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Abstract

Speech super-resolution (SR) aims to increase the sampling rate of a given speech signal by 

generating high-frequency components. This paper proposes a convolutional neural network 

(CNN) based SR model that takes advantage of information from both time and frequency 

domains. Specifically, the proposed CNN is a time-domain model that takes the raw waveform 

of low-resolution speech as the input, and outputs an estimate of the corresponding high-resolution 

waveform. During the training stage, we employ a cross-domain loss to optimize the network. We 

compare our model with several deep neural network (DNN) based SR models, and experiments 

show that our model outperforms existing models. Furthermore, the robustness of DNN-based 

models is investigated, in particular regarding microphone channels and downsampling schemes, 

which have a major impact on the performance of DNN-based SR models. By training with proper 

datasets and preprocessing, we improve the generalization capability for untrained microphone 

channels and unknown downsampling schemes.
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I. INTRODUCTION

FOR bandwidth-limited signal transmission and equipment such as bluetooth and telephony, 

only low-frequency components of speech signals are preserved. Narrow bandwidth or 

low resolution degrades speech quality, or even intelligibility. Speech super-resolution (SR) 

aims to increase the waveform resolution of such speech by generating high-frequency 

components. It is also referred to as speech bandwidth extension (BWE) viewed from the 

spectral perspective. SR or BWE is beneficial to many speech processing tasks, such as text­
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to-speech synthesis [32], automatic speech recognition [3], [23] and speech enhancement 

[8].

Early studies in this field use signal processing methods. A source-filter model is introduced 

to extend the bandwidth by finding the high-frequency residual signal and the spectral 

envelope individually [8], [29]. To predict upper band spectral envelops from narrowband 

speech, codebook methods are employed to map narrowband speech representations and the 

corresponding upperband envelopes [7], [42], [47]. Gaussian mixture models (GMMs), and 

joint hidden Markov model and GMM have been exploited for estimation in codebook 

mapping [4], [33], [46]. These statistical methods yield better results compared with 

deterministic mapping, but tend to yield overly smoothed spectra [27]. The introduction 

of deep learning advances many areas of signal processing. For speech SR, deep 

neural networks (DNNs) have demonstrated superior performance. DNN studies include 

multiplayer perceptrons [6], [21], [41] to predict vocal tract filter parameters or the original 

log-power spectrum [23], [28], recurrent neural networks with long-short-term memory [15], 

convolutional neural networks (CNNs) [14], speech waveform synthesizers like WaveNet 

[16], [35], [51] and SampleRNN [26], [31] for conditional speech generation, and generative 

adversarial networks [10], [17], [24]. A more detailed summary of the related work is given 

in Section II. In general, deep learning based approaches show better performance compared 

with statistical approaches.

Current DNN-based SR models operate in matched settings, where recording conditions 

are fixed, and high-resolution (HR)/low-resolution (LR) pairs are obtained in the same way 

during training and testing. We observe that these models fail to generalize to different 

experimental settings. Specifically, the performance of such models degrades on speech 

databases with different recordings, or on LR signals generated by a different downsampling 

scheme. Therefore, it is important to investigate the robustness of SR models to such factors, 

and achieve robust SR.

In this paper, we address speech SR in the time domain by employing a CNN model to 

reconstruct speech with higher sampling rates. We propose a cross-domain loss, which not 

only produces excellent performance in terms of signal-to-noise ratio (SNR) and log-spectral 

distance (LSD) [13], but also removes unwanted artifacts in generated speech. Additionally, 

the proposed CNN can operate in real-time.

Another contribution of this paper is an examination of the sensitivity of DNN-based 

SR models to different recording channels and downsampling schemes. By employing 

different microphone impulse responses and performing cross-corpus experiments, we 

demonstrate that microphone channel is a major factor that affects SR performance. We 

also note that models trained with different downsampling schemes exhibit different levels 

of performance, and do not generalize to another way of downsampling. We show how to 

improve robustness to these variations with a proper training strategy. As a result, our model 

generalizes to untrained speech corpora and data acquisition schemes.

A preliminary version of this study was published in ICASSP 2020 [50], but the present 

paper goes far beyond the earlier version. The preliminary version adopts a time-frequency 
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loss, and this version proposes a novel cross-domain loss that further improves SR 

performance. Robustness is not addressed in [50], but is a major topic in the current 

investigation. In addition, more evaluations and comparisons are provided in this paper.

The rest of the paper is organized as follows. In Section II, we review related prior studies, 

which also serve as baselines in our comparisons. In Section III we present the network 

design and loss functions. Section IV provides experimental results and comparisons. In 

Section V, the robustness of the model is examined in terms of microphone channels and 

downsampling schemes. Section VI concludes the paper.

II. RELATED WORK

Li and Lee utilize a DNN to address speech BWE [23]. They employ log-power spectrum 

(LPS) as features, and predict the wideband LPS from the narrowband LPS. A DNN is 

pretrained as a restricted Boltzmann machine and optimized by a mean-squared error (MSE) 

loss between the predicted features and target features. The phase of the upperband is 

produced by flipping the narrowband phase and adding a negative sign. In another BWE 

study, Abel and Fingscheidt employ a DNN to estimate the lower-dimensional cepstral 

representation of spectral envelopes [2]. The upperband phase is obtained by copying the 

phase of narrowband spectrum. Experiments show that these DNN-based BWE approaches 

yield better results than traditional approaches.

Inspired by the successful application of CNNs in image SR, Kuleshov et al. introduce 

AudioUNet [22], which is adapted from an image domain network [9], [44]. This is an end­

to-end autoencoder model that takes the raw waveform as input and outputs the predicted 

SR waveform. This method operates in the time domain and thus does not need to estimate 

the phase separately. It outperforms conventional approaches and considerably improves the 

quality of reconstructed speech.

While the above studies show promising results, they only focus on one representation 

domain. Lim et al. propose a time-frequency network (TFNet) that incorporates information 

from both time and frequency domains [25]. TFNet is built from two AudioUNets, where 

one is trained with LR and HR waveforms and the other is trained with the magnitudes 

of short-time Fourier transform (STFT). These two networks are jointly optimized and a 

spectral fusion layer is utilized to combine the output of two branches. The STFT magnitude 

is obtained by combining estimates from the two branches, and an estimate of the STFT 

phase is obtained through the time branch. Experiments show that TFNet successfully 

leverages the cross-domain information and outperforms AudioUNet.

III. MODEL DESCRIPTION

Suppose we are given an LR speech segment slr at a sampling rate fslr. The goal of speech 

SR is to reconstruct a speech signal shr at a sampling rate fshr, such that fshr > fslr, i.e. 

restoring high-frequency components. The ratio fshr/fslr is referred to as the downsampling 
factor, which is typically an integer 2 or 4. For instance, LR signals may be standard 

telephone speech signals sampled at 8 kHz, and HR signals are 16 kHz. To reconstruct the 
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HR signal, we learn a DNN model f that takes the LR signal slr as the input. With parameters 

of the model denoted as θ, the model produces the corresponding reconstruction ssr:

ssr = f θ, slr (1)

Fig. 1 depicts the overall pipeline of the proposed SR model. We first upsample LR signals 

to the desired sampling rate using cubic spline interpolation [11]. Then the upsampled 

signal and HR signal are fed into our model as the input and desired output, respectively. 

The proposed neural network is based on the autoencoder CNN (AECNN) by Pandey and 

Wang [37]. AECNN is a fully convolutional network composed of a series of encoder and 

decoder blocks, with skip connections to better reconstruct encoder outputs. Parametric 

rectified linear units (PReLUs) are used to each layer, except for the last layer which is 

linear. Dropout is employed every three layers, as illustrated in Fig. 1. our CNN takes 

as the input upsampled segments, each having 2048 samples and with a 50% overlap 

between consecutive frames, and outputs the corresponding segment HR estimates. The 

network is trained with raw waveforms and minimizes a loss derived from STFT. One 

change we introduce to AECNN is to decoding blocks, where we replace transposed 

convolution layers with subpixel layers. A subpixel layer, proposed by Shi et al. [44], is 

an upscaling layer implemented by convolution operations. It has been reported in [34] that 

using transposed convolution for upsampling layers can lead to artifacts in the outputs of 

image SR, often referred to as checkerboard artifacts. By applying subpixel layers these 

artifacts are alleviated for image SR. We observe that employing subpixel layers accelerates 

the training progress and slightly improves speech SR results. Note that subpixel layers are 

also used in AudioUNet in upsampling blocks [22].

Our model is optimized with a cross-domain loss. For a real valued signal s of length 

N in the time domain, the discrete Fourier transform (DFT) amounts to multiplying by a 

complex-valued matrix D,

S = Ds (2)

where D is a N × N matrix, and S is the DFT of s. We express the complex formula in (2) in 

real and imaginary parts. Extracting the real and imaginary part from matrix D, we obtain Dr 

and Di, respectively. Equation (2) can be expressed as:

Sr = Drs (3)

Si = Dis (4)

where Sr and Si represent the real and imaginary part of the DFT in real values. Then S = (Dr 

+ iDi)s = Sr + iSi, and i denotes the imaginary unit. The DFT magnitude can be expressed as 

Smag = Sr
2 + Si

2.
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The first loss explored is a frequency-domain loss defined as the mean absolute error (MAE) 

between two STFT magnitudes,

LF S, S = 1
M

1
K ∑

m = 1

M
∑

k = 1

K
Smag m, k − Smag m, k (5)

Here Ŝ, S denote the STFT of SR and HR segments, respectively, and m, k index time and 

frequency, respectively. This loss is denoted as LF.

LF only optimizes STFT magnitudes and the phase estimation of SR signal is ignored. LF 

does not perform well on time-domain metrics such as SNR and generates an unwanted 

artifact in reconstructed speech. To address the phase estimation, we investigate three other 

loss functions. The first one adds a term that measures real and imaginary parts of STFT, 

denoted as LRI-MAG:

LRI − MAG S, S = LF + LRI (6)

LRI S, S = 1
M

1
K ∑

m = 1

M
∑

k = 1

K
Sr m, k − Sr m, k + Si m, k − Si m, k (7)

The second one incorporates a phase constraint to combine a time-domain loss with a 

frequency-domain loss, and uses time-domain estimation to compensate for phase,

LTF = αLT + 1 − α LF (8)

LT s, s = 1
N ∑

n = 1

N
s n − s n (9)

where s , s are the time-domain SR and HR signals of length N, respectively. We use a 

coefficient α to combine two loss terms LT and LF. This loss is called time-frequency loss 

LTF, and the value of α is set to 0.85 to balance the magnitude difference between frequency 

and time losses [50].

LTF and LRI-MAG improve SNR scores and alleviate artifacts phenomenon; however, 

the artifacts are not completely removed by either of them. The third loss function we 

investigate is inspired by a recent study of similar artifacts in speech enhancement [38], for 

which we take the STFT magnitudes of both SR signals and residual signals into account. 

The residual signal, denoted as sre, is obtained by subtracting an upsampled signal (denoted 

as sup) from its corresponding HR signal. In the frequency domain, we have the following 

relationship,

Sℎr = Sup + Sre (10)

Wang and Wang Page 5

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where Sup is a spectral vector in the complex domain. If we only optimize the magnitude 

of Shr, there can be infinite candidates of Shr that satisfy Equation (10). If we optimize 

the magnitudes of Sre and Shr simultaneously, the infinite number of candidates for Shr is 

reduced to two due to a triangular magnitude relation (see [38]). Therefore, optimizing both 

residual and SR signals imposes a phase constraint on CNN optimization.

LPCM S, S, Sup = LF S, S + LF S − Sup, S − Sup (11)

This loss function is denoted as PCM (phase constrained magnitude) [38]. LPCM takes the 

STFT of upsampled signal Sup as an additional input, and is composed of two frequency loss 

functions for speech and its corresponding residual. LPCM can effectively remove unwanted 

artifacts. Worth noting are previous studies showing that it is simpler for DNN optimization 

with residual terms added [18], [45].

The SNR performance of LPCM is improved compared with LF, but still not optimal 

compared with LTF. To improve time-domain performance, we introduce LT,

LT − PCM s, s, S, S, Sup = βLT s, s + 1 − β LPCM (12)

This loss is denoted as T-PCM, and we use a coefficient β, set to 0.6 in this study, to 

combine loss terms from the two domains.

Fig. 2 illustrates the calculation of LT-PCM on a segment of 2048 samples, which 

corresponds to a 128 ms long segment for 16 kHz sampling frequency. We apply the overlap 

and add (OLA) method when calculating the loss within each segment, because segments of 

128 ms are too long to satisfy the stationarity assumption for short-time signal processing. 

For frequency-domain loss calculation, we take into consideration both signal and residual 

segments. Framed segments are first divided into frames of 512 samples with a frame shift 

of 256 samples, corresponding to an analysis window of 32 ms with a 50% frame overlap. 

Then we multiply these frames with a Hamming window. The STFT magnitudes for both 

signals and residuals are calculated on windowed frames to define the magnitude loss. For 

the time-domain loss calculation, we calculate the MAE for framed SR segments and HR 

segments. Loss terms from both domains are added to define the T-PCM loss.

IV. EVALUATION AND COMPARISON

A. Experimental Setup

We evaluate our model on two datasets, TIMIT [12] and VCTK [48]. TIMIT is a standard 

corpus containing speech recordings from 630 speakers with a 16 kHz sampling rate. From 

the training part of the corpus, we choose 4620 utterances as the training dataset, and 

1153 utterances as the validation set. We select a subset of the TIMIT core test set for 

test purposes, which consists of 192 utterances from 24 speakers that are not included in 

the training and validation datasets, thus enabling us to assess the generalization ability to 

untrained speakers. The VCTK corpus contains 44 hours of speech recordings from 108 

speakers with a 48 kHz sampling rate. For a fair comparison, we follow the task design of 
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[22] and [25]. The first task uses speech data of one specific speaker (speaker p225). The 

other task is multi-speaker, for which we train and test using the whole corpus. Following 

the description in [25], we split the data to 88%, 6%, and 6% for training, validation and 

testing purposes. We also make sure that there is no speaker overlap between training, 

validation and testing for the multi-speaker task. LR signals are obtained by first applying a 

Chebynov type I low-pass filter and then subsampling. A silence filter that discards samples 

below an energy threshold of 0.05 is performed to stabilize training and ensure faster 

convergence.

For preprocessing, all the utterances are first resampled to a 16 kHz sampling rate if their 

original sampling rate is higher than 16 kHz. Then each utterance is normalized to zero 

mean and unit variance. Note this is different from our preliminary version [50], where 

we apply a uniform normalization (rescaling each utterance to the range −1.0 to 1.0). We 

observe that mean and variance normalization (MVN) improves cross-corpus generalization. 

We divide each utterance into frames of 2048 samples (128 ms), and with an overlap of 

1024 samples between consecutive frames. LR inputs are upsampled using cubic spline 

interpolation so that input and desired output signals for our CNN have the same length. 

During the reconstruction stage, we combine consecutive frames using the OLA method.

We evaluate the SR performance with three objective metrics: SNR, LSD, and PESQ for 

wideband speech [5]. SNR is a time-domain metric, defined as,

SNR s, s = 10log10
∑n = 1

N s n 2

∑n = 1
N s n − s n 2 (13)

LSD, a frequency-domain metric, measures the logarithmic distance between two magnitude 

spectra in dB.

LSD S, S = 1
M ∑

m = 1

M 1
K ∑

k = 1

K
[log10

Smag m, k 2

Smag m, k 2 ]
2

(14)

When the two spectra are the same, LSD will be 0 dB, the smallest possible distance. Given 

a reference and a degraded audio signal, PESQ for wideband speech is a standard metric 

of perceptual speech quality with a value range from 1.04 to 4.64. Higher PESQ indicates 

better listening quality.

B. Comparison Models

We compare with four other deep SR models described in Section II. The first baseline is 

the spectral domain model by Li and Lee [23], referred to as DNN-BWE. This model takes 

9 frames (4 preceding and 4 succeeding) as the input and predicts the current STFT frame. 

We follow the implementation details in the original work, which uses 256-sample frames 

with a frame shift of 128 samples, and a 4-layer DNN with 2048 hidden units for training. 

The second baseline is by Abel and Fingscheidt (denoted as DNN-Cepstral) [1], [2], and 

we follow the original description by using a 256-sample frame length and a 128-sample 
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frame shift for narrowband speech. Their DNN has 3 hidden layers with 256 units in each. 

The third comparison model is the waveform-based model proposed by Kuleshov et al. [22], 

denoted as AudioUNet. Following their default setting in the publicly available code1, we 

set the number of filters in the encoding layers to 128, 256, 512, and 512, and the filter 

size to 65, 33, 17, and 9. The setting for decoder layers is similar except for the reverse 

order and doubled filter size. AudioUNet operates on 2048-sample segments, with a 50% 

overlap between consecutive segments. The last baseline is TFNet by Lim et al. [25], which 

consists of two AudioUNets. But for both branches, the number of filters is halved to reduce 

parameters. To be consistent with the settings in their paper, a frame size of 8192 samples 

with a 75% overlap is employed for the network input.

For our proposed network, the kernel size is set to 11 for all convolutional layers. The 

number of channels for each encoding layer is set to 64, 64, 64, 128, 128, 128, 256, 

256, and 256, and the decoding layers have the same numbers except in the reverse order. 

Our network is trained with a mini-batch size of 32 for 100 epochs, and optimized with 

the T-PCM loss. Dropout ratio is set to 0.2 for dropout layers. The Adam optimizer [20] 

with a learning rate of 0.0003 is used for stochastic gradient descent based optimization. 

The learning rate is halved if the loss has not improved for 3 consecutive epochs on the 

validation set. We add an early stopping criterion such that the training process stops if the 

validation loss has not improved for 6 successive epochs. For other deep SR baselines, the 

training setup follows their original descriptions.

C. Results and Comparisons

Table I presents the results of our proposed CNN, as well as the other baselines, on 

the TIMIT dataset which is downsampled to 8 kHz to create LR signals. The first row 

corresponds to the objective scores by applying cubic spline interpolation, which is a 

conventional signal processing baseline and outputs limited but stable improvement for SR. 

Our model improves over the cubic spline method by 4.7 dB in terms of SNR, and cuts LSD 

by 68.3%. PESQ is improved by nearly 1.1, which is a large improvement for speech quality. 

Compared with the other four deep learning baselines, we see consistent improvement over 

all three metrics. Specifically, compared with the best-performing baseline of TFNet, our 

model improves SNR by around 1.3 dB, LSD by 17.2%, and PESQ by 0.5. Also our model 

slightly improves over the AECNN baseline in terms of SNR and PESQ.

The VCTK results are reported in Table II. The ratio R is the downsampling factor, where 

R = 2 implies upsampling from 8 kHz to 16 kHz, and R = 4 represents upsampling from 

4 kHz to 16 kHz. VCTKS represents the single-speaker task, and VCTKM represents the 

multi-speaker task. As shown in Table II, our model shows superior performance for both 

downsampling factors. For R = 2, compared with the spline baseline, our model improves 

SNR by over 3.0 dB, and cuts LSD to below 1.0 for both tasks. We also see a consistent 

improvement in PESQ. For R = 4, we observe similar improvements for all three metrics 

over the spline method. For instance, for the multi-speaker task, we see SNR boosted 

by around 4.7 dB, LSD cut to below 1.0, and PESQ increased by 0.5. Our model also 

consistently improves over other deep SR baselines. Compared with the strongest baseline of 

TFNet, our proposed model yields better SNR, LSD and PESQ scores for both tasks under 
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the two downsampling factors. For the multispeaker task under R = 2, for example, SNR is 

improved by around 2.2 dB, LSD by 11.1%, and PESQ by around 0.2.

To examine the advantage of our proposed T-PCM loss function, we compare different 

loss functions on the TIMIT corpus. As shown in Table III, the time-domain losses LMSE 

and LMAE give good SNR values, but not LSD performance. By introducing spectral loss 

terms (LF, LRI, LRI-MAG, LTF, LPCM and LT-PCM), the PESQ values increase, indicating that 

spectral loss leads to better speech quality. Although LF and LRI have good LSD scores, very 

low SNR scores are observed. Although LRI manifests both phase and magnitude, the real 

and imaginary parts are related as the cosine and sine, respectively, of the phase multiplied 

by the magnitude [52]. By including a magnitude term, LRI-MAG is found to improve 

both phase and magnitude estimation over LRI. Additionally, due to poor phase estimation, 

for LF and LRI we observe unwanted artifacts in reconstructed speech for certain signals 

obtained by decimating downsampling (see Section V-B). The LTF and LRI-MAG losses show 

balanced performance in terms of SNR, LSD, and PESQ, and artifacts are alleviated but still 

exist. For LPCM and LT-PCM, we do not hear the artifact in reconstructed speech.

Table IV compares the numbers of trainable parameters of our proposed model and the other 

baselines, which show that our model achieves strong performance with a relatively small 

number of parameters. Fig. 3 illustrates the output of our SR model on a sample TIMIT 

utterance ( “In wage negotiations, the industry bargains as a unit with a single union”). 

Comparing the spectrograms we can observe that missing high-frequency components in the 

LR spectrogram are recovered well by our model.

V. ON ROBUSTNESS

Although recent SR studies show promising performance under matched experimental 

settings, whether models trained on one corpus can be generalized to other corpora and 

whether different downsampling schemes affect the robustness of the model are yet to be 

investigated. Real-world applications often require SR models to be insensitive to such 

factors. This section examines the important issue of robustness.

A. Corpus Channels

A speech corpus typically contains speech signals recorded in a fixed environment. Taking 

TIMIT for example, all recordings are collected in the same anechoic room with a single 

microphone. Although this setting guarantees a uniform quality, it likely introduces signal 

characteristics unique to the specific experimental setting, impeding the generalizability of 

the trained models on one corpus. The recording characteristic of a corpus is referred to as 

corpus channel [39]. To validate this analysis, we randomly choose two microphone impulse 

response (MIR) functions from Vintage Mics2, and convolve them with TIMIT utterances. 

As shown in Fig. 4, the energy distributions over frequency are distinct for the same 

utterance when convolved with different MIRs. Table V further illustrates channel effects, 

where our model trained with original TIMIT utterances shows degraded performance when 

tested on utterances convolved with the two MIRs. The last row is the average result of 

testing separately on utterances convolved with 20 randomly picked MIRs.
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To systematically investigate channel effects, we conduct cross-corpus experiments on 

four different databases using the deep SR models evaluated in the previous section. 

Experimental settings and DNN architectures are as described in Section IV-A and IV-B. 

The four datasets are TIMIT [12], Wall Street Journal (WSJ) [40], LIBRIspeech [36], 

and IEEE [19]. For the WSJ corpus, speakers read Wall Street Journal articles plus 

spontaneous dictations. Two sets of microphones are utilized for the recordings: a close­

talking Sennheiser HMD414 and a secondary microphone which may vary. WSJ recordings 

are sampled at a 16 kHz sampling rate, and contain a small amount of background noise. 

For our experiments, we use 12736 utterances from 100 speakers to train, 1206 utterances 

from 10 speakers to validate, and 651 utterances from 8 speakers to test. LibriSpeech 

consists of 1000 hours of 16 kHz English speech recordings, which are derived from reading 

audiobooks in the LibriVox project. The recordings are collected from volunteers across 

the world, so LibriSpeech has various recording environments and thus contains diverse 

channels. In this paper, the LibriClean subset (denoted as LIBRI) of the LibriSpeech corpus 

is chosen for our experiments. From the LIBRI corpus, we select 28539 utterances for 

training, 2703 utterances for validation and 2620 utterances for testing, with no speaker 

overlap. IEEE contains 720 phonetically balanced English sentences uttered by a male 

speaker with a sampling frequency of 25 kHz. We randomly select 576 utterances for 

training, 72 utterances for validation and the remaining 72 utterances are reserved for testing 

purposes. For all datasets, utterances are first resampled to 16 kHz, and LR signals are 

generated at 8 kHz by applying the subsampling scheme.

Table VI summarizes the results of cross-corpus SR experiments. Each row represents one 

model trained on a particular dataset and tested on all four datasets. Each column shows 

the results on a specific dataset. As shown in the table, our model outperforms all the other 

baselines for all four datasets. As expected, the best performance is observed when training 

and testing are done on the same corpus. We observe that the generalization ability of each 

model differs with training dataset, and the models trained with datasets that contain diverse 

channels are more robust when testing on untrained corpora. Specifically, training with WSJ 

or LIBRI shows comparable objective scores when tested on untrained corpora. Training 

with IEEE or TIMIT, however, shows poor performance on untrained corpus channels. This 

observation is more obvious for AudiouNet, TFNet and the proposed network. For the 

spectral-domain models of DNN-BWE and DNN-Cepstral, the generalization advantage of 

WSJ and LIBRI mainly manifests in LsD and pEsQ. These models perform relatively poorly 

for the time-domain metrics of SNR, likely because they focus on magnitude optimization. 

In addition, we expect that training on multiple corpora should enhance robustness to the 

trained corpora. To verify this, we train our model by randomly selecting 10000 utterances 

from the training sets of the four datasets (TIMIT, WSJ, LIBRI and IEEE), and then test on 

their test sets. The results are given in the last row of Table VI, and show that this strategy 

yields good performance for all four datasets.

We remark that the size of the corpus does not seem to be a key factor for generalization. 

Although IEEE has only about a sixth of the utterances of the TIMIT dataset, the models 

trained on TIMIT do not display better generalization. Especially time-domain models 

(AudioUNet, TFNet, Proposed) trained with TIMIT perform even worse than trained with 

IEEE on untrained corpora. Another remark is that the models trained with WSJ and LIBRI 
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have comparable robustness even though LIBRI contains more microphone channels. This 

may result from the fact that WsJ contains more background noise, which is another factor 

that affects cross-corpus generalization.

B. Downsampling Schemes

Most of the existing speech SR networks are trained with simulated datasets, where LR/HR 

pairs are generated by applying a specific downsampling scheme. In the real world, however, 

the pre-assumed downsampling scheme may not match the LR/HR relationship. Our 

experiments indicate DNN-based models are sensitive to different downsampling schemes, 

and this affects the generalization capability of supervised SR models.

We divide downsampling schemes into three categories. The first one is referred to as 

subsampling, which is the default setting of the MATLAB [30] downsample function. 

Subsampling decreases the sampling rate by discarding samples at fixed intervals. The 

second category is decimating, where one first applies a low-pass filter and then subsamples 

to acquire the desired LR signal. This is the default setting for the MATLAB decimate, 

resample functions and the SciPy [49] decimate function. The first two methods operate in 

the time domain, and the third category named FFT operates in the frequency domain. The 

FFT scheme transforms an HR signal to the Fourier domain, leaves out high-frequency parts 

above the cutoff frequency, and then transforms back to obtain the corresponding LR signal. 

This is the default setting of the resample function in SciPy.

Table VII provides a comparison of the three categories of downsampling schemes on 

TIMIT using the proposed model. In the first three rows, we use the model trained with one 

specific downsampling scheme to test on data obtained by all three downsampling schemes. 

we observe that the decimating scheme performs the worst when tested on untrained 

schemes, with a drastic drop in objective scores (even negative SNR values). Although we 

see a degradation for subsampling and FFT, the drop is not nearly as severe as decimating.

Subsampling is simple and efficient among the three schemes. However, according to the 

sampling theorem of Shannon [43], this method introduces an unwanted artifact (referred 

to as aliasing) during the downsampling process as there are components with frequencies 

higher than the Nyquist frequency. Decimating solves this problem by first applying a 

low-pass filter. By default decimating uses chebyshev Type I infinite impulse response filter 

of order 8 as the anti-aliasing filter in both MATLAB and SciPy package. We investigate 

two other low-pass filters (Butterworth and Bessel) for decimating. Experiments show 

that SR performance is highly affected by the type of low-pass filters. This indicates the 

models learned using decimating schemes carry unwanted characteristics of specific filters, 

which limit their application to realistic signals. The FFT method also avoids the aliasing 

phenomenon, and is a better choice for generalization purposes since it does not involve any 

filter. However, the computational expense is higher than the other two schemes.

It is important to develop a model that is robust against downsampling schemes. To achieve 

this, we introduce a random downsampling strategy: for each HR signal, the corresponding 

LR signal is generated by randomly picking one downsampling scheme from the three 

categories. By doing so, we make sure that models learn the essential features for SR, not 
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the acoustic properties of specific downsampling techniques. The last row in Table VII 

provides the results when training with random downsampling. The results demonstrate that 

the model trained in this way is capable of producing satisfactory SR performance regardless 

of how LR signals are generated.

VI. CONCLUDING REMARKS

In this paper, we propose a novel CNN model for speech super-resolution that combines 

the strengths of both time and frequency domain approaches. The proposed CNN operates 

on time-domain signals, but is optimized using a cross-domain loss. Different loss functions 

have been investigated, and evaluation results show that the proposed T-PCM loss leads 

to better performance and avoids annoying artifacts in reconstructed speech. Experimental 

results on various datasets have demonstrated that our model significantly outperforms other 

DNN methods. Furthermore, our model is computationally efficient with a relatively small 

number of parameters. Also, as the proposed CNN model operates frame by frame, using no 

future (or past) information, it is a causal system.

We have also examined the robustness for deep learning based SR models. Specifically, 

we have investigated the effects of corpus channels and downsampling schemes. We 

have demonstrated that training with datasets that contain diverse channels and a random 

downsampling strategy improves model robustness. For future work, we plan to study how 

to improve the robustness of SR models to other factors such as background noise and room 

reverberation.
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Fig. 1. 
Illustration of the super-resolution pipeline and our AECNN network structure.
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Fig. 2. 
Schematic diagram showing the process of calculating the T-PCM loss. L denotes the 

number of 2048-sample frames, and M represents the number of 512-sample frames.
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Fig. 3. 
Spectrograms of SR results: (a). LR input, (b). Ground truth HR signal and (c). 

Reconstructed SR signal.
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Fig. 4. 
Spectrograms of an utterance convolved with two different MIRs, together with energy 

distributions along frequency.
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TABLE I

EXPERIMENTAL RESULTS FOR SR MODELS EVALUATED ON TIMIT

SNR LSD PESQ

Spline 15.48 2.27 2.56

DNN-BWE 17.05 1.05 2.78

DNN-Cepstral 16.27 0.97 2.79

AudioUNet 18.59 0.89 2.94

TFNet 18.91 0.87 3.12

AECNN 19.63 0.72 3.59

Proposed 20.18 0.72 3.65
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TABLE II

EXPERIMENTAL RESULTS FOR SR MODELS EVALUATED ON VCTK WITH DOWNSAMPLING FACTOR OF 2 AND 4

VCTKS VCTKM

Model R SNR LSD PESQ SNR LSD PESQ

Spline 2 19.07 1.99 3.84 18.89 2.08 3.53

DNN-BWE 2 19.04 1.40 3.85 18.80 1.38 3.56

DNN-Cepstral 2 19.89 1.25 3.85 19.09 1.34 3.59

AudioUNet 2 20.82 1.36 3.90 19.94 1.32 3.68

TFNet 2 21.11 1.24 3.91 19.84 0.99 3.72

Proposed 2 22.44 0.94 4.17 22.08 0.88 3.91

Spline 4 15.33 3.13 3.07 13.42 2.99 3.13

DNN-BWE 4 15.30 1.47 3.27 13.53 1.38 3.24

DNN-Cepstral 4 15.47 1.44 3.28 13.87 1.36 3.25

AudioUNet 4 17.29 1.41 3.40 16.65 1.40 3.39

TFNet 4 18.35 1.33 3.49 17.32 1.22 3.48

Proposed 4 18.86 0.94 3.51 18.13 0.95 3.64
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TABLE III

COMPARISON OF VARIOUS LOSS FUNCTIONS ON THE TIMIT DATASET

Loss SNR LSD PESQ

MAE 20.05 0.94 3.22

MSE 19.98 0.89 3.23

F 10.88 0.72 3.57

RI 5.48 0.72 3.54

TF 20.27 0.76 3.54

RI-MAG 18.34 0.72 3.51

PCM 15.88 0.71 3.63

T-PCM 20.18 0.72 3.65
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TABLE IV

NUMBER OF TRAINABLE PARAMETERS FOR DIFFERENT SR MODELS, WHERE M INDICATES MILLION

Number of Parameters

DNN-BWE 11.2 M

DNN-Cepstral 0.25 M

AudioUNet 70.9 M

TFNet 58.8 M

Proposed 10.2 M

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2022 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang and Wang Page 24

TABLE V

MODEL TRAINED ON ORIGINAL TIMIT UTTERANCES TESTED ON DATA CONVOLVED WITH DIFFERENT MIRs

Model SNR LSD PESQ

Spline 15.48 2.27 2.56

Original 20.18 0.72 3.65

Test on MIR1 12.53 1.38 2.41

Test on MIR2 13.75 0.87 2.99

Average of 20 MIRs 14.76 1.01 2.82
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