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Abstract

Two thousand nineteen novel coronavirus SARS-CoV-2, the pathogen of COVID-19, has caused a catastrophic pandemic,
which has a profound and widespread impact on human lives and social economy globally. However, the molecular
perturbations induced by the SARS-CoV-2 infection remain unknown. In this paper, from the perspective of omnigenic, we
analyze the properties of the neighborhood perturbed by SARS-CoV-2 in the human interactome and disclose the peripheral
and core regions of virus-host network (VHN). We find that the virus-host proteins (VHPs) form a significantly connected
VHN, among which highly perturbed proteins aggregate into an observable core region. The non-core region of VHN forms a
large scale but relatively low perturbed periphery. We further validate that the periphery is non-negligible and conducive to
identifying comorbidities and detecting drug repurposing candidates for COVID-19. We particularly put forward a flower
model for COVID-19, SARS and H1N1 based on their peripheral regions, and the flower model shows more correlations
between COVID-19 and other two similar diseases in common functional pathways and candidate drugs. Overall, our
periphery-core pattern can not only offer insights into interconnectivity of SARS-CoV-2 VHPs but also facilitate the research
on therapeutic drugs.
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Introduction

The pandemic of COVID-19 is an acute respiratory infection
caused by the 2019 novel coronavirus SARS-CoV-2 [1], and
human-to-human transmission of the virus has been confirmed
[2]. As of 20 January 2021, more than 96 million COVID-19 cases
have been confirmed globally with more than 2 million deaths.
But to people’s great disappointment, there are still no effective

medications for COVID-19. As a consequence of it, COVID-
19 has posed an unprecedented threat to all people around
the world. Therefore, the pressing situation entails systematic
understanding of the molecular interaction mechanism of the
disease, so as to provide scientific strategies for developing
effective vaccines and therapeutic drugs.

In a molecular interactions network (human interactome),
nodes are genes and edges are built on observational inference of
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their interactions responsible for specific cellular functions [3].
A disease perturbed gene represents a node, whose perturbation
(mutations, deletions, copy number variations or expression
changes) can be linked to a particular disease phenotype [4].
Accordingly, the degree of its perturbation can be quantified
by frequency or fold change indexes. A disease is caused by
the interplay of multiple molecular processes rather than by an
abnormality in a single gene. Hence, it is of great significance
to study molecular mechanism of the disease in the context
of human interactome, a comprehensive map of all biologically
relevant molecular interactions. According to the disease mod-
ule hypothesis [4], a disease represents a local perturbation of
the underlying disease-associated subgraph. Such perturbations
could represent the removal of more proteins (e.g. by nonsense
mutations), the disruption or modifications in the strength of
their interactions, producing recognizable developmental and/or
physiological abnormalities. Driven by high-throughput interac-
tome mapping efforts [3] and the wealth of genome-wide genetic
association data [5], the emerging tools of network medicine
provide a platform for systematically exploring the molecular
complexity for specific diseases [4, 6-9]. The aggregation of
disease proteins has been supported by a range of biological and
empirical evidence [10, 11] and has promoted the development of
many tools to identify disease modules [12-14]. Disease module
plays a vital role in uncovering the molecular mechanism of
disease causation, identifying new disease comorbidity [15] and
aiding rational drug target identification [16, 17].

In addition, some scholars have recently advanced an entirely
new view of diseases from polygenic to omnigenic [18, 19]. Boyle
et al. [18] observed that disease-causing variants do not cluster
into local subnetworks (mesoscale disease module) that drive
disease etiology, but association signals tend to be spread across
most of genes (macroscale disease neighborhood). The contri-
bution of genes to diseases can be divided into the direct role of
core genes and the indirect role of peripheral genes [20]. Boyle
et al. proposed that gene regulatory networks are so sufficiently
interconnected that all genes expressed in disease-relevant cells
are liable to affect the functions of disease-related core genes.
And the most heritability can be explained by effects on genes
outside core pathways. They referred to this hypothesis as an
‘omnigenic’ model [18]. The key questions and tests suggested
by this model are: How should core genes be defined? How
many distinct periphery genes would contribute to core genes?
Can we infer the effects of peripheral genes from their relation
to core genes? Recently, some instructive methods have been
developed to define and identify core genes based on genetic and
topological properties [19, 21-23].

Wang et al. [24] tried to infer the effects of peripheral
genes from their relation to core genes and introduced a
seminal framework, which can detect peripheral and core
regions of a disease based on the local maxima of connectivity
significance between the deferentially expressed genes in the
human interactome. They have provided evidence that core
genes are more enriched for Genome-wide association study
(GWAS) data [5] and Online Mendelian Inheritance in Man
(OMIM) data [25], while periphery shows relationship between
diseases through their overlapped regions. Core region typically
consists of genes specific for the underlying disease. Even for
a pair of similar diseases, the size of overlap between their
cores is not significantly large (compared 1000 randomized
subnetworks). They attempted to make an assumption that the
similar molecular mechanism of similar diseases lies in their
common peripheries. The overlapped periphery is helpful in
identifying the molecular mechanism of disease causation, new
comorbidity and aiding rational drug target. They have proposed

a novel flower model to explain the organization of genes, with
(specific) petals representing core of different diseases and the
(shared) stem representing the periphery. Overall, the framework
is able to demonstrate the hypothesis proposed by Boyle et al.
[18] and might help address numerous problems with respect
to disease gene identification, drug repositioning, and provide
an insight into a general understanding of human complex
diseases.

As for COVID-19, there have been some studies on drug
repurposing based on these network medicine platforms. Zhou
et al. [26] presented an integrative, antiviral drug repurposing
methodology. Employing a systematic pharmacology-based net-
work medicine platform, they quantified the interplay between
the virus-host proteins (VHPs) and drug targets in the human
protein-protein interaction network [26]. Gysi et al. [27] used
332 COVID-19 proteins from David et al. [28] as disease mod-
ule. They predicted the drug candidates for the treatment by
defining the location of the disease module within the human
interactome [27]. They summarized the result of strategies based
on network proximity, network diffusion and artificial intel-
ligence, thereby to arrive at 81 promising repurposing candi-
dates. But there are still several problems to be solved. The
network proximity and diffusion methods offer low accuracy
of drug prediction (AUC scores about 0.6), which needs to be
further improved. They also found COVID-19 proteins that do
not overlap with disease proteins associated with any major
diseases. This makes it difficult to measure accurately the rela-
tionship between COVID-19 and other diseases. These results
were most likely due to the fact that they only considered
332 highly perturbed proteins (28.6%), whereas there were 1160
human proteins (Saint_BFDR < 0.05, Saint_BFDR is Bayesian False
Discovery Rate reported by SAINTexpress [29]) affected by coro-
navirus SARS-CoV-2. A large amount of information is ignored,
resulting in inadequate prediction of COVID-19 comorbidity and
drugs. Therefore, from the perspective of omnigenic, to explore
peripheral and core regions that govern the underlying pertur-
bation mechanism of COVID-19 is desirable and valuable: (i) can
systematically study the overall perturbation of the virus to the
cell based on more comprehensive information and (ii) as well as
probe the new pattern to improve current comorbidity analysis
and the predictive effect of drug repurposing.

In this paper, we study human proteins which interact with
SARS-CoV-2 viral genes during infection [28] to disclose the
periphery and core regions of COVID-19. Firstly, we identify 934
peripheral proteins and 78 core proteins based on topological
connectivity. The combination of peripheral proteins and core
proteins and their interactions in the human interactome
form the Virus-Host Network (VHN) of COVID-19. And we
find these proteins all have high centrality and VHN and its
core region have significantly high cohesiveness. Furthermore,
VHN and core regions are used to analyze the relationship
between COVID-19 and other diseases. Strong correlations
between COVID-19 and other diseases are found, including SARS,
H1IN1 and cancers, as well as immune system and nervous
system diseases. Subsequently, taking peripheral regions into
consideration, we use a network-based framework to predict
drug targets and offer highest AUC: 0.77. Finally, we use flower
model to show relationships between COVID-19, SARS and
H1N1, and significant related disease genes, drug targets and
functional pathways are detected in their overlapped proteins.
The VHN and core region of COVID-19 help analyze statistically
relevant diseases and improve the accuracy of drug prediction.
In a nutshell, adopting the tools of network science in studying
COVID-19 would provide us with new insights into disease
relationship and novel therapies and drugs.



Results
Peripheral and core regions of VHN

SARS-CoV-2 infects human cells by hijacking the host’s
translation mechanisms to generate viral proteins, which
bind with multiple human proteins to initiate the molecular
processes required for viral replication and additional host
infection [30]. The human interactome (see Materials and
Methods, Table S1 available online at https://github.com/wangbi
ngbo2019/ENCORE-of-COVID-19) includes a variety of known
physical interactions in human cells. The proteins which
interact with SARS-CoV-2 viral genes during infection [28] are
called VHPs, and we map these proteins onto the human
interactome. From the perspective of omnigenic module, we
identify the peripheral and core regions of COVID-19 and
emphasize the important role of the periphery in analyzing
disease relationships and drug repurposing. We select the VHPs
with Saint_BFDR < 0.05 in SAINTexpress [29] (see Materials and
Methods), obtain 1160 VHPs and compute the Largest Connected
Component (LCC) induced by the VHPs. We distinguish between
the peripheral and core regions of COVID-19 based on the local
maxima of connectivity significance between the VHPs (see
Materials and Methods). MIST score [31, 32] is used to measure
the degree of SARS-CoV-2 disturbance to a protein. At different
MIST score cutoffs (see Materials and Methods), we select the
corresponding subsets of VHPs and identify the induced LCC,
which determines the disease neighborhood for the subset of
VHPs. And we compare the size of the LCC with the same number
of random proteins in the human interactome and compute
the LCC’s z-score. We identify two peaks on the least squares
polynomial fitting curve of the z-score values representing
local maxima of VHPs aggregation (see Materials and Methods,
Figure 1A). When MIST score > 0.088, we observe a LCC with size
being 1012 and LCC'’s z-score is 14.87 (first maxima), as the VHN.
We visualize VHN with Cytoscape [33] (Figure 1B). And, when
increasing to a high cutoff MIST score > 0.876, we observe a
highly perturbed LCC with size being 78 and LCC'’s z-score is 10.66
(second maxima), as the core region (Figure 1D). Non-core region
of VHN (with size 1012-78 = 934 proteins) is considered as periph-
eral region. VHN contains two detectable inner regions, which
are the core and peripheral regions. Both regions have significant
connectivity: the core region is characterized by high perturba-
tion and the peripheral region is characterized by large-scale.
David et al. discovered 332 high confidence proteins
(HC_VHPs) interacting with SARS-CoV-2 viral proteins [28].
Among these, they identified 66 druggable human proteins or
host factors targeted by 69 existing FDA-approved drugs and
evaluated for efficacy in live SARS-CoV-2 infection assays. We
find 98.7% (77/78) core proteins belong to the HC_VHPs, showing
that almost all of the core proteins are HC_VHPs with which the
viral proteins bind. In addition, in order to further illustrate the
biological significance of 78 core proteins, we use the following
tests to verification: (i) Drug target enrichment analysis, we
collect 62 of the 66 drug targets found in HC_VHPs by David et al.
[28]; (i) Enrichment analysis of Differential Expression Genes
(DEGs), we obtain 1226 DEGs (Benjamini-Hochberg adjusted P-
value < 0.05) from the work of Mike et al. [34]; (iii) Enrichment
analysis of related diseases, we summarize the DEGs of three
diseases thought to have relation with COVID-19, including
lung cancer [35, 36], cardiomyopathy [37-39] and Parkinson’s
disease [40-42] and (iv) Literature verification. Totally, we find
additional evidence that 65.4% (51/78) proteins are related to
COVID-19 (Table 1, more details in Table S2 available online
at https://github.com/wangbingbo2019/ENCORE-of- COVID-19).
And we observe a LCC (156 connected proteins with z-score 5.85)
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when MIST score > 0.699; compared with LCC (165 connected
proteins with z-score 5.73) of HC_VHPs, the Jaccard coefficient
is 0.91 (Figure 1C). This means that the LCC of HC_VHPs has
significantly high connectivity, but it is not the local maxima
of LCC’s z-score curve; instead, it corresponds to an obvious
local minima. Therefore, we believe that the core region with
the most significant connectivity should not be defined by
the HC_VHPs. For the peripheral region with large scale, it
not only contains more virus host proteins but also forms
a significantly connected network area with non-negligible
information. Next, we investigate whether different regions have
different topological characteristics or play quite different roles
in comorbidity and drug repurposing.

Topological characteristics of VHN and core regions

Here, to better understand the interaction patterns of core and
peripheral regions, we use human interactome (see Materials
and Methods) as a background network to analyze the basic
topological properties of the VHPs. We factored into Degree,
betweenness [43, 44], closeness [44] and clustering coefficient
[45]. Compared with other proteins in the network, both 78
core proteins and 1012 VHN proteins have a significantly high
centrality (Wilcoxon rank-sum test P-value <1.0e—16, Figure 2A).
This indicates that VHPs tend to be the hub nodes in the net-
work; viruses tend to influence the network hubs to expand their
influence on the whole system. The only exception is that the
clustering coefficient of 78 core proteins is not significantly high,
showing that the 78 core proteins do not tend to participate in
the locally triple structure (Figure 2A). In short, viruses have a
tendency to infect the hub proteins in the network to quickly
affect the entire system.

In addition, since VHPs have a significantly high centrality
(Figure 2A), we wonder whether they tend to form inwardly com-
pact module. Respectively, we compare internal and external
connectivity indexes (see Materials and Methods) of 1012 VHN
proteins and 78 core proteins with 1000 randomly connected
components (as randomized counterparts, see Materials and
Methods), and calculate the significance based on z-score. For
VHN (Figure 2B), internal connectivity is significantly high (z-
scores >25), and the significance of external connectivity is
correspondingly low (z-scores are about 9). For core, internal
connectivity is slightly high (z-scores are about 1), while external
connectivity is slightly low (z-scores are about —0.9, Figure 2B),
suggesting that the internal and external connectivity of core are
broadly in line with randomized counterparts. Then, we combine
internal and external connectivity for in-depth analysis. Con-
ductance or cohesiveness accordingly measure the fraction of
total external or internal edge volume of the node set (see Mate-
rials and Methods). The entire VHN is highly aggregated with
significantly different conductance (z-score <-25) and cohe-
siveness (z-score > 25) with randomized counterparts. But the
absolute value of z-scores of core is reduced from 25 to about
4, indicating that core occupies more external but less internal
interactions in VHN. As a conclusion, we get an aggregated VHN,
in which signals gather. In the VHN, core extends and tends
to receive signals from the peripheral region. Highly perturbed
core not only interacts internally, but also tends to interact with
the wider peripheral region, validating the necessity of paying
attention to external effect.

Comorbidity of COVID-19 based on VHN

Most COVID-19 patients show mild-to-moderate symptoms,
a few are asymptomatic, but some patients with underlying
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Periphery and core properties of SARS-CoV2

From 1160 virus host proteins (Saint_ BFDR<=0.05)
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Figure 1. Peripheral and core regions of VHN. (A) Detection of peripheral and core regions. MIST score indicates the degree of disturbance of the host proteins by the
virus, and the larger the score, the stronger the disturbance. The z-score is calculated from the LCC of the VHPs and the random LCC. Red nodes represent the LCC's
z-scores of the VHPs, MIST score of which is greater than threshold. The ever-increasing MIST threshold corresponds to the process of focusing our attention from
the whole VHPs to its high disturbance area. This curve shows a bimodal trend, a significant connected component of a large number of proteins appearing at a low
disturbance threshold, and then z-scores significantly drop to a trough, and then a significant connected local maximum appears at a high disturbance threshold.
The first maximum value indicates VHN (green bar), and the second maximum value indicates a detectable core area (black bar). The gray bar corresponds to local
minimum. (B) VHN is a connected graph formed by 1012 proteins, with green nodes representing proteins. (C) The LCC (156 gray nodes) with local minima LCC’s z-score
which is highly consistent with the LCC of 332 highly confidence proteins. (D) The peripheral proteins (green) and core proteins (black) of VHN. The interactions between
core proteins are highlighted by orange.

diseases develop severe pneumonia and even severe comorbidi- will greatly promote the prevention and treatment of COVID-19.
ties. Analyzing the relationship between COVID-19 and other First, we identify the disease modules of 72 well curated
diseases will be of great importance in offering insights into the diseases (see Materials and Methods). Second, we check the
mechanism of the disease. And combination of basic research on overlap between the disease modules with COVID-19. Then,

the disease with actual diagnostic detection and drug treatment we define the similarity simss between diseases based on the



Table 1. Disease biology of 78 core proteins
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Protein Disease bBiology Protein Disease biology Protein Disease biology
VPS11 O PPIL3 NUP214 *0O
ATP6AP1 *O G3BP2 AP3B1

UBAP2 O MIB1 A0 ARF6

IMPDH2 * PKP2 O MIPOL1

RIPK1 *x0 RAB7A O SCCPDH

MYCBP2 oo PLEKHAS O AKAP9 O
MARK1 A RAB1A O G3BP1 O
MARK3 *0 RAB2A Ooald GOLGA7 O
CwcC27 GOLGA2 O CEP250 *0O
ERC1 O GOLGA3 O PRIM1

PDZD11 GOLGB1 O PRIM2

PSMD8 RAB5C PDE4DIP O
NUP62 * STOML2 O PRKACA *
ZNF318 O P4HA2 CEP135

NUPL1 *A UsP13 O NINL

POLA2 ] RAE1 *U PRKAR2A

CHMP2A O TAPT1 PRKAR2B AO
RAB8SA ] PMPCB O INTS4

NUP54 *A VPS39 O CDKSRAP2

CEP68 PTBP2 A0 RNF41

RAB10 A POLA1 O MARK2 *0
AP2M1 O NUP88 *U USP54 O
AP2A2 O NUP98 * A0 NUTF2

PMPCA TRMT1 O RBM41

SUN2 A0 SLU7 PCNT O
GORASP1 *0 THTPA A0 NIN O

%: Drug target; O: DEGs of COVID-19; A: Genes for diseases associated with COVID-19; [J: Literature verification.
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Figure 2. Topological characteristics of VHN and core region. (A) The comparison of degree, betweenness, closeness and clustering coefficient of the VHN proteins
(green), core proteins (dark gray) and all proteins in human interactome (light gray). P-value is given by the Wilcoxon rank-sum test, which is used to quantify the
topological differences between proteins in the core or peripheral regions and all proteins in the human interactome, where * in the figure represents P-value <1.0e—16.
(B) The internal and external connectivity of VHN and core. Measures of internal and external or combine connectivity are shown in the legend.

distance of their location in the network (see Materials and
Methods). The empirical P-value of the size of overlap and
similarity are given by conducting 100 random experiments.
Finally, we sort diseases according to their similarities to
COVID-19 and get the ranking list of comorbidities.

We use two strategies to collect disease modules. On the
one hand, we obtain 70 disease modules constructed in OMIM
and GWAS studies [5, 12, 25]. These disease modules do not

form connected subgraph in the human interactome, so we
employ C3 algorithm [13] (see Materials and Methods) to get 70
connected disease modules. In addition to these 70 diseases,
we are also interested in the relationship between COVID-19
and two highly infectious respiratory diseases, SARS and HIN1.
We get few proteins associated with SARS (only one disease
protein) and HIN1 (no disease protein) from OMIM and GWAS
studies. The number of proteins is too small to be used as
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disease modules to analyze disease relationships. Therefore, on
the other hand, we use gene expression profiling of patients
with SARS [46] and peripheral blood cells expression data form
H1N1 influenza patients [47]. We conduct differential expression
analysis by GEO2R tool [48] with healthy controls and obtain
the corresponding DEGs. Then, we compute LCC’s z-scores of
increasing fold change cutoffs and detect the peripheral and
core regions for SARS and H1IN1 (see Materials and Methods).
The core regions of SARS and HIN1 are used as disease mod-
ule for subsequent disease relationship analysis. In total, we
collect 72 connected disease modules (details in Table S2 avail-
able online at https://github.com/wangbingbo2019/ENCORE-of-
COVID-19) with 2913 disease proteins, including SARS and HIN1
(see Materials and Methods). These disease modules are utilized
to analyze the disease relationship with COVID-19.

We calculate the size of overlap between 72 disease modules
with the VHN and core of COVID-19. Based on core region of
COVID-19, we find only 16 of 72 diseases have overlapped pro-
teins, and the number of overlapped proteins is a maximum of 3
(details in Table S3 available online at https://github.com/wangbi
ngbo2019/ENCORE-of-COVID-19). Most disease modules (77.8%)
have no overlapped proteins with core of COVID-19, and com-
pared with 100 tests between randomly connected components,
z-scores are generally less than O (Figure 3A). This indicates
that there is no trend of sharing disease proteins between the
core of COVID-19 and other disease modules. However, there
are seven disease modules significantly sharing proteins (z-
score > 1) with COVID-19’s core region (details in Table S3 avail-
able online at https://github.com/wangbingbo2019/ENCORE- of-
COVID-19),including cardiac arrhythmia, myeloproliferative dis-
orders, cardiomyopathies, blood platelet disorders, basal ganglia
diseases, liver cirrhosis and Myeloid leukemia. Among the seven
diseases, cardiac arrhythmia shares the most proteins (RAB5C,
PRKACA and AKAP9) with COVID-19 (z-score=3.16). Although
shared proteins are few in number, we do further analysis of
their annotations in GeneCards [49]. For example, diseases asso-
ciated with RAB5C include Argentine hemorrhagic fever, among
its related pathways are metabolism of proteins and innate
immune system. Gene Ontology (GO) annotations related to this
gene include GTP binding and GDP binding. The related diseases,
pathways and GO annotations of these shared proteins uncover
some molecular mechanism of COVID-19. Considering the role
of periphery, we expand the scope from core to the entire VHN
to present the overlapped proteins with other disease modules,
the number has been greatly improved. At most, there are 57
overlapped proteins with the nutritional and metabolic diseases
module, but z-scores (see Materials and Methods) for signifi-
cance are mostly less than 0, even lower than the z-scores of the
core region (Figure 3A). This suggests that there is no tendency
for VHN and disease modules to share disease proteins.

Based on the assumption that similar diseases are closer
to each other in the human interactome, we use the location
of the disease modules in the network to compute their
network-based distances. Based on this, we measure the disease
similarities (see Materials and Methods) between 72 disease
modules and core of COVID-19. In addition, z-scores and
P-values are obtained by comparing with 100 randomly con-
nected components. We show the rank list of diseases by simi-
larities based on core region (details in Table S3 available online
at https://github.com/wangbingbo2019/ENCORE- of-COVID-19).
The top seven diseases are Basal ganglia diseases, SARS, Myeloid
leukemia, Colorectal neoplasms, Motor neuron disease, Psoriasis
and Cardiomyopathies. The result is consistent with existing
research: cancer whose comorbidity in COVID-19 patients is

well documented [S0, 51]. COVID-19 may directly affect the
immune system [52] and nervous system [53]. In addition, the
epidemiological characteristics of COVID-19 are similar to those
of SARS [54].

The analysis of the overlap and distance between core region
of COVID-19 and other disease modules provides a lot of infor-
mation on disease relationship. Furthermore, we expand our
vision to the entire VHN, hoping to gain more information about
the disease relationship. Since there are no statistically larger
(z-scores are mostly less than 0) overlap between VHN and other
disease modules (details in Table S3 available online at https://gi
thub.com/wangbingbo2019/ENCORE-of-COVID-19), we still use
the network-based distance between 72 disease modules and
VHN as a measure of disease similarity. The closest seven dis-
eases are Nutritional and metabolic diseases, SARS, Crohn dis-
ease, Lymphoma, Myeloid leukemia, Type 2 diabetes mellitus
and systemic Lupus erythematosus (Figure 3B, Table S3 avail-
able online at https://github.com/wangbingbo2019/ENCORE-of-
COVID-19). After considering peripheral proteins, the similarity
between SARS and COVID-19 is still high (simap =0.36), rank-
ing second in the list of diseases (details in Table S3 avail-
able online at https://github.com/wangbingbo2019/ENCORE-of-
COVID-19). In addition, comparing the top seven diseases on
similarity diseases list based on VHN with those based on core,
we obtain additional comorbidities of COVID-19, including Crohn
disease, Lymphoma, Type 2 diabetes mellitus and Systemic lupus
erythematosus. The comorbidities of these four diseases with
COVID-19 have been documented [55-58]. Based on VHN to
calculate the similarity between COVID-19 and other diseases,
additional comorbidities of COVID-19 can be found, indicating
that VHN can provide further advantageous information for
predicting comorbidities of COVID-19.The locations of the 72
disease modules and VHN and core region of COVID-19 in the
human interactome enable us to identify similar diseases, whose
molecular mechanisms overlap with SARS-CoV-2 targeted cellu-
lar processes, which allows us to predict potential comorbidities
with COVID-19.

Drug repurposing for COVID-19

The situation is getting grim as COVID-19 is rampant around
the world, and effective drugs and vaccines are in urgent need.
However, the traditional drug development process is too long
to meet the urgent need for COVID-19 treatment; therefore, it
demands the rapid identification of drug-repurposing candi-
dates. The network medicine approach has already offered a
promising framework to accelerate drug discovery [59], helping
us quantify drug-disease relationships [60-62]. Network-based
approaches show that most drugs do not target directly disease
proteins, but perturb the proteins within or in the immediate
vicinity of the corresponding disease module [61, 63]. In order to
predict drugs that can be used in the treatment of COVID-19, we
use a network proximity method, which quantifies the relation-
ship between VHPs and drug targets in the human interactome
(see Materials and Methods).

We obtain 4428 drugs and 2256 targets from the work carried
out by Cheng et al. [64] and map these targets onto the human
interactome, retaining 4380 drugs and 2161 targets (see Mate-
rials and Methods). First, we calculate distance between VHPs
and drug targets for analyzing the relationship between the
COVID-19 and drugs. Then, in order to eliminate bias, we deter-
mine the statistical significance for the observed proximity by
z-score. We construct a reference distance distribution between
a randomly selected group of proteins with matching size and
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Figure 3. Disease relationship. (A) The number of overlapped proteins of core and VHN with other disease modules. Z-scores are given by randomly selecting a set of
proteins of the same size 100 times. (B) The disease relationship is based on periphery. Only the top 30 diseases are shown. The figure represents each disease as a
circle and the disease font size and the thickness of the edge are directly proportional to the similarity values. The smaller the font size and the thinner the edge, the

lower the similarity with COVID-19.

degree distribution as the VHPs and drug targets (see Materials
and Methods). Z-scores are obtained by comparing the observed
proximity to the reference distance distribution. The smaller
the z-score, the closer the distance between the corresponding
targets of these drugs and VHPs, implying that the retained drugs
may be applied to the treatment of COVID-19. In total, we end
up with 4380 drug rankings and their z-scores. To evaluate the
predictive power, we test its ability to recover the drugs currently
in clinical trials for COVID-19 treatment. We use a list of 67
drugs currently undergoing clinical trials from ClinicalTrials.go
v (details in Table S4 available online at https://github.com/wa
ngbingbo2019/ENCORE-of-COVID-19) as a gold standard. Using
drugs rankings, we calculate TPR (True Positive Rate) and FPR
(False Positive Rate) according to different z-score thresholds.
Plot the Receiver Operating Characteristics (ROC) curves [65] and
calculate the Area Under the Curve (AUC) scores for performance
analysis. As Figure 4 shows, as the z-score threshold decreases,
the AUC increases, indicating that the prediction accuracy of
the drug that meets the criteria is improved. It verifies our
hypothesis that a drug may perturb COVID-19 when its targets
are located in the VHPs neighborhood. The best AUC score
occurs in the experiment based on VHN proteins, the highest
accuracy is 0.7 when z-score < —1.5 (Figure 4). The results based
on core proteins are not satisfactory (0.47-0.55, Figure 4), which
necessitates adding peripheral proteins to drug-repurposing.
This performance suggests that taking the peripheral region
into consideration can significantly improve the effect of drug-
repurposing and provide reusable drug candidates for the pre-
vention and treatment of COVID-19. Finally, combining the AUC
score and the number of drugs, we select the top 1000 drugs
(details in Table S5 available online at https://github.com/wangbi
ngbo2019/ENCORE-of-COVID-19) in the ranking of drugs based
on the distance between VHN and drug targets, representing our
final repurposing drugs list for COVID-19.

Flower model for relationship between COVID-19, SARS
and HIN1

As COVID-19 spreads globally, the epidemiological features of
the disease are being revealed. COVID-19, SARS and H1N1 are
all malignant infectious diseases, causing huge losses to human
society. Previous analyses of disease relationships based on net-
work distance have shown some similarities between COVID-
19, SARS and H1N1. Since we have obtained the peripheral and
core regions of these three diseases, we want to further study
the disease relationship of COVID-19, SARS and HIN1 in detail
by using a flower model (Figure 5A). The disease neighborhood
of COVID-19 is composed of peripheral and core regions with
sizes of 934 and 78, and the disease neighborhoods of SARS and
H1N1 are composed of peripheral and core regions with sizes
of 889, 2209 and 60, 93, respectively (Figure 5B). We model their
locations in the human interactome as flower model and focus
on the 500 proteins, a subset containing the core regions of the
three diseases and the common peripheral regions of COVID-
19, SARS and H1N1. Specific core region is shown as black, blue
and red petals, while overlapped peripheral region is shown as
green stem (Figure 5A). This flower model can help us uncover
the relationship between COVID-19, SARS and H1IN1. The details
of similarity of three diseases are shown in Supplementary
Materials (detail in Table S6 available online at https://github.co
m/wangbingbo2019/ENCORE-of-COVID-19).

We map the peripheral and core proteins of COVID-19,
SARS and HIN1 onto the human interactome and discover
that these three disease neighborhoods have both specific and
common regions (Figure 5A). The three specific core regions
are independent of each other and have no overlap, while their
peripheral regions overlap each other. The sizes of overlap of
VHN with SARS and H1N1 are 107 and 235, respectively, and size
of overlap between SARS and H1N1 is 216. In addition, the size
of overlap between the peripheries of these three diseases is
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Figure 4. Performance analysis for drug repurposing. ROC Curves and AUC scores based on core region (gray) and VHN (green) for reducing drug z-scores obtained by
network proximity strategy. The deeper the color, the smaller the z-scores; it indicates that the drug targets and the disease neighborhood are closer in the network.

The dotted line represents the performance of the random classifier and AUC is 0.5.

32. COVID-19, SARS and H1N1 have a statistically significant
large common peripheral region, which suggests a possible
common molecular mechanism between them. This indicates
that taking the peripheral region of disease into consideration
significantly improves the prediction of comorbidities among
complex diseases. In addition to the overlapped proteins
between diseases, we want to explore whether the peripheral
region contains other potential information, which may affect
the relationship between diseases. Therefore, a topological
measure is used to detect the mediator proteins, which mediate
the molecular interactions between diseases (see Materials and
Methods, Table S6 available online at https://github.com/wangbi
ngbo2019/ENCORE-of-COVID-19). Mediator proteins may not be
part of either disease module, but they are located in the shortest
paths connecting the two diseases module, playing a key role in
mediating the interaction between the two diseases [14]. We find
key nodes that mediate diseases interactions in the peripheral
regions of these three diseases, which further shows that con-
sidering the peripheral regions of the diseases is more effective
in analyzing the relationship between the diseases (Figure 5A).
Overlapped peripheral proteins and mediator proteins in
these disease neighborhoods may provide us with critical
information on disease relationships, thus providing an
opportunity to understand the shared molecular mechanisms
of these diseases. In order to validate the biological relevance of
these proteins, we conduct KEGG pathway enrichment analysis
through ConsensusPathDB (CPDB) [66] for Overlapped Periphery
of COVID-19 and SARS (OP_C&S), Overlapped Periphery of
COVID-19 and HIN1 (OP_C&H), Mediator proteins between
COVID-19 and SARS (M_C&S) and Mediator proteins between
COVID-19 and HIN1 (M_C&H). As a result, we present 22
KEGG pathways (g-value <0.01) (Figure 5C). Four proteins sets
are consistently enriched in four diseases: Parkinson Disease,
Huntington Disease, Alzheimer Disease and Non-Alcoholic Fatty
Liver Disease pathways. Of them, Parkinson Disease, Huntington
Disease and Alzheimer Disease are neurodegenerative diseases
caused by the death of neurons in the brain, leading to cognitive

and behavioral dysfunction; they share many similarities at
the cellular and molecular levels and key characteristics [67].
Both COVID-19 and SARS are acute respiratory infection caused
by coronavirus. Previous studies have shown that although
coronavirus is recognized primarily as a respiratory pathogen
in humans, its affinity with the basal ganglia suggests its
possible role in human Parkinson Disease. There may be an
association between coronavirus and Parkinson Disease or other
neurological diseases [68]. Furthermore, peripheral inflamma-
tion caused by COVID-19 may have a long-term impact on the
recovery from the disease, leading to chronic medical conditions
such as neurodegenerative diseases [69]. HIN1 influenza virus
infections may be associated with central nervous system
pathology. Central nervous system inflammation has been
implicated in neurodegenerative diseases including Parkinson
Disease [70]. And neuronal cells can be infected by pandemic
H1N1 viruses [71]. In addition, there is growing evidence that
patients with COVID-19 often develop liver damage [72]. COVID-
19 is frequently associated with different degrees of abnormal
liver function tests and patients with Non-Alcoholic Fatty Liver
Disease may have a higher risk of developing severe COVID-19
[73]. The functional enrichment analysis results of overlapped
and mediated proteins provide us with a lot of information,
which is critical to uncovering the molecular mechanisms of
disease and designing effective treatments, and it provides an
opportunity to understand the relationship between COVID-19
and other diseases. Then, by analyzing the proteins that are
enriched in Parkinson Disease, Huntington Disease, Alzheimer
Disease and Non-Alcoholic Fatty Liver Disease pathways, we
obtain 58 significantly enriched proteins, functionally enriched
P-values are almost all less than 0.025. And by showing in detail
the subnetwork of 58 proteins enriched into diseases in the
human interactome, we find two distinct complexes, ATP5 and
NDUF (Figure 5D). Furthermore, a phenomenon is that the ATP5
complex contains the common peripheral proteins of the three
diseases, while NDUF mainly includes the common peripheral
proteins of COVID-19 and HIN1.
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Figure 5. Flower model for COVID-19, SARS and HIN1. (A) Schematic diagram of flower model for COVID-19, SARS and H1N1. Black, blue and red represent the specific
core region of COVID-19, SARS and H1N1, and green represents their peripheral regions. Light green represents the non-overlapped regions, dark green represents the
overlapped regions of three diseases and two mild greens represent the overlapped regions where COVID-19 overlaps with SARS and H1N1, respectively. The darker the
green is, the more diseases overlap peripheral region. The mediator proteins of COVID-19 and SARS are circled in blue, the mediator proteins of COVID-19 and HIN1
are circled in purple, and the common mediator proteins among the three diseases are circled in gold. (B) The LCC’s z-scores with increasing fold change cutoff as
threshold of SARS (GSE5972, left) and HIN1 (GSE27131, right) DEGs; then, we detect the peripheral and core regions of SARS and HIN1, respectively. (left) For SARS, we
detect LCCs of size 949 and 60, with z-score of 9.73 and 23.17, and thresholds of 0.39 and 1.14. (Right) For H1HI, we detect LCCs of size 2302 and 93, with z-score of 7.74
and 5.09, and thresholds of 0.31 and 1.15. (c) The KEGG pathway enrichment of OP_C&S, OP_C&H, M_C&S and M_C&H. The shades of blue indicate the —log10 operation
value for the g-value of pathways obtained from the enrichment. In order to show the best effect, set the maximum color depth Vimax =10 (details in Table S6 available
online at https://github.com/wangbingbo2019/ENCORE- of- COVID-19). (D) A detailed subgraph of 58 proteins function enriched to diseases and their interactions. (E) A
detailed diagram of 16 target proteins (dot, the color indicates the region it belongs to) of the nine clinical drugs (rectangular box), the targeting relationship between
them is shown by the blue arrow and gray edges are protein interactions. (F) Drug response of 7 drugs in 16 cell lines. The top 7 rows: Results of relationship between
the VHN proteins and the perturbed proteins caused by the drug. The value in the figure is -log10(P-value), where P-value is calculated by Fisher’s exact test, set the
maximum color depth Vimax =5. The last 7 rows: Results of the spearman correlation p between the perturbed proteins caused by the drug and perturbed proteins
caused by virus. To better illustrate the results, the value in the figure is 10*p, set the minimum color depth V,j,;, =—5. The deeper blue in the top 7 rows indicates
significantly larger size of overlap, and the deeper red in the last 7 rows indicates stronger negative correlation. We use the Clustermap method of Python package
Seaborn [95] for hierarchical clustering, and the specific method used is ‘average’.
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Among the 500 proteins in flower model, we identify 16
proteins targeted by nine existing drugs currently undergoing
clinical trials from ClinicalTrials.gov [71] (Figure 5E, Table S4
available online at https://github.com/wangbingbo2019/ENCORE
-0f-COVID-19). These drugs can be used to treat respiratory ill-
nesses (Moxifloxacin [74], Almitrine [75]), influenza (Oseltamivir
[76]), viruses (Ribavirin [77]) and bone marrow fibrosis (Ruxoli-
tinib [78]). Levofloxacin is also antibacterial against mycoplasma
pneumonia and chlamydia pneumonia [79]. Etoposide is a
commonly used drug for small cell lung cancer [80]. Thus, flower
model can not only reveal the relationship between diseases
but also effectively identify potential drugs based on common

periphery.

Validation of drug effectiveness

We generate the repurposing drugs list based on the distance
between the drug targets and VHN (details in Table S5 available
online at https://github.com/wangbingbo2019/ENCORE-of-COVI
D-19) in the human interactome. This list includes 11 clinical
drugs that were not predicted by Gysi et al. [27]. And we identify
16 proteins targeted by 9 clinical drugs in the 500 proteins
contained in the flower model (Figure 5E). There are 4 duplicate
drugs between these 9 drugs and 11 drugs (details in Table S6
available online at https://github.com/wangbingbo2019/ENCO
RE-of-COVID-19). In order to certify the effectiveness of the
peripheral and core regions and the flower model for identifying
comorbidities and drug repurposing candidates of COVID-19, we
use expression data to illustrate the effect of these drugs on the
peripheral proteins and core proteins of COVID-19.

In order to verify the effectiveness of a drug in treating dis-
eases, it is necessary to test whether the drugs can produce the
correct perturbation in the cell. We retrieve gene expression per-
turbation profiles from the Connectivity Map (CMap) database
[81, 82], altogether including 861 experimental instances (dif-
ferent drugs, cell lines, doses and time of treatment). In order
to measure the effect of each drug on the activity of proteins
in the COVID-19 disease module, we measure the size of over-
lap between the protein products of perturbed genes caused
by drug and VHN or core proteins of COVID-19. For example,
for sirolimus [83], a potent immune-suppressant, we find that
102 proteins (10%) of VHN have a significantly large size of
overlap with protein products of highly perturbed genes (1.0nM)
in the lung cell line A549 (Fisher’s exact test, FDR-BH pagj <
0.05, details in Table S6 available online at https://github.com/
wangbingbo2019/ENCORE-of-COVID-19). What is more, we find
that there are 120 proteins (12%) of VHN having a significantly
large size of overlap with perturbations caused by etoposide [80]
(3.33 uM), in the cell line A375 (FDR-BH p.g; < 0.05), the drug
is a semisynthetic derivative of podophyllotxin that exhibits
antitumor activity. At the same time, we find that 23 proteins
(29.5%) of core region have a significantly large size of overlap
with protein products of highly perturbed genes by etoposide
[80] (10.0uM) in cell line A375 (Fisher’s exact test, FDR-BH pagj =
3.06E — 28), and observed that 9 proteins (11.5%) of core region
have a significantly large size of overlap with perturbations
caused by levofloxacin [79] (0.04 pM) in cell line MCF7 (Fisher’s
exact test, FDR-BH pagj = 7.79E—07), the drugis a fluoroquinolone
antibiotic, which helps improve activity against gram-positive
bacteria commonly implicated in respiratory infection. These
results provide us with direct experimental evidence that the
drugs repurposing candidates selected by our periphery-core
pattern provide novel insights for the treatment of COVID-19.

Next, to further illustrate the validity of the drug prediction
results, we verify whether these drugs can counteract the gene
expression perturbations caused by the virus SARS-CoV-2. We
carry out the same experiment as that of Gysi et al. [27], using
the 120 DEGs in the SARS-CoV-2 infected samples of the A549
cell line [84]. We use the protein products of DEGs to measure
the Spearman correlation p between the perturbations caused
by the drug and perturbations caused by virus in the A549 cell
line, where p < 0 indicates that the drug could counteract
the effects of the virus infection. For example, ruxolitinib [78]
is a janus-associated kinase inhibitor used to treat bone mar-
row cancer, especially intermediate or high-risk myelofibrosis,
whose treatment of the lung cell line HCC515 (0.12puM) coun-
teracts the effects of the SARS-CoV-2 infection, resulting in an
inverted expression profile (Spearman correlation p = —0.45,
detail in Table S6 available online at https://github.com/wangbi
ngbo2019/ENCORE-of-COVID-19), and it also has a strong nega-
tive correlation in the lung cell line A549 (Spearman p = —0.27,
0.5 uM, 6 h). Apart from it, moxifloxacin [74] (Spearman p =
—0.48, A375, 0.37 uM, 24 h), almitrine [75] (Spearman p = —0.46,
HELA, 10.0uM, 24 h) and levofloxacin [79] (Spearman p = —0.46,
HA1E, 0.12uM, 24 h), these three drugs were not predicted by Gysi
et al. [27]. This result shows that the additional drugs predicted
by VHN have a certain effectiveness in the treatment of COVID-
19, thus indicating that the periphery-core pattern is an effective
model for analyzing COVID-19.

Furthermore, we analyze the nine clinical drugs detected by
the flower module (Figure 5E). We obtain the gene expression
perturbation profiles of seven of the nine drugs in the CMap
database. In A375, HELA, HT29, MCF7, PC3, YAPC and HA1E7
cell lines (7/16, 43.7%, Figure 5F), drug validation results have
two notable features: (i) The perturbed proteins caused by drugs
have a significantly large size of overlap with VHN proteins (P-
value < 0.05), indicating that these drugs tend to function in the
VHN region in the network. (ii) The perturbations caused by
drug and virus have negative correlation, showing the inhibitory
effect of drug on viruses. In flower model, Ruxolitinib simulta-
neously targeted the three disease areas of COVID-19, SARS and
H1N1 (Figure 5E), including one core protein (MARK2) of COVID-
19 and three core proteins (JAK1, ERN1, RPS6KA1) of SARS, the
three core proteins (PLK1, MELK, RPS6KA5) of HIN1 and the two
proteins (SRPK1, TBK1) on their common periphery. This result
demonstrates that Ruxolitinib has a strong ability to control
these diseases, which is also reflected in the drug response
experiment. Ruxolitinib has a significantly large size of overlap
with VHN in 43.7% (7/16) cell lines (Figure 5F). At the same time,
the perturbation of virus is inhibited in 81% (13/16) cell lines, and
the perturbation caused by Ruxolitinib is negatively correlated
with the perturbation caused by virus. In comparison, the other
six drugs except Ruxolitinib, all targeted few proteins (<2) in the
flower model (Figure 5E). We also observe that these drugs have
no obvious effect on VHN on the other nine cell lines. The tissue
information of eight cells is known, including five mammary
breast cell lines, one liver cell line and two lung cell lines. The
effective drug on the liver cell line (HEPG2) is Ruxolitinib, and
the effective drugs on the lung cell line (A549, HCC515) are
Ruxolitinib and Etoposide. In conclusion, these results provide
evidence for the efficacy of the drugs we have predicted for
COVID-109, verify the feasibility of the method of peripheral and
core regions detection and the flower model based on omnigenic
theory to analyze disease relationship and detect drug repur-
posing candidates for COVID-19, and further demonstrate that
considering peripheral proteins could provide a better platform
for the study of COVID-19.
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Discussion

In this study, we draw upon the latest advances in COVID-19
virus-host research and network medicine methods to identify
the VHN and core region of COVID-19, and we find that both
VHN and core regions are internally tightly connected topologies
in the human interactome. Then, we combine the C3 disease
modules of 70 diseases and the core regions of SARS and HIN1
to analyze the disease similarity. We compute their network
distance with the VHN or core region of COVID-19 based on their
location in human interactome and find several high similarity
diseases including immune and neurological diseases and can-
cers. We identified drug targets based on network proximity and
predicted drug outcomes as high as 0.77, suggesting that COVID-
19’s peripheral and core regions also provide an opportunity
for drug repurposing. This result can provide new insights into
understanding the disease mechanisms of COVID-19 and guide
us in the prevention and treatment of COVID-19.

Core region typically consists of genes specific for the under-
lying disease. Based on the hypothesis that the similar molecu-
lar mechanism of diseases lies in their overlapped peripheries,
we identify the molecular mechanism of disease causation,
new comorbidity and aid rational drug target for COVID-19. In
particular, we construct the flower model for COVID-19, SARS
and H1IN1 and show the details of their overlapped peripheral
proteins. Enrichment analysis further proved that overlapped
peripheries consistently enrich in Parkinson Disease, Hunting-
ton Disease, Alzheimer Disease and Non-Alcoholic Fatty Liver
Disease pathways; provide 16 proteins targeted by 9 existing
drugs currently undergoing clinical trials and drugs predicted
by periphery have a certain effectiveness in the treatment of
COVID-19. The periphery and core structure of COVID-19 pro-
vides new insights for the analysis of disease relationship and
drug prediction.

Although Ratnakumar et al. [21] proposed instructive meth-
ods for identifying disease core genes, there are variety of defi-
nitions including highest differential expression level, strongest
effect mutations or interpretable mechanistic links to disease.
As another reference, Sharma et al. [16] identified the core genes
of asthma and represented a consensus list of genes collected
based on their known association with asthma-related pheno-
types, asthma-related pathology, OMIM, Gene to MeSH relation-
ship, GWAS data and their network neighborhood. The biggest
hits from GWAS have helped pinpoint important core genes,
but there still have lower frequency variants of larger effects.
Quantification of disease-causing effects and identification of
core remains open questions.

Generally, disease is driven by an accumulation of weak
effects on the key genes and regulatory pathways that drive
disease risk. Liu et al. [20] interpreted disease in a paradigm, in
which the effects of weak trans-eQTL SNPs are accumulated and
mediated through peripheral genes to impact the expression of
core genes. The weak effects of variation in peripheral gene can
be amplified by regulating core genes. Topological characteristics
of VHN and core region have proved this from another perspec-
tive. VHN forms an inwardly compact module (high cohesive-
ness), indicating that the weak effects of peripheral variation
gather in disease neighborhood. Instead, core region forms a
stretched subnetwork (reduced cohesiveness) in VHN, indicating
that core interacts with the wider peripheral region and receives
more signals of weak effects. The flower model typically shows
how effects of variation in common peripheral genes influence
different diseases by mediating into different cores. Mining accu-
mulation and mediation graph pattern of peripheral variation
will be next key steps in deciphering disease.
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Materials and methods
Materials for model building
Human interactome

Human interactome is from the underlying network using the
experimentally documented molecular interactions in human
cells from the interactome platform [15]. The data contains 16
461 proteins and 239 305 physical interactions (details in Table S1
available online at https://github.com/wangbingbo2019/ENCO
RE-of-COVID-19); several sources of protein interactions are
combined: (i) Binary interactions from two available high-quality
yeast-to-hybrid datasets; (ii) Literature curated interactions
obtained by low throughput experiments; (iii) Kinase-substrate
pairs and (iv) Signaling interactions.

SARS-CoV-2 host proteins

Gordon et al. [28] have produced the first systematic analysis
of which human proteins SARS-CoV-2 may interact with during
infection. Almost all SARS-CoV-2 viral genes are cloned and
expressed in human HEK293T cells as 2xStrep-tag fusion pro-
teins. The 29 tagged viral proteins are analyzed with affinity
purification-mass spectrometry (AP-MS). They isolated them
from lysates and systematically explored the host dependen-
cies of the SARS-CoV-2 virus to identify host proteins already
targeted with existing drugs. They analyzed a total of 2750
human proteins, and in these proteins, high confidence VHPs
were identified using SAINTexpress [29] and the MIST algorithm
[31, 32]. Finally, they discovered 332 high confidence proteins
interacting with SARS-CoV-2 viral genes.

SAINT _BFDR and MIST score

Significance Analysis of INTeractome (SAINT) is a statistical
method for probabilistically scoring protein-protein interaction
data from AP-MS experiments. Teo et al. [29] presented a new
implementation, SAINTexpress, an upgraded implementation of
SAINT for filtering high confidence interaction data from AP-MS
experiments. SAINTexpress reports the Bayesian False Discovery
Rate (BFDR) estimates at all probability thresholds, which is
computed directly from the posterior probabilities as

> (1=py) Hpj > p}
BFDR (p*) — U ZI {pu = p*} , (1)
j

where I{A} denotes the indicator function of event A. With this
information, the user can determine the probability thresholds
to control the BFDR at the target rate.

AP-MS experiments can identify a large number of protein
interactions, but only a fraction of these interactions are bio-
logically relevant. Verschueren et al. [32] described a compre-
hensive computational strategy to process raw AP-MS data, per-
formed quality controls and prioritized biologically relevant bait-
prey pairs in a set of replicated AP-MS experiments with Mass
spectrometry Interaction STatistics (MIST). The MIST score is
a linear combination of prey quantity (abundance), abundance
invariability across repeated experiments (reproducibility) and
prey uniqueness relative to other baits (specificity). The MIST
pipeline is implemented in R. The most recent version of the
MIST pipeline can be downloaded from GitHub (https://github.
com/everschueren/MIST).
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Peripheral and core regions detection process

The detection of periphery region and core region is based on
the local maxima of connectivity significance between the VHPs
above the threshold. We use the VHPs with Saint_ BFDR <0.05
in detection, a total of 1160 VHPs. Then at increasing MIST
score cutoffs, 0.1, 0.5, 1.0, as different thresholds, we select
the corresponding subset of VHPs and identify the size of the
induced LCC (Sicoyy,)- And we compute the size of the LCC of
the same number of random proteins 1000 times in the human
interactome; we get 1000 S;cc,,,, then LCC’s z-score is given by

Stccyurs — M (StcCuan)

Z — Score =
o (Stccrn)

: )

where (Sicc,,) represents the expected value, and o(Sicc,)
represents standard deviation.

Then, we get a curve by connecting LCC'’s z-scores of increas-
ing MIST scores. We identify two peaks in the curve of the z-score
values as two local maxima of connectivity significance between
the VHPs. At the first peak, the LCC of the corresponding VHPs
subset is called VHN. And at the second peak, the LCC of the
corresponding VHPs subset is called core region. The core region
is removed from the VHN and what is left is the periphery region.

Topological properties analysis
Internal and external connectivity

To investigate whether VHPs tend to form inwardly compact
module, we tested internal connectivity and external connec-
tivity [85] of two protein sets of 78 core proteins and 1012 VHN
proteins in the human interactome. For a protein set S, mg is the
number of edges between proteins in S, ng is the number of pro-
teins in S and cs is the total number of edges leaving S, which is
the edge where one node is inside S and the other node outside of
S, n is the number of proteins in the whole human interactome.

Internal connectivity: Internal density: f(S) = ms/(ns (ns — 1)/2)
is the internal edge density of the core proteins set S. Edges
inside: f(S)= ms is the number of edges between the members
of S. Average internal degree: f(S) = 2ms/ns is the average internal
degree of the members of S.

External connectivity: Expansion measures the number of
edges per protein that point outside the protein set S: f(S) = cs/ns.
Cut Ratio is the fraction of existing edges (out of all possible
edges) leaving the protein set S: f(S) = cs/(ns(n — ns)).

Combine internal and external connectivity: Conductance:
f(S)= cs/(2ms + cs) measures the fraction of total edge vol-
ume that points outside the protein set S. Cohesiveness:
f(S)= ms/(ms + cs) measures the fraction of total internal edge
volume of the protein set S.

The significance of connectivity was quantified based
on z-score: z-score = (f(S) — u)/o, where y and o are the mean
and variance of 1000 randomly connected components, respec-
tively.

Generation of random connected component

To evaluate the structure of VHN or core region, we generated
random connected components using the following procedure:
we start with a random candidate protein set and by adding
in each step a small number of proteins from the periphery,
and we extend this set until it induces a LCC that has a sim-
ilar cardinality as the core or VHN. The percentage of each

expansion of the candidate protein set is set to 0.01 in our
analysis.

Materials for comorbidity and drug repurposing
analysis

Disease-gene associations

The corpus of 70 diseases is manually chosen by Ghiassian et al.
[12], with the additional criteria of at least 20 associated genes
reported in the literature for every disease. The disease-gene
associations are retrieved from OMIM (http://www.ncbi.nlm.nih.
gov/omim) [25] and GWAS (Genome-Wide Association Studies).
The OMIM associations they use also include associations from
UniProtKB/Swiss-Prot and have been compiled [86]. The disease-
gene associations from GWAS are obtained from the PheGenl
database (PhenotypeGenotype Integrator; http://www.ncbi.nlm.
nih.gov/gap/PheGenl) [5] that integrates various NCBI genomic
databases. They use a genome-wide significance cutoff of P-
value=5 x1078. In addition, we collect expression data GSE5972
and GSE27131 directly related to SARS and HIN1 from the Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo),
respectively, then analyse differential expression of gene
with GEO2R tool (https://www.ncbi.nlm.nih.gov/geo/geo2r/).
In the end, we obtain a total of 2913 associated genes of 72
disease modules, including SARS and H1N1 (details in Table S2
available online at https://github.com/wangbingbo2019/ENCO
RE-of-COVID-19).

C3 algorithm

The Connect separate Connected Components (C3) algorithm
[13] is a disease module detection algorithm based on the con-
nectivity significance of nodes and edges in a network. Firstly,
the connected components set of disease proteins is determined,
and the direct neighbors of disease proteins are taken as can-
didate proteins. Then, the P-value based on hypergeometric
distribution is used to calculate the connection probability of
candidate proteins and candidate edges, so as to characterize the
ability of candidate proteins in connecting the connected com-
ponents of disease proteins. Finally, by using a greedy process to
detect the intermediate proteins for connecting the connected
components, a succinct disease module dominated by disease
proteins is presented.

Disease similarity

Given two disease modules A and B, we define the average
shortest distance between disease modules A and B

1

(das) = ATEE (Z min,epd (@,b) + D mingead (a,b)), (3)

beB

where d(a, b) represents the shortest path length between node a
and b in the network and |A| and |B| represent the size of disease
modules A and B, respectively.

The disease similarity between A and B is given by the
following equation:

(das)
() e

simAB =1-

(4)

where (d),,,, represents the maximum average shortest distance
between all disease pairs. The value range of simug is 0-1, and the
closer to 0, the lower the disease similarity.
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Mediator proteins detection

In order to find the mediator proteins between the two diseases,
Maiorino et al. defined a topological measure called Flow Central-
ity (FC) [14], identifying the proteins that are involved in most of
the molecular interactions occurring between the two disorders.
FC: Given two disease modules A and B, the FC of a node m is
given by FCa 5(m)

1 Sap(M)

‘ AHB | acA,beB Sab

FCap (m) = , (5)

where sg,(m) is the number of shortest paths from a to b pass-
ing through node m, sq is the total number of shortest paths
between a and b and | | is the size of the corresponding set.

The statistical significance of the obtained values is calcu-
lated by comparing them with the random 1000 times module
pairs. For each random pair of two modules, we calculate the FC
of each node in the network and measure the average u(FCran)
and standard deviation o (FCran) across all the samples. The FCS
of a node m is then calculated as

FC — i (FCran
FCSap(m) = %. (6)

A large positive FCS indicates that the node is more likely to
occur in the shortest path connecting the two modules, while a
small or negative value suggests that the node is not relevant to
the chosen pair of modules.

FC paths: All the shortest paths connecting the disease
module A and B, whose intermediate proteins have a FCS of 2
or greater. In this work, we select all proteins in the FC paths
between disease module A and B as the mediator proteins
between the two diseases.

Drug target interactions

Feixiong Cheng et al. collected high-quality physical drug target
interactions [64] on FDA-approved or clinically investigational
drugs from six commonly used data sources: the DrugBank
database (v4.3) [87], the Therapeutic Target Database (TTD,
v4.3.02) [88], the PharmGKB database (30 December 2015) [89],
ChEMBL (v20, accessed in December 2015) [90], BindingDB
(downloaded in December 2015) [91] and IUPHAR/BPS Guide
to PHARMACOLOGY (downloaded in December 2015) [92]. In
total, 15 051 drug target interactions connecting 4428 drugs
and 2256 unique human targets are built. In the human
interactome, we just get 4380 drugs and 2161 unique human
targets (details in Table S7 available online at https:/github.co
m/wangbingbo2019/ENCORE-of-COVID-19).

Network proximity

Given V, the set of VHPs, T, the set of drug targets, and d(v, t) the
shortest path length between node v € Vand t € T in the net-
work, we define (d,) according to Eq. (3) to quantify the network-
based distance between VHPs and drug targets [27, 61, 62].
We determine the expected distances between two randomly
selected sets of proteins, matching the size and degrees of the
original V and T sets. The mean u(dran) and standard deviation
o (dran) Of the reference distribution allow us to get the z-score of
the distance (d,:), defined as

(dut) — M (dran) )
o (dran)

Z — score =

@)
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The smaller the z-score, the closer the distance between the
VHPs and drug targets in the network, which implies that the
drug is more likely to perturb the disease.

Expression perturbation profiles

We obtain drug perturbation profiles from the Connectivity Map
(CMap) database [81, 82] by using the Python package CMapPy
[93]. For each perturbation profile, we calculate the significance
of size of overlap between the perturbed genes (|Z-Score| > 2)
and SARS-CoV-2 targets derived from Gordon et al. [28], using
Fisher’s Exact Test. We also retrieve gene expression data of
the cell line A549 after infection with SARS-CoV-2 [84]. The
Spearman correlation coefficient is employed in estimating the
correlation between the perturbation scores provided in CMap
and the gene expression fold change caused by SARS-CoV-2
infection.

ROC curve and AUC score

We use drug rankings to plot ROC curves and calculate AUC
scores for performance analysis. The AUC score measures the
quality of differentiating between positive and negative situa-
tions. For the sorted table, we use different z-scores as thresholds
to calculate the FPR and the TPR to draw the ROC curve. AUC
scores range from 0 to 1, with 1 representing complete perfor-
mance and 0.5 representing the performance of the random
classifier. We use the Python package scikit-learn [94] to plot ROC
curves and calculate AUC scores.

Key Points

® Here, we use network medicine framework to uncover
the peripheral and core regions of SARS-CoV-2 per-
turbed neighborhood in human interactome, and con-
struct an omnigenic virus-host network (VHN) to
study COVID-19 systematically.

We find that peripheral region can be used to improve
the results for identifying comorbidities as well as
detecting drug repurposing candidates for COVID-19
based on network proximity with modules of other 72
well curated diseases.

Furthermore, by identifying the overlapped peripheral
region of COVID-19, SARS and HIN1 as a flower model,
we present some common molecular mechanisms
and drug targets for these diseases.

Our study illustrates the potential application of omni-
genic VHN including peripheral and core regions as
a powerful pattern in prevention and treatment of
COVID-19.

Supplementary data

Supplementary data are available online at https://github.co
m/wangbingbo2019/ENCORE-of-COVID-19.

Data Availability

The dataset used in this study, as described in the Materials
and Methods paragraph, is available as Supplementary Data.
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