Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 Mar;198(Pt 3):265–282. doi: 10.1046/j.1469-7580.2001.19830265.x

Fine structure of the developing epidermis in the embryo of the American alligator (Alligator mississippiensis, Crocodilia, Reptilia)

LORENZO ALIBARDI 1 ,, MICHAEL B THOMPSON 2
PMCID: PMC1468217  PMID: 11322720

Abstract

The morphological transition from the simple epidermis that contacts the amniotic fluid of embryonic crocodilians to the adult epidermis required in a terrestrial environment has never been described. We used light and electron microscopy to study the development, differentiation and keratinisation of the epidermis of the American alligator, Alligator mississippiensis, between early and late stages of embryonic skin formation. In early embryonic development, the epidermis consists of a flat bilayer. As it develops, the bilayered epidermis comes to lie beneath the peridermis. Glycogen is almost absent from the bilayered epidermis but increases in basal and suprabasal cells when scales form. Glycogen disappears from suprabasal cells that accumulate keratin. The peridermis and 1 or 2 subperidermal layers form an embryonic epidermis that is partially or totally lost before hatching. These cells accumulate coarse filaments and form reticulate bodies. Mucous and lamellate granules are produced in the Golgi apparatus and are partly secreted extracellularly. The embryonic cells darken with the formation of larger reticulate bodies that aggregate with intermediate filaments and other cell organelles, as their nuclear chromatin condenses. Thin β-cells resembling those of scutate scales of birds develop beneath the embryonic epidermis and form a stratified β-layer that varies in thickness in different body regions. The epidermis differentiates first in the back, tail and belly. At the beginning of β-cell differentiation, the cytoplasm contains sparse bundles of α-keratin filaments, glycogen and lipid droplets or vacuoles apparently derived from the endoplasmic reticulum and Golgi apparatus. These organelles disappear rapidly as irregular bundles of electron-dense β-keratin filaments accumulate and form larger bundles. The larger bundles consist of 3 nm thick electron-pale keratin microfibrils and are derived from the assemblage of β-keratin molecules produced by ribosomes. While in mammals the epidermal barrier is formed by α-keratinocytes, in the alligator the barrier is formed by β-keratin cells. The β-layer is reduced or absent from the small hinge region between scales. In the latter areas the barrier is made of a or a mixture of α/β keratinocytes. Thus alligators resemble birds where the β-keratin molecules are deposited directly over an α-keratin scaffold, rather than an initial production of β-keratin packets which then merge with α-keratin, as occurs in the Chelonia and Lepidosauria. The pigmentation of the epidermis of embryos is mostly derived from epidermal melanocytes.

Keywords: Alligator, embryos, epidermis, keratinisation, ultrastructure

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander N. J. Comparison of alpha and beta keratin in reptiles. Z Zellforsch Mikrosk Anat. 1970;110(2):153–165. doi: 10.1007/BF00335521. [DOI] [PubMed] [Google Scholar]
  2. Alexander N. J., Parakkal P. F. Formation of alpha- and beta-type keratin in lizard epidermis during the molting cycle. Z Zellforsch Mikrosk Anat. 1969 Oct 1;101(1):72–87. doi: 10.1007/BF00335586. [DOI] [PubMed] [Google Scholar]
  3. Alibardi L. Differentiation of the epidermis during scale formation in embryos of lizard. J Anat. 1998 Feb;192(Pt 2):173–186. doi: 10.1046/j.1469-7580.1998.19220173.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alibardi L., Thompson M. B. Epidermal differentiation during carapace and plastron formation in the embryonic turtle Emydura macquarii. J Anat. 1999 May;194(Pt 4):531–545. doi: 10.1046/j.1469-7580.1999.19440531.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Alibardi L., Thompson M. B. Epidermal differentiation in the developing scales of embryos of the Australian scincid lizard Lampropholis guichenoti. J Morphol. 1999 Aug;241(2):139–152. doi: 10.1002/(SICI)1097-4687(199908)241:2<139::AID-JMOR4>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  6. Allen T. D., Potten C. S. Desmosomal form, fate, and function in mammalian epidermis. J Ultrastruct Res. 1975 Apr;51(1):94–105. doi: 10.1016/s0022-5320(75)80011-6. [DOI] [PubMed] [Google Scholar]
  7. Baden H. P., Maderson P. F. Morphological and biophysical identification of fibrous proteins in the amniote epidermis. J Exp Zool. 1970 Jun;174(2):225–232. doi: 10.1002/jez.1401740211. [DOI] [PubMed] [Google Scholar]
  8. Baden H., Sviokla S., Roth I. The structural protein of reptilian scales. J Exp Zool. 1974 Feb;187(2):287–294. doi: 10.1002/jez.1401870212. [DOI] [PubMed] [Google Scholar]
  9. Bonneville M. A. Observations on epidermal differentiation in the fetal rat. Am J Anat. 1968 Jul;123(1):147–164. doi: 10.1002/aja.1001230107. [DOI] [PubMed] [Google Scholar]
  10. Briggaman R. A., Wheeler C. E., Jr The epidermal-dermal junction. J Invest Dermatol. 1975 Jul;65(1):71–84. doi: 10.1111/1523-1747.ep12598050. [DOI] [PubMed] [Google Scholar]
  11. Budtz P. E., Larsen L. O. Structure of the toad epidermis during the moulting cycle. II. Electron microscopic observations on Bufo bufo (L.). Cell Tissue Res. 1975 Jun 24;159(4):459–483. doi: 10.1007/BF00221703. [DOI] [PubMed] [Google Scholar]
  12. Carver W. E., Sawyer R. H. Avian scale development: XI. Immunoelectron microscopic localization of alpha and beta keratins in the scutate scale. J Morphol. 1988 Jan;195(1):31–43. doi: 10.1002/jmor.1051950104. [DOI] [PubMed] [Google Scholar]
  13. Carver W. E., Sawyer R. H. Development and keratinization of the epidermis in the common lizard, Anolis carolinensis. J Exp Zool. 1987 Sep;243(3):435–443. doi: 10.1002/jez.1402430310. [DOI] [PubMed] [Google Scholar]
  14. Carver W. E., Sawyer R. H. Immunocytochemical localization and biochemical analysis of alpha and beta keratins in the avian lingual epithelium. Am J Anat. 1989 Jan;184(1):66–75. doi: 10.1002/aja.1001840108. [DOI] [PubMed] [Google Scholar]
  15. Dale B. A., Holbrook K. A. Developmental expression of human epidermal keratins and filaggrin. Curr Top Dev Biol. 1987;22:127–151. doi: 10.1016/s0070-2153(08)60101-5. [DOI] [PubMed] [Google Scholar]
  16. Dale B. A., Holbrook K. A., Kimball J. R., Hoff M., Sun T. T. Expression of epidermal keratins and filaggrin during human fetal skin development. J Cell Biol. 1985 Oct;101(4):1257–1269. doi: 10.1083/jcb.101.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. DuBrul E. F. Fine structure of epidermal differentiation in the mouse. J Exp Zool. 1972 Aug;181(2):145–158. doi: 10.1002/jez.1401810202. [DOI] [PubMed] [Google Scholar]
  18. Fukuyama K., Epstein W. L. Heterogeneous ultrastructure of keratohyalin granules: a comparative study of adjacent skin and mucous membrane. J Invest Dermatol. 1973 Aug;61(2):94–100. doi: 10.1111/1523-1747.ep12675419. [DOI] [PubMed] [Google Scholar]
  19. Haake A. R., König G., Sawyer R. H. Avian feather development: relationships between morphogenesis and keratinization. Dev Biol. 1984 Dec;106(2):406–413. doi: 10.1016/0012-1606(84)90240-9. [DOI] [PubMed] [Google Scholar]
  20. Hardman M. J., Sisi P., Banbury D. N., Byrne C. Patterned acquisition of skin barrier function during development. Development. 1998 Apr;125(8):1541–1552. doi: 10.1242/dev.125.8.1541. [DOI] [PubMed] [Google Scholar]
  21. Hardy M. H., Sweeny P. R., Bellows C. G. The effects of vitamin A on the epidermis of the fetal mouse in organ culture--an ultrastructural study. J Ultrastruct Res. 1978 Sep;64(3):246–260. doi: 10.1016/s0022-5320(78)90034-5. [DOI] [PubMed] [Google Scholar]
  22. Hashimoto K. Ultrastructure of the human toenail. II. Keratinization and formation of the marginal band. J Ultrastruct Res. 1971 Aug;36(3):391–410. doi: 10.1016/s0022-5320(71)80112-0. [DOI] [PubMed] [Google Scholar]
  23. Kemp D. J., Dyer P. Y., Rogers G. E. Keratin synthesis during development of the embryonic chick feather. J Cell Biol. 1974 Jul;62(1):114–131. doi: 10.1083/jcb.62.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Landmann L. Lamellar granules in mammalian, avian, and reptilian epidermis. J Ultrastruct Res. 1980 Sep;72(3):245–263. doi: 10.1016/s0022-5320(80)90062-3. [DOI] [PubMed] [Google Scholar]
  25. Lyne A. G., Hollis D. E. The structure and development of the epidermis in sheep fetuses. J Ultrastruct Res. 1972 Mar;38(5):444–458. doi: 10.1016/0022-5320(72)90082-2. [DOI] [PubMed] [Google Scholar]
  26. Maderson P. F., Flaxman B. A., Roth S. I., Szabo G. Ultrastructural contributions to the identification of cell types in the lizard epidermal generation. J Morphol. 1972 Feb;136(2):191–209. doi: 10.1002/jmor.1051360205. [DOI] [PubMed] [Google Scholar]
  27. Marshall R. C., Orwin D. F., Gillespie J. M. Structure and biochemistry of mammalian hard keratin. Electron Microsc Rev. 1991;4(1):47–83. doi: 10.1016/0892-0354(91)90016-6. [DOI] [PubMed] [Google Scholar]
  28. Matoltsy A. G., Huszar T. Keratinization of the reptilian epidermis: an ultrastructural study of the turtle skin. J Ultrastruct Res. 1972 Jan;38(1):87–101. doi: 10.1016/s0022-5320(72)90085-8. [DOI] [PubMed] [Google Scholar]
  29. Matoltsy A. G. The molecular and developmental biology of keratins. Concluding remarks and future directions. Curr Top Dev Biol. 1987;22:255–264. [PubMed] [Google Scholar]
  30. Matulionis D. H. Morphology of the developing down feathers of chick embryos. A descriptive study at the ultrastructural level of differentiation and keratinization. Z Anat Entwicklungsgesch. 1970;132(2):107–157. doi: 10.1007/BF00523275. [DOI] [PubMed] [Google Scholar]
  31. Menon G. K., Brown B. E., Elias P. M. Avian epidermal differentiation: role of lipids in permeability barrier formation. Tissue Cell. 1986;18(1):71–82. doi: 10.1016/0040-8166(86)90008-x. [DOI] [PubMed] [Google Scholar]
  32. Menon G. K., Ghadially R., Williams M. L., Elias P. M. Lamellar bodies as delivery systems of hydrolytic enzymes: implications for normal and abnormal desquamation. Br J Dermatol. 1992 Apr;126(4):337–345. doi: 10.1111/j.1365-2133.1992.tb00675.x. [DOI] [PubMed] [Google Scholar]
  33. Menon G. K., Maderson P. F., Drewes R. C., Baptista L. F., Price L. F., Elias P. M. Ultrastructural organization of avian stratum corneum lipids as the basis for facultative cutaneous waterproofing. J Morphol. 1996 Jan;227(1):1–13. doi: 10.1002/(SICI)1097-4687(199601)227:1<1::AID-JMOR1>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  34. Meyer W., Baumgärtner G. Embryonal feather growth in the chicken. J Anat. 1998 Nov;193(Pt 4):611–616. doi: 10.1046/j.1469-7580.1998.19340611.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mottet N. K., Jensen H. M. The differentiation of chick embryonic skin. An electron microscopic study with a description of a peculiar epidermal cytoplasmic ultrastructure. Exp Cell Res. 1968 Sep;52(1):261–283. doi: 10.1016/0014-4827(68)90564-8. [DOI] [PubMed] [Google Scholar]
  36. Parakkal P. F., Matoltsy A. G. An electron microscopic study of developing chick skin. J Ultrastruct Res. 1968 Jun;23(5):403–416. doi: 10.1016/s0022-5320(68)80106-6. [DOI] [PubMed] [Google Scholar]
  37. Roth S. I., Jones W. A. The ultrastructure of epidermal maturation in the skin of the boa constrictor (Constrictor constrictor). J Ultrastruct Res. 1970 Jul;32(1):69–93. doi: 10.1016/s0022-5320(70)80038-7. [DOI] [PubMed] [Google Scholar]
  38. Sawyer R. H., Abbott U. K., Fry G. N. Avian scale development. III. Ultrastructure of the keratinizing cells of the outer and inner epidermal surfaces of the scale ridge. J Exp Zool. 1974 Oct;190(1):57–70. doi: 10.1002/jez.1401900105. [DOI] [PubMed] [Google Scholar]
  39. Shames R. B., Knapp L. W., Carver W. E., Sawyer R. H. Identification, expression, and localization of beta keratin gene products during development of avian scutate scales. Differentiation. 1988 Jul;38(2):115–123. doi: 10.1111/j.1432-0436.1988.tb00205.x. [DOI] [PubMed] [Google Scholar]
  40. Shames R. B., Knapp L. W., Carver W. E., Sawyer R. H. Region-specific expression of scutate scale type beta keratins in the developing chick beak. J Exp Zool. 1991 Nov;260(2):258–266. doi: 10.1002/jez.1402600215. [DOI] [PubMed] [Google Scholar]
  41. Shames R. B., Knapp L. W., Carver W. E., Washington L. D., Sawyer R. H. Keratinization of the outer surface of the avian scutate scale: interrelationship of alpha and beta keratin filaments in a cornifying tissue. Cell Tissue Res. 1989 Jul;257(1):85–92. doi: 10.1007/BF00221637. [DOI] [PubMed] [Google Scholar]
  42. Spearman R. I. The keratinization of epidermal scales, feathers and hairs. Biol Rev Camb Philos Soc. 1966 Feb;41(1):59–96. doi: 10.1111/j.1469-185x.1966.tb01538.x. [DOI] [PubMed] [Google Scholar]
  43. Szabo G., Maderson P. F., Roth S. I., Kostick R. M. Melanocyte activity in the epidermis of the boa constrictor (Constrictor constrictor) during the sloughing cycle. Anat Rec. 1973 Aug;176(4):377–387. doi: 10.1002/ar.1091760402. [DOI] [PubMed] [Google Scholar]
  44. Weiss L. W., Zelickson A. S. Embryology of the epidermis: ultrastructural aspects. 1. Formation and early development in the mouse with mammalian comparisons. Acta Derm Venereol. 1975;55(3):161–168. [PubMed] [Google Scholar]
  45. Weiss L. W., Zelickson A. S. Embryology of the epidermis: ultrastructural aspects. II. Period of differentiation in the mouse with mammalian comparisons. Acta Derm Venereol. 1975;55(5):321–329. [PubMed] [Google Scholar]
  46. Weiss L. W., Zelickson A. S. Embryology of the epidermis: ultrastructural aspects. III. Maturation and primary appearance of dendritic cells in the mouse with mammalian comparisons. Acta Derm Venereol. 1975;55(6):431–442. [PubMed] [Google Scholar]
  47. Wyld J. A., Brush A. H. The molecular heterogeneity and diversity of reptilian keratins. J Mol Evol. 1979 Apr 12;12(4):331–347. doi: 10.1007/BF01732028. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES