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Abstract

Prostate cancer lesion segmentation in multi-parametric magnetic resonance imaging (mpMRI) is 

crucial for pre-biopsy diagnosis and targeted biopsy guidance. Deep convolution neural networks 

have been widely utilized for lesion segmentation. However, these methods fail to achieve a 

high Dice coefficient because of the large variations in lesion size and location within the 

gland. To address this problem, we integrate the clinically-meaningful prostate specific antigen 

density (PSAD) biomarker into the deep learning model using feature-wise transformations to 

condition the features in latent space, and thus control the size of lesion prediction. We tested 

our models on a public dataset with 214 annotated mpMRI scans and compared the segmentation 

performance to a baseline 3D U-Net model. Results demonstrate that integrating the PSAD 

biomarker significantly improves segmentation performance in both Dice coefficient and centroid 

distance metric.

Index Terms—

Prostate lesion segmentation; Bi-parametric MRI; Prostate Specific Antigen Density; Feature-wise 
transformation

1. INTRODUCTION

Prostate cancer (PCa) is the second leading cause of cancer mortality in men, and in 2022, 

27% of all cancer in men is prostate cancer [1]. However, PCa is often over-treated and 

traditional diagnosis of PCa often involves repeated needle biopsy, which increases the risk 

of infection [2, 3]. Therefore, non-invasive methods to identify and diagnose PCa are critical 
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to reduce unnecessary biopsies. Multi-parametric magnetic resonance imaging (mpMRI) of 

the prostate is becoming more routinely used for PCa diagnosis [4]. mpMRI provides both 

anatomical imaging and functional imaging sequences for radiologists to make non-invasive 

diagnoses [5, 6]. Additionally, pre-biopsy mpMRI can also be used to locate lesions for 

needle biopsy targeting [7]. As a result of increased use of pre-biopsy prostate MRI, the 

demand for accurate PCa delineation is rising, but human labeling of PCa in mpMRI scans 

is time consuming and depends on training and experience [8]. Wide inter-observer variation 

is also reported, two manual segmentations may only have moderate agreement with a Dice 

coefficient of 0.48–0.52 [9].

To address problems of human delineation and increase the consistency between 

segmentations, deep learning-based artificial intelligence methods have been developed to 

segment PCa lesions in MRI. Alkadi et al. proposed a 3D U-Net based method for PCa 

segmentation in T2-weighted (T2W) MRI [10]. Later, Chen et al. utilized mpMRI scans 

by introducing a multi-branch feature extraction for the U-Net [11]. Wang et al. proposed 

a cascaded Mask R-CNN method for dominant intraprostatic lesions segmentation to first 

find coarse features [12]. Similarly, Liu et al. designed a multi-scale network to retain 

both global information and small lesion features [13]. Duran et al. introduced an attention 

mechanism into PCa segmentation by proposing ProstAttention-Net [14]. However, deep 

learning methods fail to achieve high agreement with manual segmentation because the 

lesion boundary agreement (typically measured by Dice coefficient) greatly depends on the 

segmentation size [9], and small lesion sizes make this difficult.

To improve PCa lesion segmentation performance of deep learning methods, we integrate 

additional PCa biomarkers and clinical information to help with the segmentation task. 

Prostate specific antigen (PSA) blood serum measurements and PSA density (PSAD) 

(calculated by dividing PSA by gland volume) are important biomarkers in PCa screening 

and diagnosis. PCa will cause a person’s PSA level to rise and PSAD is predictive of 

metastatic disease [15]. We also include patient age in our study. As age increases, PSA 

levels tend to rise, and the likelihood of being diagnosed with high-risk PCa also increases 

[16]. In this study, we integrate PSAD and and age into a deep neural network using 

feature-wise transformations (FWTs) [17]. Here, FWTs act to condition the network to this 

additional clinical information.

The contributions of this work are threefold: (i) we propose a method to integrate clinical 

biomarkers into a U-Net for prostate lesion segmentation; (ii) we show that including PSAD 

significantly improves the segmentation performance for prostate lesion; and (iii) we test 

multiple FWT strategies within the U-Net to show that channel-wise multiplication is the 

best way to include PSAD and that the bottleneck layer is the best location to apply these 

transformations.

2. METHODS

2.1. Dataset

Models in this work were trained and evaluated on the Public Training and Development 

Dataset from the PI-CAI challenge [18]. The dataset consists of 1,500 bi-parametric MRI 
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(bpMRI) scans (T2W and ADC sequences) acquired at three sites. Of these, 220 cases were 

annotated by a human expert and 214 annotated scans are provided with PSA and patient 

age information. The dataset contains AI-derived whole-gland prostate segmentation masks 

created using an algorithm validated to have mean Dice similarity of 0.90. The 214 scans 

included in this study contain 230 lesions: 104 in the peripheral zone and 126 in the central 

gland; and 68 in the base, 77 in the mid-gland, 85 in the apex, and 2 outside the whole-gland 

mask. PSAD values are calculated by dividing PSA by the AI-derived prostate volume. We 

split the dataset into independent training, validation, and testing sets (Table 1).

2.2. Feature-wise Transformation

The architecture of the model used in this work is 3D U-Net [19]. Rather than attempting to 

demonstrate state-of-the-art segmentation performance [20], here, we focus on studying the 

effects of FWT on a standard U-net architecture.

In order to find the best strategy to integrate biomarkers (PSAD) into the segmentation U-

Net, we applied FWTs in four different ways (Fig. 1): (1) directly multiply the PSAD scalar 

with the encoder features to control the feature globally; (2) use a multi-layer perceptron 

(MLP) to fan out the PSAD scalar into a vector of the same size as the number of feature 

channels, and then multiply the vector with the feature to individually control each channel; 

(3) use a MLP to fan out the PSAD scalar into a tensor of the same size as the feature, and 

then multiply the tensor with the features; and (4) use a MLP to fan out the PSAD scalar into 

a tensor and concatenate with the original feature as an additional channel. And we apply 

these FWTs at two different locations: (1) at the bottleneck of the U-Net to only scale the 

most compressed features, (2) at the end of every encoder block to scale all the low level 

features. Because the size of features at early stage of the U-Net is relatively large compared 

to the feature at the bottleneck, which will greatly increase the number of parameters in the 

MLPs of the third approach, we limit testing to the bottleneck layer.

In addition to PSAD, we also include patient age as additional clinical information. Here, 

we add age as a scalar value as an extra input to the MLP to the model with the best 

performance in the PSAD only test, and we compare two results.

3. EXPERIMENTS AND RESULTS

3.1. Implementation

The segmentation network input is two-channel bpMRI. All 214 bpMRI scans were first 

co-registered and then resampled to a voxel spacing of 1 × 1 × 3.6 mm3 as suggested by 

the dataset provider [21]. Then all scans were cropped into 160 × 160 × 32 around the 

AI-derived whole gland masks and intensities were scaled from [25th percentile of original 

intensity, 75th percentile of original intensity] to [−0.5, 0.5].

The model used in this work was modified based on the Dynamic U-Net from the MONAI 

(v0.9.0) framework. We used four encoder/decoder blocks with anisotropic strides in the 

z-axis to best preserve the small lesion structure in different encoder blocks. All models 

were implemented using PyTorch (v1.9.0) and PyTorch Lightning (v1.4.2) framework and 

trained on an NVIDIA P5000 GPU with Adam optimizer [22] with a batch size of 2. 
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Random flipping along x-axis with 0.5 probability was applied during training. Argmax 

was applied to the output logits to generate the final binary segmentation and no additional 

post-processsing was performed. We adopted generalized Dice loss as the loss function since 

it is especially designed for imbalanced datasets by weighting each class by the inverse size 

of the region [23]. Training converged around 1,500 epochs.

3.2. Evaluation

We quantitatively evaluated our results using both Dice coefficient and centroid distance on 

a holdout testing set of 43 scans. If there are two models that both completely miss the 

ground truth and report a Dice of 0, radiologists may be more interested in the model that 

provides a closer guess to the ground-truth lesion. In this case, Dice may fail to measure 

the performance. To solve the problem and better evaluate our models, we adopt centroid 

distance as a complementary metric. Centroid distance measures the minimum euclidean 

distance between the centers of gravity of a ground-truth lesion and all predicted lesion 

blobs, so it is more informative when we care about the location of the prediction instead of 

the volume.

Table 2 summarizes the experimental results. The baseline method with 3D Dynamic 

U-Net from MONAI demonstrated a mean Dice of 0.28. Compared to this baseline, all 

FWT approaches improved the performance of the model by integrating extra biomarkers 

and clinical information to the network. Among all FWT approaches, channel-wise 

multiplication achieves the best performance, significantly improving mean Dice by 28% 

to 0.36 (p<0.05, paired t-test) and slightly decreased the mean centroid distance between 

the ground-truth and prediction compared to the baseline model (Fig. 2). The channel-wise 

multiplication approach is also tested with both PSAD and patient age as input, but the 

performance of the model decreased. Compared to the single scalar multiplication methods, 

the channel-wise approach puts weights on each channel to scale the contribution of each 

filter in the U-Net instead of simply conditioning all the features globally; compared to 

the feature-wise approach, the PSAD value may not provide enough information to scale 

every element in the feature. In addition, the concatenation method may not fit into this 

U-Net-based model because the number of features at the bottleneck of a U-Net is larger for 

3D models and there is no cross-channel information exchange. As a result, the extra PSAD 

channel has small contributions to the final layer.

For FWT location, our results showed that the bottleneck is the better layer to include 

this mechanism. Features are most compressed at the bottleneck, so adding biomarker 

information there as a constraint is most effective, while adding information at the early 

stages of the encoder may be too strong of a constraint for the model. The comparison 

between the PSAD only and PSAD + age indicates that PSAD by itself is a better biomarker 

when integrated into the neural network.

3.3. PSAD ablation study

To further examine the effectiveness of the PSAD biomarkers in the channel-wise 

transformation approach, we conducted a study by manually changing the PSAD value. 

In this study, we chose to do our tests on a bpMRI scan with relatively large PCa, so that 
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the Dice coefficient will not be too sensitive to small centroid shifts and the change in lesion 

prediction volume can be best observed. Because PSAD level tends to rise as PCa develops, 

we hypothesized that the PSAD value can control the size of the final prediction. The PSAD 

value of the selected case is 0.43. We incrementally adjusted the PSAD within the range [0, 

1], and then examined the change in Dice and volume of the predictions.

The performance and volume of the prediction segmentation both increased as PSAD value 

increased from 0 to 0.5 (Fig. 3), the segmentation volume stops increasing as PSAD value 

increases from 0.5 to 1.0. When PSAD value is 0, the prediction volume dropped to 76% of 

the prediction with original PSAD of 0.43. In Addition, we set PSAD values for all cases 

to 0 and the mean prediction volume of our test set dropped from 4071 voxels to 3805, and 

when we set PSAD values for cases to 1, mean prediction volume increased to 4813 voxels. 

These results indicate that the PSAD is able to scale the features and control the actual size 

of prediction output of our model in a clinically-realistic manner.

4. CONCLUSION

In this paper, we utilized FWTs to integrate biomarkers (PSAD) and clinical information 

(patient age) into a deep learning PCa segmentation model. Our experiments showed that 

the additional information can significantly improve segmentation performance compared to 

models without these features. Furthermore, we examined different FWT approaches and 

locations within the network to apply the transformations. We showed that the best approach 

is to use a MLP to expand the biomarker scalar into a vector to multiply the features 

channel-wise, and the best location to add extra information is at the bottleneck layer, 

because features are most compressed at bottleneck in a U-Net so the biomarker information 

can be easily applied; and PSAD performs better than patient age for the PCa segmentation 

task. Finally, we showed that PSAD is able to control the size of output prediction by scaling 

the latent features. A limitation of this work is that we assume availability of a gland mask; 

however, whole gland segmentation is a relatively easier task and is a routine part of clinical 

systems such as ProFuseCAD (Eigen Health, Grass Valley, CA) and this is only used to for 

coarse localization of the gland region to remove background anatomy.

However, there are still problems to be solved. Firstly, mean Dice coefficient for our model 

is 0.36, which may not outperform state-of-art segmentation methods. Our focus for this 

paper is to demonstrate that additional biomarkers are able to help with the segmentation 

task instead of trying to propose a best model, but in the future, we will still need to improve 

the model for real-world clinical use. Thanks to the simplicity of FWTs, we can easily 

integrate this mechanism into other state-of-art models such as nnU-net [20] to improve 

performance. Secondly, the PSAD values used in this study were derived from AI-based 

whole prostate segmentations, so even though the algorithm for whole gland segmentation 

performs well with a Dice of 0.90, errors may still exist. While small deviations in PSAD 

caused by gland segmentation errors may not have clinically-meaningful impact, in the 

future, we would like to add noise to the PSAD values during the training process to model 

this variation and to increase the robustness of model. Finally, our method is currently tested 

on a single public dataset, and we would like to validate our methods on external datasets in 

the future.
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Fig. 1. 
Different feature-wise transformation approaches.
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Fig. 2. 
Example segmentation results of baseline U-Net and U-Net with channel-wise FWT. In the 

first 3 cases U-Net with FWT demonstrates predictions that have both better boundary and 

closer distance to the ground truth. In the 4th case, both models fail to achieve a high Dice 

while the FWT model gives a closer prediction to the ground truth. In the 5th case, FWT 

gives a worse prediction but still locates the lesion.
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Fig. 3. 
Dice coefficient and prediction volume (total number of pixels) for different PSAD values, 

tested on a case with PSAD of 0.43.
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Table 1.

Cohort clinical information (mean±SD).

Training Validation Testing

n 128 43 43

PSA (ng/ml) 14.1±10.7 16.5±11.6 16.1±17.5

PSAD (ng/ml2) 0.3±0.3 0.4±0.3 0.4±0.4

Age (years) 67.0±6.6 65.7±6.2 66.9±6.3
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