an
output pixel. Then the kernel is moved by a quantity 𝑠, called stride,
and another output pixel is produced. This operation is performed in
parallel for all the 𝐹𝑙 filters. A stride value greater than the unity will
produce an output map of reduced size with respect to its input. Let
us denote with 𝐹𝑙, 𝑘𝑙 and 𝑠𝑙 the corresponding number of squared 2D
filters, filter size and stride coefficient, respectively, while 𝑀𝑙 and 𝑁𝑙
are the spatial size of the 𝑙th 2D filter output. Mathematically, the
output sample 𝑌 𝑖, 𝑗, 𝑘 generated at the spatial position (𝑖, 𝑗) by the 𝑘th
4

𝑙 ( )
spatial filter of the 𝑙th convolutional layer, is provided by the following
summation (Goodfellow et al., 2016):

𝑌𝑙 (𝑖, 𝑗, 𝑘) =
𝑘𝑙−1
∑

ℎ=0

𝑘𝑙−1
∑

𝑝=0

𝐹𝑙
∑

𝑢=1
𝑊𝑙 (ℎ, 𝑝, 𝑢, 𝑘) 𝑌𝑙−1

(

𝑠𝑙𝑖 + ℎ, 𝑠𝑙𝑗 + 𝑝, 𝑢
)

+ 𝑏𝑙(𝑘), (1)

for 1 ≤ 𝑖 ≤ 𝑀𝑙, 1 ≤ 𝑗 ≤ 𝑁𝑙, and 1 ≤ 𝑐 ≤ 𝐹𝑙, where
{

𝑊𝑙 (⋅, ⋅, ⋅, 𝑘)
}

is the set of the scalar samples of the kernel of the 𝑘th 2D filter,
{

𝑌𝑙−1 (⋅, ⋅, 𝑢)
}

is the set of scalar features at the input of the 𝑢th channel
of 𝑙th layer, and 𝑏𝑙(𝑘) is the bias term of the 𝑘th filter in the 𝑙th
layer. All the convolutional layers, except the last of the decoder,
use the ReLU activation function. The ReLU function is defined as
𝑅𝑒𝐿𝑈 (𝑥) = max {0, 𝑥}. The last layer of the decoder uses instead a
sigmoid activation in order to produce a valid pixel values inside the
interval [0, 1].

In the pooling layer, used for the down-sampling of the feature
maps, each input map is divided into adjacent non-overlapping regions
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according to the size of the pooling region, and the maximum of the re-
gion is output. In this way the spatial dimension of the input is reduced
after the pooling operation. Instead, the number of input feature maps
is equal to the number of output feature maps in the pooling layer.
Mathematically, the max pooling operation is performed as:

𝑍𝑞(𝑘) = max
{

𝑌𝑞(𝑘)
}

, (2)

where 𝑌𝑞(𝑘) is the 𝑞th region of the 𝑘th feature map and 𝑍𝑞(𝑘) repre-
sents the 𝑞th element of the 𝑘th output feature map.

The batch normalization layer applies a standardization operation
on the output of the layer, by forcing a zero mean and a unit variance.
This operation works as a regularization, increasing the stability of
the neural network and accelerating the training (Ioffe & Szegedy,
2015). This layer normalizes its output using the mean 𝜇𝑋 and standard
deviation 𝜎𝑋 of the current batch of inputs 𝑋𝑙, by evaluating:

𝑋𝑙+1 = 𝛾
𝑋𝑙 − 𝜇𝑋
√

𝜎2𝑋 + 𝜀
+ 𝛽, (3)

where 𝜀 is a small constant used to avoid division by zero, while 𝛾 and
𝛽 are a scaling and offset parameters learned during the training phase.

Fig. 1 also shows the presence of a Flatten layer, whose role is to
transform the output of last layer, which is in a tensor form, into a
vector by stacking the single vectors of the output tensor one atop the
others. The aim of the Flatten layer is to produce the hidden feature
vector or the input to the optional final dense layer.

The dense layer is a fully-connected set of neurons where every
input is connected to every output by a weight, and generally followed
by a nonlinear activation function:

ℎ𝐿 = 𝜑
(

𝑊𝐿ℎ𝐿−1
)

, (4)

where 𝜑(⋅) is the activation function, usually a sigmoid or the ReLU
again, ℎ𝐿−1 and ℎ𝐿 are the vectors of the inputs and the outputs, re-
spectively, and 𝑊𝐿 is the matrix collecting all the weights 𝑤𝑖𝑗 between
the 𝑗th input and the 𝑖th output in the last 𝐿th layer.

The decoder is, in a certain sense, the mirror version of the decoder:
it presents the same layers of the encoder but in a reverse order.
Hence, its first layer is the dense one, if used in the encoder. At this
stage we need to reshape a vector (the output of the dense layer or
directly the hidden features if the encoder has not a final dense layer)
into a tensor of suitable shape. This task is performed by the Reshape
layer shown in Fig. 1. In the decoder of the proposed DDCAE, we
need some layers implementing the deconvolution operation and the
up-sampling of the image. These tasks are simply accomplished by
the Deconvolutional layers in Fig. 1. Technically, we use a transposed
convolutional layer, which is equivalent to first stretching the image by
inserting empty rows and columns (full of zeros), and then performing
a regular convolution.

3.1. The proposed deep denoising CAE (DD-CAE) architecture

In this paper we propose a specific DDCAE that will be trained on
the target classes (usually the normal or common pneumonia). The pro-
posed architecture consists in a DDCAE, formed by three convolutional
layers, along with two max-pooling and two batch normalization layers,
as summarized in Table 2.

Training of the proposed DDCAE. The training of the proposed DDCAE
is performed by minimizing the Mean Square Error (MSE) cost function
that measures how similar the reconstitution 𝑋 is to its input 𝑋. After
denoting with 𝜽 the whole set of trainable parameters of the network,
the MSE cost function can be defined as:

(𝜽) = 1
𝐵

𝐵
∑

𝑘=1

(

1
𝑀𝑁

𝑀
∑

𝑖=1

𝑁
∑

𝑗=1

3
∑

𝑝=1

|

|

|

𝑋𝑘(𝑖, 𝑗, 𝑝) −𝑋𝑘(𝑖, 𝑗, 𝑝)
|

|

|

2
)

, (5)

where 𝐵 is the size of the mini-batch, and 𝑀 and 𝑁 denote the number
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of rows and columns of each image, respectively. T
As already introduced, since we are using the denoising version of
autoencoder, in the training phase we adopt a statistically corrupted
input 𝑋, that is:

𝑋 = 𝑋 + 𝛴, (6)

where 𝛴 is a tensor of the same dimension as the input image 𝑋 whose
elements are drawn from a Gaussian distribution with zero mean and
𝜎2 variance. In addition, since the single pixel of an image can take
alues inside the interval [0, 1], the values of 𝑋 that exceed such range
ave been clipped.

The training of the proposed DDCAE has been performed by the
dam optimizer, a gradient-based optimization algorithm that exploits

he first and second order moments to obtain a smooth and fast con-
ergence (Kingma & Ba, 2015).

valuating the target statistical representation. After the training of the
DCAE on a reference class by minimizing the reconstruction error

n (5), its encoder has been used to construct a meaningful statistical
epresentation of the image pixels.

In order to obtain a robust statistical representation, in this work we
valuate the hidden features for the entire training set  by using the
ncoder of the trained DDCAE. Hence, a target hidden feature vector
⃗, of length 𝑁ℎ = 𝑀𝐿 × 𝑁𝐿 × 𝐹𝐿, is obtained as the average of all
he 𝑁𝑇 single hidden feature vectors. We expect that, if the number
𝑇 of images is sufficiently high, this target representation can be a
eaningful representative of the target class.

As a statistical representation of the target feature vector 𝑣, in this
aper we choose the (normalized) histogram, principally due to its
implicity and efficiency in computation. A histogram is an estimate
f the distribution obtained by dividing the range of values into a
equence of 𝑁𝑏𝑖𝑛 equally-spaced interval called bins and counting how
any values fall into each interval. The histogram is then normalized

o sum to unit.
The number 𝑁𝑏𝑖𝑛 of bins used to construct the histogram should be

hosen by a trade-off between numerical stability of the used distance
easurement and its discriminating capability. Although this number

urned out not to be critical for the final model performance, if it is
uch less than the length 𝑁ℎ of the hidden feature vector, we found

hat an excellent choice to guarantee non-empty bins is by using 50
ins, i.e. 𝑁𝑏𝑖𝑛 = 50. The only observation is regarding the Euclidean
istance that tends to fill the gap between the two classes if 𝑁𝑏𝑖𝑛 is
xcessively increased.

In this phase, we also evaluate the distance between the just com-
uted target histogram and all the histograms of the single reference
ncoded scans, by using suitable probability dissimilarity measure-
ents (introduced in the next subsection). Among these distances, we

ompute the mean 𝑑𝑚 and standard deviation 𝜎𝑑 values in order to
et conveniently a suitable threshold 𝑇𝐻 used during the test phase
o discriminate between a reference scan from an anomaly one. The
dea is that the statistical distance from an anomaly scan should be
reater than a reference one, hence the threshold 𝑇𝐻 could be set
roportionally to the mean distance 𝑑𝑚 plus a term depending on
ts standard deviation. Mathematically, we set the threshold 𝑇𝐻 as
ollows:

𝐻 = 𝑑𝑚 + 𝜂𝜎𝑑 , (7)

here 𝜂 is a suitable constant. In this case, a 𝜂 = 0.3 provides good
esults.

est of the proposed DDCAE. During the inference phase, each test
mage passes through the trained encoder and produces its latent
eature vector used to evaluate a test histogram. This test histogram
ill be successively compared to the target one by a suitable distance
easurement (the same used during the target computation). In this
aper, we focus our attention on two reference classes: the normal one
nd the common pneumonia (CP) one. If the distance between the test
nd target histograms is above the set threshold 𝑇𝐻 , the related image
ill be marked as COVID (anomaly), otherwise as the reference one.
he main idea is sketched in Fig. 2.
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Table 2
Layers’ organization of the proposed DDCAE. The output shape refers to the tuple

(

𝑀𝑙 , 𝑁𝑙 , 𝐹𝑙
)

for the 𝑙th layer.

Layer type Kernel size Stride Output Shape Param. #

Conv2D 3 × 3 1 (200, 300, 256) 7168
Batch Normalization – – (200, 300, 256) 1024
Conv2D 3 × 3 1 (200, 300, 128) 295040
MaxPooling 2 × 2 2 (100, 150, 128) 0
Conv2D 3 × 3 1 (100, 150, 64) 73792
Batch Normalization – – (100, 150, 64) 256
MaxPooling 2 × 2 2 (50, 75, 64) 0

Total params: 377,280
Trainable params: 376,640
Non-trainable params: 640

Layer type Kernel size Stride Output Shape Param. #

Conv2D Transpose 3 × 3 2 (100, 150, 128) 73856
Batch Normalization – – (100, 150, 128) 512
Conv2D Transpose 3 × 3 2 (200, 300, 256) 295168
Batch Normalization – – (200, 300, 256) 1024
Conv2D Transpose 3 × 3 1 (200, 300, 3) 6915

Total params: 377,475
Trainable params: 376,707
Non-trainable params: 768
Fig. 2. Sketch of the test phase proposed in the paper.
3.2. Unsupervised distance-based processing of the latent representation

The main focus of the paper is the evaluation of the dissimilarity be-
tween the target histogram and the histogram obtained by the encoder
for a test image. If the histogram of the test image is similar to the
target one, we can assign it to the corresponding target class, otherwise
it is labeled as a COVID-19 image. An example of target, NCP, and CP
histograms are shown in Fig. 3.

In literature, the similarity between two histograms can be eval-
uated by several distance measurements of the underlying distribu-
tion (Kullback, 1997). For the aims of this paper, after denoting with 𝑝
and 𝑞 the two involved histogram distributions defined over the set of
interval bins , we have selected the following three distances.

1. Kullback–Leibler (KL) divergence:

𝑑𝐾𝐿 =
∑

𝑖∈
𝑝𝑖 log

(

𝑝𝑖
𝑞𝑖

)

, (8)

where 𝑝𝑖 and 𝑞𝑖 are the values assumed by the 𝑝 and 𝑞 histogram
in the 𝑖th bin, respectively. By definition, the contribution of the
𝑖th term in the summation in (8) is zero if 𝑝 = 0.
6

𝑖

2. Bhattacharyya distance:

𝑑𝐵 = − log

(

∑

𝑖∈

√

𝑝𝑖𝑞𝑖

)

. (9)

3. Euclidean distance:

𝑑𝐸 =
√

∑

𝑖∈

(

𝑝𝑖 − 𝑞𝑖
)2. (10)

These distances have been normalized by the number 𝑁𝑏𝑖𝑛𝑠 of used bins
in the histogram in order to render them independent of this choice.
The Bhattacharyya distance is widely used in several applications, like
image processing, and, differently from the KL one has the advantages
of being insensitive to the zeros of distributions. On the other hand,
the Euclidean distance is very simple and smooth but it tends to treat
excessively equally differences between the distributions.

In the proposed approach, if the distance (chosen between the KL,
Bhattacharyya and Euclidean one) between the target and the test
histograms is above the set threshold 𝑇𝐻 , the image under test is
classified as COVID-19 (CNP), otherwise it is classified as the target
class (normal or CP, depending on the used training set).
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Fig. 3. Example of target, NCP, and CP histograms.

. Experimental setup

In this section, we describe the utilized dataset for the reference
lasses, the employed software environment, the setting of the main
arameters, and the metrics used to evaluate the performance of the
roposed idea.

.1. The utilized datasets

In response to the COVID-19 pandemic, the global open source
nd open access COVID-Net initiative1 made available some relevant

datasets of CT scans in order to accelerate the advancement in machine
learning to fight the pandemic (Gunraj et al., 2020). Recently, the
COVID-Net team has released a second version of the dataset in two
variants (the COVIDx CT-2 A and CT-2B datasets, respectively) (Gunraj
et al., 2021). The ‘‘A’’ variant consists of cases with confirmed diag-
noses, while the ‘‘B’’ variant contains all of the ‘‘A’’ variant and adds
some cases which are assumed to be correctly diagnosed but are weakly
verified. In this paper, we address our attention to the ‘‘A’’ variant of
the dataset.2

The COVIDx CT-2 A dataset has been constructed by collecting
many publicly available data sources (Gunraj et al., 2021, 2020) and
comprises 194,922 CT slices from 3745 patients. The dataset scans are
related to three classes: novel coronavirus pneumonia due to SARS-
CoV-2 viral infection (NCP), common pneumonia (CP), and normal
controls. For NCP and CP CT volumes, slices marked as containing lung
abnormalities were leveraged. Moreover, all the CT volumes contain
the background in order to avoid model biases. An example of a
representative image for each class is shown in Fig. 4. The issues
pertinent to data ethics were ensured during the data collection of the
dataset, according to the information reported on the related websites
supporting this study.

In this paper, we have randomly selected 3500 and 700 images from
the normal and Pneumonia classes for the training and validation of the
proposed DDCAE, respectively, and 500 images from each class to test
it.

4.2. Utilized simulation environment and setting of the main parameters

All the simulations described in this paper have been implemented
in Python environment by using the end-to-end and open-source ma-
chine learning platform TensorFlow 2 exploiting the Keras API, with a

1 https://alexswong.github.io/COVID-Net/
2 It can be downloaded from: https://www.kaggle.com/hgunraj/covidxct.
7

Table 3
Number of training and testing instances of each considered class. In the proposed
DDCAE approach, the COVID-19 data has not been used in the training phase.

Type Training Validation Test

Normal 3500 700 500
Pneumonia 3500 700 500
COVID-19 – – 500

Table 4
Main considered parameters and related default values.

Description Parameter Value

Mini-batch size 𝐵 16
Number of epochs 𝑁𝑒 50
Learning rate 𝜇 0.001
Adam 𝛽1 parameter 𝛽1 0.9
Adam 𝛽2 parameter 𝛽2 0.999
Adam 𝜀 parameter 𝜀 10−7

Number of bins 𝑁𝑏𝑖𝑛 50
Number of hidden features 𝑁ℎ 240,000
Parameter to set the threshold 𝜂 0.3

PC having an Intel Core i7-4500U 2.4 GHz processor, 16 GB RAM, and
Windows 10 operating system.

About the setting of the main parameters, Table 4 summarizes the
considered default values and the meaning of each parameter. The
values of these parameters have been selected by using the validation
set in Table 3.

4.3. The considered performance metrics

In a binary classification problem we are interested in classifying
items belonging to a positive class (P) and a negative class (N). With
respect to a specific dataset, there are four basic combinations of actual
data category and the assigned output category:

• true positive (TP): correct positive assignments;
• true negative (TN): correct negative assignments;
• false positive (FP): incorrect positive assignments;
• false negative (FN): incorrect negative assignments.

he set of these four quantities is usually arranged in a matrix layout,
alled confusion matrix (CM), which allows a simple visualization of
he performance of a classification algorithm. Each column of the CM
epresents the instances in a predicted class while each row represents
he instances in an actual class. Moreover, the combination of the
revious four numbers in some powerful indicators can be a valid
ool to quantitatively measure the performance of a classification al-
orithm (Alpaydin, 2014). Among all the possible combination, in this
aper we focus our attention on the accuracy, precision, recall and F-
easure metrics, whose formal definition can be found in Table 5. The

ccuracy is the ratio between the correct identified instances among
heir total number. The precision is the ratio of relevant instances
mong the retrieved instances, while the recall is the ratio of the
otal amount of relevant instances that were actually retrieved. Finally,
recision and recall can be combined in a single measurements called
-measure that is mathematically defined as their harmonic mean.

We also consider the TP rate (formally coincident with the recall
etric) and the FP rate. These last measures are, respectively, the ratio

etween the number of TP and the total positive examples and the
atio between the number of FP and the total negative examples. By
lotting the TP rate on the 𝑦-axis against the FP rate on the 𝑥-axis
n a plane, when the discrimination threshold is changed, we obtain
he Receiver Operating Characteristic (ROC) curve that is a graphical
epresentation of the performance of a binary classifier. However, the
OC curve is a two-dimensional depiction of classifier performance
nd often we need of a single scalar value representing the expected
erformance. A common method is to calculate the area under the ROC

https://alexswong.github.io/COVID-Net/
https://www.kaggle.com/hgunraj/covidxct
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Fig. 4. Examples of some CT images: (a) normal, (b) common pneumonia (CP), and (c) novel coronavirus pneumonia (NCP).
Table 5
The performance metrics for the evaluation of the proposed model.

Performance Metrics Formula

Precision 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃 )
Recall 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁)
F-measure 2𝑇𝑃∕(2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
Accuracy (𝑇𝑃 + 𝑇𝑁)∕(𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁)
TP rate 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁)
FP rate 𝐹𝑃∕(𝐹𝑃 + 𝑇𝑁)

curve, abbreviated as AUC. The closer the AUC is to one, the better the
classifier performance.

5. Numerical results

In this section, we show the numerical results obtained by the pro-
posed approach. As described above, the performance of the designed
DDCAE is tested by using CT scans related to two target classes: the nor-
mal images and the common pneumonia (CP) ones. Some comparisons
with two state-of-the-art deep architectures will be also performed. The
test set used in experiments is composed of 500 CT scans belonging to
the new coronavirus pneumonia (NCP) and 500 CT scans belonging
to the reference class (normal or CP). To provide a clear graphical
representation of the obtained distances, the test instances have been
fed to the proposed algorithm in this order: first the NCP scans (positive
class) and then the reference ones (negative class).

5.1. Evaluation of the proposed approach

In the first set of experiments, we investigate the effect of the noise
level on the DDCAE, i.e. we perform several test by using a different
noise level 𝜎 in generating the 𝛴 tensor in (6).

In the following, experiments have been performed by using four
different values of the standard deviation 𝜎. Specifically, we use the
set of values: {0.0, 0.01, 0.05, 0.1}. A value 𝜎 = 0 is meaning that the
traditional deep CAE is used, i.e. the denoising idea is not implemented.

Table 6 summarizes the results obtained by the proposed DDCAE
for all the tested 𝜎 values in terms of the Accuracy, Precision, Recall,
F-measure and AUC metrics introduced in Section 4.3 and defined in
Table 5, by considering the COVID-19 images as the positive class
and the reference images as the negative class. Simulations have been
performed for both the normal and CP reference datasets. Table 6 also
provides the different metrics for all the three considered distribution
distances in Section 3.2. The related ROC curves for the CP case are
shown in Fig. 5. Similar curves are obtained for the normal reference
scenario.

Table 6 demonstrates the effectiveness of the proposed idea. In fact,
results in terms of all the considered metrics are generally satisfying
and, interestingly enough, they reach the top result of 100% in some of
the proposed settings. By a carefully examination of the rows of Table 6,
we can draw some general considerations:

• results obtained with reference to the normal class generally
outperform those of the CP class. This is justified by the fact that
scans of the NCP are more similar to the CP class rather than the
8

normal one, hence discriminating between NCP and CP is a more
complicated task with respect to the discrimination between NCP
and normal;

• the clean version of the deep CAE provides worsening results with
respect to the denoising versions. This is justified by the fact that
the input noise operates as a regularizer providing a more robust
classification;

• the level of the noise should be not too big. In fact, the perfor-
mance obtained by using the value 𝜎 = 0.1 is lower than the
corresponding ones with 𝜎 = 0.01 and 𝜎 = 0.05;

• the proposed DDCAE with 𝜎 = 0.01 and 𝜎 = 0.05 is able to reach
top performance in terms of all the considered metrics;

• although all the three considered distance measurements (i.e., the
KL divergence, the Bhattacharyya distance, and the Euclidean
distance) provide similar results, when the performance are not
at the top level, Table 6 suggests that the Bhattacharyya distance
produces higher scores, while the Euclidean distance the smaller
ones. This could be justified by the mathematical expressions
of these distances. In fact, the Bhattacharyya distance is quite
smooth and automatically takes into account for the possible zero
values of a distribution, while in the KL divergence this could be
a problem, even if the chosen number 𝑁𝑏𝑖𝑛 of bins assures the
absence of zeros in the both distributions. On the other hand, the
Euclidean distance, for its nature, produces not so discriminating
distance;

• the DDCAE with 𝜎 = 0.01 provides always the top accuracy of
100%. Just for the normal reference and Euclidean distance, the
accuracy is slightly lower, i.e. 99.90%!

Motivated from these considerations, in the following tests and compar-
isons we use the DDCAE with 𝜎 = 0.01 and the distance are measured
by the KL divergence. Moreover, since it is more challenging, we use
as reference class the CP one.

In order to give a visual insights of the results in Table 6 and justify
the top 100% accuracy, Fig. 6 shows the considered Kullback–Leibler
divergence, Bhattacharyya distance, and Euclidean distance in the case
of common pneumonia reference dataset and the DDCAE with 𝜎 = 0.01.
This figure clearly shows the effectiveness of the proposed idea. In fact,
we can see that the NCP scans (the first 500 bars in Fig. 6) are much
more distant with respect to the corresponding reference images (the
last 500 bars). The differences between the classes is about one order
of magnitude for the KL divergence and the Bhattacharyya distance, as
we can see in Figs. 6(a) and 6(b), while it is more limited in the case
of the Euclidean distance (see Fig. 6(c)). This last case also shows a
larger variance of the obtained distances with respect to the first two
measures.

In the following set of experiments, we compare the proposed 3-
Layer DDCAE by changing the number of hidden layers. Specifically, we
test two shallower architectures (with one and two layers, respectively)
and a deeper one (with four hidden layers). Since the DDCAE with a
single hidden layer performed very poorly, we provide results obtained
by an architecture composed of a single dense layer, that is the only
yellow layers in Fig. 1. The results obtained by these solutions on the
CP reference dataset and employing the KL divergence to measure the
histogram distances are shown in Table 7. As we can see from this
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Table 6
Results obtained by the proposed DDCAE at different noise level for the two considered scenarios.

Normal Pneumonia

Model 𝝈 Accuracy Precision Recall F-measure AUC Accuracy Precision Recall F-measure AUC

Kullback–Leibler divergence

DCAE 0.00 100.00 1.0000 1.0000 1.0000 1.0000 83.40 0.8345 0.8340 0.8342 0.8600
DDCAE1 0.01 100.00 1.0000 1.0000 1.0000 1.0000 100.00 1.0000 1.0000 1.0000 1.0000
DDCAE2 0.05 99.60 0.9960 0.9960 0.9960 0.9990 100.00 1.0000 1.0000 1.0000 1.0000
DDCAE3 0.10 92.70 0.9272 0.9270 0.9270 0.9790 88.33 0.8942 0.8830 0.8886 0.9710

Bhattacharyya distance

DCAE 0.00 99.60 0.9960 0.9960 0.9960 0.9990 98.80 0.9881 0.9880 0.9880 0.9930
DDCAE1 0.01 100.00 1.0000 1.0000 1.0000 1.0000 100.00 1.0000 1.0000 1.0000 1.0000
DDCAE2 0.05 99.20 0.9921 0.9920 0.9920 0.9990 100.00 1.0000 1.0000 1.0000 1.0000
DDCAE3 0.10 93.50 0.9352 0.9350 0.9350 0.9820 87.60 0.8810 0.8760 0.8785 0.9510

Euclidean distance

DCAE 0.00 92.00 0.9328 0.9200 0.9265 0.9070 91.80 0.9314 0.9180 0.9247 0.8930
DDCAE1 0.01 99.90 0.9990 0.9990 0.9990 0.9990 100.00 1.0000 1.0000 1.0000 1.0000
DDCAE2 0.05 92.90 0.9391 0.9290 0.9340 0.9560 99.80 0.9980 0.9980 0.9980 0.9980
DDCAE3 0.10 92.90 0.9294 0.9290 0.9292 0.9710 74.90 0.8730 0.7490 0.8063 0.9190
Fig. 5. ROC curves of the proposed approach for the considered distance measures in the Pneumonia scenario: (a) DCAE, (b) DDCAE1, (c) DDCAE2, and (d) DDCAE3. The
corresponding AUC values are reported in the legend boxes.
table, the performance tends to decrease for both the increasing and
decreasing number of hidden layers. This behavior is uniform for all
the considered metrics. Similar results have also been obtained by using
the normal class as reference, not shown here for space constraints. The
results, shown in Table 7, justify the use of three hidden layers in the
proposed DDCAE.

Remark. We point out that we also implement the same methodology
by exploiting the idea of Sparse AEs as done in Xu et al. (2016).
However, the sparse AE does not yield any good results by nothing of
the used metrics. Therefore, we decided to exclude it from the paper.
The bad results obtained by sparse AEs are intuitively justified by the
fact that our approach is based on the construction of a statistic rep-
resentation by evaluating the histogram of the hidden feature vector.
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Since the sparse AE produces a very sparse hidden feature vector, the
obtained histogram becomes not so significant.

5.2. Comparisons to state-of-the-art benchmark solutions

In this subsection, we show some comparisons with other state-of-
the-art benchmark solutions. These comparisons involve both unsuper-
vised and supervised techniques. Specifically, we employ the DDCAE
itself to evaluate the anomalies. In fact, an autoencoder is trained to
reconstruct its input: this is meaning that the reconstruction error in
(5) should be small for test image belonging to the same class on which
the architecture has been trained, otherwise the error should be bigger.
Hence, the anomaly scans (i.e., the NCP images) can be obtained by
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Table 7
Results obtained by the proposed DDCAE at different number of layers. The metrics have been evaluated
by using the KL divergence on the CP reference dataset. In italic the proposed DDCAE.
Layers Accuracy Precision Recall F-measure AUC

1 63.90 0.6594 0.6390 0.6487 0.7250
2 88.20 0.7800 0.9799 0.8686 0.9210
3 100.00 1.0000 1.0000 1.0000 1.0000
4 96.40 0.9648 0.9640 0.9644 0.9960
Fig. 6. The obtained distances for the case of CP reference using the DDCAE with 𝜎 =
0.01. The considered distances are: (a) Kullback–Leibler divergence, (b) Bhattacharyya
distance, and (c) Euclidean distance.

thresholding the reconstruction error in (5) (Amarbayasgalan et al.,
2020). We refer to this method as the first benchmark approach or
BAP1.

In addition, to perform fair comparisons with the proposed ap-
proach, we also rearrange our methodology to the output space. We
10
compute the reconstruction error of a test scan and evaluate the sta-
tistical representation of such an error by means of the histogram.
Then, once again, we perform the distance measurement of this test
histogram to the reference one, obtained from the average of all the
error images computed from the training scans. The same three distance
measurements introduced in Section 3.2 have been employed. We refer
to this method as the second benchmark approach or BAP2.

Results for the BAP1 and BAP2 benchmark approaches are shown
in the top part of Table 8. For space reasons, only the results related
to the CP dataset as reference are shown, but similar results can be
obtained by using the normal reference dataset. Regarding the BAP2
approach, the second row of Table 8 is related to the KL divergence,
which provide the best results compared to the Bhattacharyya and
Euclidean distances.

Results shown in the first two rows of Table 8 clearly show that the
benchmark solutions are not suitable to produce high metrics. This is
meaning that the hidden features, extracted by the DDCAE, are more
informative than those corresponding to the reconstructed images. This,
in turn, supports the proposed approach.

Regarding the supervised approaches, in this paper we consider
some well-known feed-forward deep networks in the literature, i.e., the
AlexNet (Krizhevsky et al., 2012) and the GoogLeNet (Szegedy et al.,
2015). Specifically, AlexNet is composed of the cascade of five con-
volutional layers and three (dense) fully connected ones, while the
GoogLeNet is more complicated since it is very deep and constructed
by stacking three convolutional layers, nine inception modules, and
two dense layers. An inception module is a particular layer obtained
by concatenating several convolution operations with different filter
sizes and a max pooling operation. Since these architectures are of
supervised type, they have been trained by using both the CP and NCP
classes in the training set, differently to our approach that has been
trained only on the CP class in an unsupervised manner.

The results provided by AlexNet and GoogLeNet are shown in the
bottom part of Table 8. As shown in the table, AlexNet performs worse
than our approach, since it reaches only 71% accuracy, and similar
other metrics. On the contrary, the performance of GoogLeNet are the
same as the proposed idea, since it obtains a 100% accuracy. The
ROC curves of all the considered approaches in Table 8 are shown in
Fig. 7. However, we have to remark that this result is obtained with a
deeper approach with a huge number of free parameters compared to
the proposed approach, as shown in Table 9 that reports the number
of trainable parameters and the training time (in minutes) for all the
considered architectures. For the proposed approach, we have also
to consider the time needed to compute the target histogram. The
complexity of a single histogram computation depends on the length
𝑁ℎ of the hidden feature vector plus the number 𝑁𝑏𝑖𝑛 of bins. Hence,
the evaluation of the target histogram has an asymptotic computa-
tional complexity of 

(

𝑁𝑇 (𝑁ℎ +𝑁𝑏𝑖𝑛)
)

. This provides an additional
time of few seconds, which is negligible with respect to the training
of the models. Once again, this consideration, along with the trade-
off shown in Table 9, supports the proposed methodology. Moreover,
since GoogLeNet is based on a supervised approach, we expect that it
may work efficiently only on data belonging to the training classes,
differently from our unsupervised approach, as investigated in the
following subsection.



Expert Systems With Applications 192 (2022) 116366M. Scarpiniti et al.
Table 8
Results obtained by other state-of-the-art unsupervised and supervised approaches on CP dataset.
Architecture Accuracy Precision Recall F-measure AUC

Unsupervised

BAP1 81.90 0.8513 0.8190 0.8348 0.8450
BAP2 65.50 0.6925 0.6550 0.6732 0.6520

Supervised

AlexNet 71.10 0.8601 0.7110 0.7785 0.9460
GoogLeNet 100.00 1.0000 1.0000 1.0000 1.0000
Table 9
Computational complexity of the compared models. The training time (in minutes)
refers to data sets composed of images of the size 300 × 200 pixels. Our proposed
approach is the 3-Layer DDCAE.

Model Number of parameters Training time [min]

Shallow Dense 108 M 145
Shallow DCAE 28 k 5
2-Layer DDCAE 426 k 54
3-Layer DDCAE 753 k 96
4-Layer DDCAE 2 M 216
AlexNet 58 M 223
GoogLeNet 6 M 258

M stands for million of parameters, k for thousands.

5.3. Layer-wise training of DDCAEs

All the numerical results presented up to now refer to an end-to-
end training approach in which each noisy input image is utilized to
train end-to-end (i.e., one-shot) all the layers composing the underlying
DDCAE. In order to evaluate the actual effectiveness of the considered
end-to-end training approach, we have also implemented the more
sophisticated layer-wise training approach described in Section 3.5
of Vincent et al. (2010). In a nutshell, according to this layer-wise
approach (see, in particular, Fig. 3 of Vincent et al., 2010), a shallow
denoising AE is considered at first, which is composed by only the first
layer of the overall Deep AE. This shallow AE is trained on a set of noisy
input training images (see Fig. 1 of Vincent et al., 2010), in order to
learn its single-layer encoding function. Afterward, the learnt encoding
function of the first-layer is used on a set of clean input training images,
in order to train the second-layer of a two-layer denoising AE which
is composed by the first two-layer of the underlying DDCAE (see the
middle part of Fig. 3 of Vincent et al., 2010). So doing, the second-
level encoding function is learnt. The described layer-wise procedure is
replicated up to learn the encoding function of the upper-most layer of
the underlying DDCAE (see the right part of Fig. 3 of Vincent et al.,
2010). Finally, after finishing the layer-wise training procedure, the
target histogram is numerically evaluated on a set of clean training
images. The numerical results we have obtained by applying the de-
scribed layer-wise procedure for training the proposed 3-Layer DDCAE
of Table 2 are reported in Table 10 under the same experimental setup
already considered in Section 5.1 for the (somewhat more challenging)
Normal data set (see the columns labeled as ‘‘Normal’’ of Table 6 for
the related numerical results).

A comparison of the numerical results reported in Table 10 against
the companion ones previously reported in Table 6 point out that the
performance improvements arising from the utilization of the imple-
mented layer-wise approach for training the considered DDCAE are,
indeed, (very) marginal. Hence, since the implementation complexity
of the described layer-wise procedure scales up (at least) linearly
with the depth of the considered DDCAE, we conclude that, at least
in the here considered application scenarios, the adopted end-to-end
one-shot training procedure exhibits a more appealing performance-vs.-
implementation complexity tradeoff.
11
Fig. 7. ROC curves of all the considered approaches in Table 8. The corresponding
AUC values are reported in the legend. The red curve labeled ‘‘GoogleNet1’’ refers to
results shown in the last raw of Table 8, while the blue curve labeled ‘‘GoogleNet2’’
refers to the experiment on the robustness of the GoogLeNet to unseen data reported
in Table 11 of Section 5.4.

5.4. Robustness of the considered approaches

The aim of this subsection is to evaluate the robustness of the
proposed DDCAE, compared to the GoogLeNet architecture, against
unexpected image classes, like new variants of coronavirus and/or
other classes never used in the training process.

In the following experiment, as in the previous subsection, the
GoogLeNet has been trained by using both the CP and NCP classes while
our DDCAE has been trained only on the CP class in an unsupervised
manner. In order to check the robustness of these two considered
approaches, both the architectures will be now tested on a test set
composed of 500 normal scans and 500 CP scans. The obtained results
are shown in Table 11, which clearly supports the effectiveness of
our DDCAE. In fact, since our approach relies on an unsupervised
training and a statistical distance measurement, it is able to identify
anything that is different from the target class (in our case the CP
class). On the other hand, we expect that the GoogLeNet can only assign
previously unseen data randomly to the two output classes. This insight
is confirmed by looking the confusion matrices in Fig. 8 that shows
how GoogLeNet splits the unseen data with a ratio of 53.8% and 46.2%
between the two classes, respectively. The ROC curve of GoogLeNet in
this experiment is shown in the blue curve of Fig. 7.

5.5. Performance comparisons with shallow classifiers working on Haralick–
Zernicke input features

The recent contribution in Gomes et al. (2020) supports the con-
clusion that good accuracy performance in the diagnosis of COVID-19
pathologies may be obtained by Support Vector Machine (SVM), Multi-
Layer Perceptron (MLP) and Random Forest (RF)-based supervised
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Table 10
Numerical performance of the proposed 3-Layer DDCAE of Table 2 when it is trained according to the layer-
wise approach of Vincent et al. (2010) under the Normal dataset. The same simulation setup of Section 5.1
at 𝜎 = 0.05 is considered under the Normal datasets.
Distance Accuracy Precision Recall F-measure AUC

Kullback–Leibler 99.61 0.9961 0.9960 0.9960 0.9992
Bhattacharyya 99.22 0.9923 0.9921 0.9922 0.9991
Euclidean 92.93 0.9401 0.9292 0.9346 0.9580
Table 11
Robustness of the proposed 3-Layer DDCAE and GoogLeNet to unseen data.
Architecture Accuracy Precision Recall F-measure AUC

3-Layer DDCAE 100.00 1.0000 1.0000 1.0000 1.0000
GoogLeNet 76.90 1.0000 0.5380 0.6996 0.7690
Fig. 8. The confusion matrices in the case of unseen data: (a) DDCAE and (b) GoogLeNet.
Table 12
Main parameters of the implemented supervised shallow classifiers: SVMs with 2-degree
(SVM-2D) and 3-degree (SVM-3D) polynomial, and Radial Basis Function (SVM-RBF)
kernels; MLPs equipped with single hidden layers composed by 50 (MLP-50), 100 (MLP-
100), and 200 (MLP-200) neurons; RFs composed by 100 (RF-100), 500 (RF-500), and
1000 (RF-1000) binary trees.

Model Main parameters

2-degree polynomial kernel (SVM-2D)
SVM 3-degree polynomial kernel (SVM-3D)

RBF kernel (SVM-RBF)

50 neurons in the hidden layer (MLP-50)
MLP 100 neurons in the hidden layer (MLP-100)

200 neurons in the hidden layer (MLP-200)

RF with 100 randomly generated binary trees (RF-100)
RB RF with 500 randomly generated binary trees (RF-500)

RF with 1000 randomly generated binary trees (RF-1000)

shallow classifiers (Alpaydin, 2014), working on input features that
are obtained by extracting suitable Haralick and/or Zernicke moments
from X-ray images. Hence, motivated by the interesting results reported
in Gomes et al. (2020) on X-ray images, goal of this section is to
numerically check the accuracy performance of such of kinds of simple-
to-implement ML models for the binary classification of Pneumonia-vs.-
COVID CT images extracted by the dataset of Table 3. Being the training
of the considered shallow classifiers of supervised-type by design, the
dataset of Table 3 has been augmented by including 3500 training
plus 700 validation COVID-19 images picked up from the (previously
described) CT-2 A dataset. Table 12 describes the main parameters and
related taxonomy of the implemented shallow classifiers.

According to Gomes et al. (2020), in the carried out tests, suitable
sets of Haralick (Haralick et al., 1973) and Zernicke (Kan & Srinath,
2001) moments extracted by the (previously described) available sets of
CP and NCP scans are used as input features to the shallow classifiers of
12
Table 12. Specifically, four (256 × 256) matrices of the co-occurrences
of the gray levels of row-wise, column-wise and diagonal-wise adjacent
pixels are extracted from each available CT scans and, then, they are
employed as Haralick input features to the classifiers of Table 12 (see
the seminal paper in Haralick et al., 1973) for an in-depth presentation
of the Haralick feature extraction). As detailed in Gomes et al. (2020),
the corresponding Zernicke moments are obtained by computing the
coefficients of the orthogonal projection of each image onto an orthog-
onal basis composed by a set polar functions 𝑉𝑛,𝑚(𝜌, 𝜃), with each basis
function 𝑉𝑛,𝑚(𝜌, 𝜃) labeled by a pair of non-negative integer indexes
(𝑛, 𝑚) (see, for example, Eqs. (1) and (2) of Gomes et al. (2020)). In the
carried out tests, the same set of (𝑛, 𝑚) index pairs reported in Table
3 of Gomes et al. (2020) is considered, so to associate 64 Zernicke
moments to each processed image.

The top (resp., bottom) part of Table 13 shows the numerically
evaluated results that have been obtained by running the shallow
supervised binary classifiers of Table 12 when the described Haralick
(resp., Haralick-plus-Zernicke) moments of the CP and NCP images of
the dataset are used as input features.

A comparative examination of the numerical results of Table 13
leads to two main conclusions. First, under both the tested Haralick
and Haralick-plus-Zernicke input feature sets, the SVM classifier with
degree-2 polynomial kernel attains the best performance metrics. In
contrast, at least in the carried out tests, the implemented RF-based
classifiers exhibit the worst performance. Second, a comparison of the
top and bottom parts of Table 13 points out that, in all carried out tests,
performance improvements are experienced by concatenating the Har-
alick input features to the corresponding Zernicke ones. Specifically,
the experienced accuracy improvement is noticeable and around 14.5%
for the (less-performing) MLP-50 classifier, while it reduces to 0.4% for
the (most performing) SVM-2D model.

Finally, some insights may be acquired by comparing the perfor-
mance metrics of the proposed DDCAE models of Table 6 against the
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Table 13
Numerical results of the shallow models of Table 12 when they are used to classify the Haralick and Haralick-plus-Zernicke
input features extracted from the CP and NCP scans of the test dataset of Table 3.

Model Accuracy Precision Recall F-measure AUC Training time

Haralick input features

SVM-2D 93.00 0.9386 0.9300 0.9343 0.9940 1.6
SVM-3D 90.20 0.9181 0.9200 0.9190 0.9910 1.8
SVM-RBF 91.20 0.9252 0.9120 0.9186 0.9700 1.5
MLP-50 61.60 0.6160 0.6160 0.6159 0.6600 6.4
MLP-100 70.10 0.8083 0.7010 0.7508 0.8000 9.3
MLP-200 76.10 0.7947 0.7610 0.7775 0.7800 12.2
RF-100 68.50 0.7652 0.6850 0.7229 0.8500 6.4
RF-500 68.70 0.7665 0.7210 0.7431 0.9600 31.8
RF-1000 68.90 0.7676 0.6890 0.7262 0.9620 63.5

Haralick-plus-Zernicke input features

SVM-2D 93.40 0.9417 0.9340 0.9378 0.9950 1.7
SVM-3D 92.70 0.9363 0.9270 0.9316 0.9930 2.4
SVM-RBF 91.70 0.9788 0.9170 0.9469 0.9600 1.6
MLP-50 76.00 0.8132 0.7600 0.7857 0.7900 7.5
MLP-100 77.40 0.7874 0.7740 0.7806 0.7200 10.8
MLP-200 78.30 0.8123 0.7830 0.7974 0.7800 13.2
RF-100 71.10 0.7852 0.7110 0.7463 0.9600 7.3
RF-500 72.00 0.7903 0.7200 0.7535 0.9650 36.5
RF-1000 72.10 0.7893 0.7210 0.7536 0.9680 74.0

Accuracy is in percentage while the training time is measured in seconds.
orresponding ones of the shallow models of Table 13. Specifically,
he comparison points out that the average accuracies of the most per-
orming DDCAE models (namely, the proposed DDCAE1 and DDCAE2
odels equipped with the KL and/or the Bhattacharyya distance of Ta-

le 6) reach 100%, while the average accuracy of the most performing
ested shallow classifier (namely, the SVM-2D classifier of Table 13)
emains limited up to 93%. Furthermore, since the considered shallow
lassifiers are supervised models, in principle, they are prone to the
ame robustness issues already pointed out in Section 5.4. Obviously,
hese pros of the proposed DDCAE models are counterbalanced by some
ons arising from considerations on the corresponding implementation
omplexity. The training times of the shallow models provided in
he last column of Table 13 show that all the compared models are
aster than the corresponding ones of the proposed DDCAE models
see Table 9). This is due to the facts that these models are shallow
nd operate on input feature vectors of limited length, as detailed
n Gomes et al. (2020). However, although these shallow models can
e quickly trained, we remark that the obtained accuracies of Table 13
re not suitable for a reliable system of automatic diagnosis. Hence, all
n all, we conclude that the proposed DDCAE models may represent
n appealing solution in application scenarios in which very high
ccuracy (we say, accuracy over than 95%) and robustness against
nseen input features are the main quality-of-service requirements. In
act, although the training time of the proposed DDCAE is higher than
he corresponding ones of the tested shallow methods, the resulting test
ccuracy-vs.-training time tradeoffs compare favorably with respect to
ompeting deep methods with similar test accuracies.

.6. Performance sensitivity on the size of the training dataset

The aim of this last subsection is to evaluate the sensitivity of
he proposed DDCAE and related compared approaches to the size of
he training set. Specifically, the COVIDx CT-2 A dataset described in
ection 4.1 contains about 194,922 scans partitioned in Normal, CP,
nd NCP classes. The available images have already split in training,
alidation, and test sets. The training and validation sets are composed
f a variable number of images, and they provide at least 25,000 and
000 scans for each class, respectively. For uniformity between all the
onsidered classes and hardware constraints, in the carried out tests,
e train again the proposed architecture and the baseline Deep ones

i.e., AlexNet and GoogLeNet) on the dataset by selecting 25,600 train-
ng scans and 6400 validation images. Since our proposed approaches
13
are unsupervised, they have been trained only on the reference class,
while the compared supervised deep architectures have been trained
on both the selected reference class and the COVID-19 one.

Results in terms of the considered metrics for the proposed DDCAEs
remain more or less the same and present numerical values similar
to those presented in Table 6. Hence, we do not explicitly report
these results in a tabular form. Once again, the proposed DDCAE1 and
DDCAE2 models using the KL and/or the Bhattacharyya distance attain
top accuracies of 100% and similar metrics.

Results of AlexNet, in this case, show an enhanced performance
since now AlexNet reaches an accuracy of 100%, and a precision, recall,
F-measure, and AUC of 1.000. Performance indexes of GoogLeNet
remain unchanged and are the same as in the last line of Table 8. The
performance improvement experienced by AlexNet is due to its huge
number of free parameters (see Table 9): using the partial dataset as
in Table 3 is not sufficient for avoiding underfitting phenomena in the
training phase of AlexNet.

Motivated by these considerations, we stress the effectiveness of
the proposed approach. In fact, the proposed 3-Layer DDCAE is able
to reach the 100% of accuracy, like also AlexNet and GoogLeNet, but
with a smaller number of parameters. This means, in turn, that it can be
trained quickly by using limited datasets. These aspects surely represent
a great added value to tools for the automatic clinical diagnosis.

6. Conclusion

In this paper, we propose an unsupervised approach to detect the
new coronavirus pneumonia from CT scans. Since the number of these
images is usually limited, we train a deep denoising convolutional
autoencoder (DDCAE) on some target classes (normal and common
pneumonia) and construct a robust statistical representation by evaluat-
ing the histogram of the hidden features averaged over all the training
scans. A suitable distribution distance is then used to compute how far
this target histogram is from the corresponding histogram evaluated
for an unknown test scan: if this distance is above a threshold the test
image is classified as anomaly, i.e. affected by the COVID-19 disease,
otherwise it is classified the same as the target class. Some numeri-
cal results evaluated on an open-source dataset, known in literature,
demonstrate the effectiveness of the proposed idea, since it is able to
obtain the top 100% of the considered metrics (accuracy, precision,
recall, F-measure and AUC) with a limited computational complexity,

outperforming the corresponding state-of-the-art approaches.
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In future works, we aim at extending our methodology towards
different types of medical images, other than CT, and/or different
diseases. We expect, in fact, that the automatic screening of patho-
logical images can take a great advantage by the simplicity of our
methodology, in both of the resulting accuracy and prediction time.
A second line of future research can be addressed towards to use
of Generative Adversarial Networks (GANs) for generating additional
examples in the case of new variants of COVID-19, in order to be fast in
the automatic discrimination of these scans without awaiting the con-
struction of sufficiently copious dataset. Finally, a third research hint
can be focused on the implementation of the proposed methodology in
a distributed Cloud/Fog networked technological platforms (Baccarelli
et al., 2021, 2017), in order to produce in fast and reliable clinical
responses by exploiting the low-delay and (possibly, adaptive Baccarelli
& Cusani, 1996 and/or smart-antenna empowered Baccarelli & Biagi,
2003; Baccarelli et al., 2007) capability of virtualized Fog computing
infrastructures in wireless-oriented application environments.
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