Abstract
Recordings were made from identified central axons at a known distance from their somata, to compare the action potentials resulting from antidromic and synaptic excitation. By taking advantage of the anatomical configuration within the brain stem of the motoneurones innervating the retractor bulbi muscle in the orbit, their axons were penetrated in the VIth nucleus and labelled by electrophoretic injection of horseradish peroxidase. Excitatory post-synaptic potentials recorded in the retractor bulbi axons at about 3 mm from the soma were six times smaller than in the soma. The space constant of the axonal segment between the retractor bulbi and the abducens nucleus was estimated to be 1.7 mm. When the axons propagated action potentials the attenuation was increased to eighteen times due to the nodes of Ranvier intercalated between the soma and the site of recording. Antidromic action potentials displayed stepwise changes in amplitude and shape when stimuli were applied at intervals decreasing from 5 ms to 0.7 ms. The changes were related to the different lengths of refractoriness of the soma, initial segment and axon. Orthodromic action potentials evoked by synaptic excitation displayed similar changes in amplitude and shape. These observations lead to the conclusion that the soma, initial segment and neighbouring nodes of Ranvier contribute significantly to the shape of the action potential. Contrary to the generally accepted view, it appears that the efferent discharge along motor axons can be initiated without a simultaneous activation of the somato-dendritic or even the initial segment membrane, as revealed by the lack of somato-dendritic and/or initial segment contribution to the shape of the synaptically evoked action potentials.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker R., McCrea R. A., Spencer R. F. Synaptic organization of cat accessory abducens nucleus. J Neurophysiol. 1980 Mar;43(3):771–791. doi: 10.1152/jn.1980.43.3.771. [DOI] [PubMed] [Google Scholar]
- Barron D. H., Matthews B. H. The interpretation of potential changes in the spinal cord. J Physiol. 1938 Apr 14;92(3):276–321. doi: 10.1113/jphysiol.1938.sp003603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown K. T., Flaming D. G. Instrumentation and technique for beveling fine micropipette electrodes. Brain Res. 1975 Mar 14;86(1):172–180. doi: 10.1016/0006-8993(75)90652-6. [DOI] [PubMed] [Google Scholar]
- COOMBS J. S., CURTIS D. R., ECCLES J. C. The generation of impulses in motoneurones. J Physiol. 1957 Dec 3;139(2):232–249. doi: 10.1113/jphysiol.1957.sp005888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COOMBS J. S., CURTIS D. R., ECCLES J. C. The interpretation of spike potentials of motoneurones. J Physiol. 1957 Dec 3;139(2):198–231. doi: 10.1113/jphysiol.1957.sp005887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coppin C. M., Jack J. J. Internodal length and conduction velocity of cat muscle afferent nerve fibres. J Physiol. 1972 Apr;222(1):92P–93P. [PubMed] [Google Scholar]
- FUORTES M. G., FRANK K., BECKER M. C. Steps in the production of motoneuron spikes. J Gen Physiol. 1957 May 20;40(5):735–752. doi: 10.1085/jgp.40.5.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gogan P., Guéritaud J. P., Horcholle-Bossavit G., Tyc-Dumont S. The vibrissal pad as a source of sensory information for the oculomotor system of the cat. Exp Brain Res. 1981;44(4):409–418. doi: 10.1007/BF00238833. [DOI] [PubMed] [Google Scholar]
- Grant K., Gueritaud J. P., Horcholle-Bossavit G., Tyć-Dumont S. Horizontal vestibular nystagmus. I. Identification of medial vestibular neurones. Exp Brain Res. 1976 Nov 23;26(4):367–386. doi: 10.1007/BF00234220. [DOI] [PubMed] [Google Scholar]
- Grant K., Guéritaud J. P., Horcholle-Bossavit G., Tyć-Dumont S. Anatomical and electrophysiological identification of motoneurones supplying the cat retractor bulbi muscle. Exp Brain Res. 1979 Feb 15;34(3):541–550. doi: 10.1007/BF00239148. [DOI] [PubMed] [Google Scholar]
- Guégan M., Guéritaud J. P., Bossavit G. H. Localisation des motoneurones du muscle retractor bulbi par transport rétrograde de peroxydase exogène chez le Chat. C R Acad Sci Hebd Seances Acad Sci D. 1978 May 16;286(19):1355–1357. [PubMed] [Google Scholar]
- Guégan M., Horcholle-Bossavit G. Reflex control of the retractor bulbi muscle in the cat. Pflugers Arch. 1981 Jan;389(2):143–148. doi: 10.1007/BF00582105. [DOI] [PubMed] [Google Scholar]
- Hanker J. S., Yates P. E., Metz C. B., Rustioni A. A new specific, sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase. Histochem J. 1977 Nov;9(6):789–792. doi: 10.1007/BF01003075. [DOI] [PubMed] [Google Scholar]
- Hutson K. A., Glendenning K. K., Masterton R. B. Accessory abducens nucleus and its relationship to the accessory facial and posterior trigeminal nuclei in cat. J Comp Neurol. 1979 Nov 1;188(1):1–16. doi: 10.1002/cne.901880102. [DOI] [PubMed] [Google Scholar]
- RUSHTON W. A. H. A theory of the effects of fibre size in medullated nerve. J Physiol. 1951 Sep;115(1):101–122. doi: 10.1113/jphysiol.1951.sp004655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richter D. W., Schlue W. R., Mauritz K. H., Nacimiento A. C. Comparison of membrane properties of the cell body and the initial part of the axon of phasic motoneurones in the spinal cord of the cat. Exp Brain Res. 1974;20(2):193–206. doi: 10.1007/BF00234013. [DOI] [PubMed] [Google Scholar]
- Spencer R. F., Baker R., McCrea R. A. Localization and morphology of cat retractor bulbi motoneurons. J Neurophysiol. 1980 Mar;43(3):754–770. doi: 10.1152/jn.1980.43.3.754. [DOI] [PubMed] [Google Scholar]