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Abstract

Multiplex immunofluorescence (MxIF) is an emerging imaging technology whose downstream 

molecular analytics highly rely upon the effectiveness of cell segmentation. In practice, multiple 

membrane markers (e.g., NaKATPase, PanCK and β-catenin) are employed to stain membranes 

for different cell types, so as to achieve a more comprehensive cell segmentation since no 

single marker fits all cell types. However, prevalent watershed-based image processing might 

yield inferior capability for modeling complicated relationships between markers. For example, 

some markers can be misleading due to questionable stain quality. In this paper, we propose a 

deep learning based membrane segmentation method to aggregate complementary information 
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that is uniquely provided by large scale MxIF markers. We aim to segment tubular membrane 

structure in MxIF data using global (membrane markers z-stack projection image) and local 

(separate individual markers) information to maximize topology preservation with deep learning. 

Specifically, we investigate the feasibility of four SOTA 2D deep networks and four volumetric-

based loss functions. We conducted a comprehensive ablation study to assess the sensitivity of the 

proposed method with various combinations of input channels. Beyond using adjusted rand index 

(ARI) as the evaluation metric, which was inspired by the clDice, we propose a novel volumetric 

metric that is specific for skeletal structure, denoted as clDiceSKEL. In total, 80 membrane MxIF 

images were manually traced for 5-fold cross-validation. Our model outperforms the baseline with 

a 20.2% and 41.3% increase in clDiceSKEL and ARI performance, which is significant (p<0.05) 

using the Wilcoxon signed rank test. Our work explores a promising direction for advancing 

MxIF imaging cell segmentation with deep learning membrane segmentation. Tools are available 

at https://github.com/MASILab/MxIF_Membrane_Segmentation.
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1. INTRODUCTION

Crohn’s disease (CD) is a complicated inflammatory bowel disease (IBD) of the 

gastrointestinal tract, characterized by chronic, relapsing, and remitting bowel inflammation 
1. The prevalence of IBD is increasing, this has resulted in higher medical costs. In 2015, 

the medical cost of CD was estimated to be $3.48 billion per year and is expected to 

increase to $3.72 billion per year in 2025 in total US national costs 2. The Gut Cell Atlas 

(GCA), an initiative funded by The Leona M. and Harry B. Helmsley Charitable Trust, 

seeks to create reference maps of all cells in the terminal ileum and ascending colon 

to understand the human gut focused on comparing Crohn’s disease patients to healthy 

controls (https://www.gutcellatlas.helmsleytrust.org/). The GCA project provides a unique 

opportunity to define different human cell types with gene and protein expression as a 

function of anatomical location and physiological perturbations of IBD.

Multiplexed immunofluorescence (MxIF) is an emerging technique that allows multiple 

protein markers to be assessed on a single tissue section with repeated rounds of stain, 

imaging, stripping, and re-staining 3,4. Our site 5 obtained formalin-fixed paraffin-embedded 

tissues from the terminal ileum (TI) and ascending colon (AC), which were subsequently 

stained and imaged via MxIF (including a total of 27 markers that were distributed in 19 

rounds) to understand cell composition, functional state, and cell-to-cell spatial distribution 5

Figure 1 presents 27 MxIF markers on randomly selected regions of a sample tissue 

and shows how 19 different cell types and internal cellular structures are identified. The 

membrane outlines the cell boundary and helps the whole cell identification (i.e., Cytoplasm 

other than nucleus). Figure 1 implies that not all MxIF markers are suited for outlining 

cell boundaries. Empirically, we selected 9 markers, as shown in Figure 2 (A-B), to serve 

as membrane markers. However, no particular marker can stain all membranes as cell 
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boundaries. Merging different membrane markers provides complementary global structural 

information but might hide the underlying local spatial information from specific markers. 

Moreover, the merged signal cannot overlay seamlessly due to the fluorescence staining 

lens distortion and variation in field illumination 6. In this work, we aim to segment the 

membrane of MxIF images that integrate global (projection images) and local (separate 

individual markers) information to maximize topology preservation. Because the membrane 

in the MxIF stain could cross over the nuclei, we do not intend to segment the nuclei to 

break any membrane connectivity.

The current de facto standard MxIF cell segmentation methods are Voronoi diagram-based 
7,8, and wavelet/watershed-based 9–12, which focus on segmenting DAPI images first and 

then using DAPI binary masks as anchor seed points to further segment the whole cells. 

McKinley et al. extended the watershed method and segmented cytoplasm and membrane 

with a Frangi vesselness filter that detected tubular structures on combined markers 

(NaKATPase, pan-cytokeratin (PanCK), β-catenin, and Villin) 13. Han et al., proposed a 

deep learning cell segmentation model for MxIF, where the model was trained with pseudo 

labels on nuclei seeded watershed annotation from NaKATPase images only 14. Gerdes et 

al. 15 proposed to utilize connected component analysis to segment nuclei and membrane 
16–18. However, similar to 13, only few membrane markers are involved and processed 

(i.e., a combination of NaKATPase, PanCK, and E-cadherin). The existing Vororoni and 

watershed morphology approaches might cause topological mismatch between membrane 

segmentation and raw images Figure 2 (D-E). For example, some nuclei cannot always 

be consistently stained due to batch effects, which would impact the robustness of the 

watershed segmentation. Moreover, none of the above works have used as extensive of a 

number of membrane markers as this study.

In this paper, we investigate the feasibility of utilizing four state-of-the-art (SOTA) 2D deep 

networks and four volumetric-based loss functions to segment the membrane skeleton. The 

contribution of this work is three-fold:

• We develop and comprehensively evaluate the deep membrane segmentation 

frameworks for large-scale MxIF multi-channel data.

• We propose a novel metric that is topology preserving and skeleton-based, 

denoted as clDiceSKEL to fill the gap of lacking objective metrics for membrane 

skeleton segmentation.

• We perform the first deep learning membrane segmentation study with large-

scale MxIF markers.

2. METHODS

Objective.

The target annotation of this work is simplified as a skeleton to maximize topology 

preservation of all membranes. Instead of segmenting the whole merged membrane 

highlighted area that is more than 1-pixel width, the proposed model learns skeletons of 
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cell membranes for downstream analytics. Figure 3 outlines the membrane segmentation 

workflow, which includes gold standard annotation, baseline, and proposed approaches.

Dataset and data pre-processing.

Six sample biopsies were collected from 2 CD patients and 1 healthy control from the 

AC and TI with IRB approval (Vanderbilt IRB #191738 and #191777). All data were de-

identified under Institutional Review Board approval. The MxIF markers were acquired with 

20× magnification and stained in the following order – DAPI (first round), MUC2, β-catenin 

04, CD4, CD3D, HLA-A, CD8, NaKATPase, Vimentin, ERBB2, and CD45. The standard 

DAPI-based registration and autofluorescence correction were applied 19. A semi-automatic 

data quality check was to ensure marker alignment efficiency 20. We computed the tissue 

masks that covered the tissue pixels across all staining rounds. The masks were applied to 

the images and preprocessed with group-wise linear normalization. To prepare membrane 

annotation data, we split each marker image into 128×128 patches (86 μm). Except for DAPI 

and MUC2, the rest of the markers were z-stacked and generated max/mean projection 

images. Finally, 80 regions of interest (ROIs) were selected for further annotation and 

learning.

Manual annotation.

A senior digital pathology researcher manually contoured all membrane skeletons of ROIs 

using MITK Workbench v2022.04 21. As shown in Figure 3, the membrane annotation was 

first traced mainly at the z-stack max/mean projection images, then iteratively optimized 

via the nine individual channels, especially for the hard cases and weak signal regions. In 

summary, it took about 20 minutes to trace one image patch.

Membrane skeleton segmentation.

The baseline membrane segmentation model is implemented by an ilastik random forest 

pixel classification approach 22. Eight RGB patches (R: z-stack max projection image, G: 

MUC2, B: DAPI) are interactively traced over the training output from the ilastik feature 

selection intermediate results by a domain expert in cell and molecular biology. The baseline 

ilastik model would produce a membrane probability mask per input, following skeletonized 

morphological operation 23.

In recent years, deep learning has rapidly become the SOTA basis by showing enhanced 

performance on 2D and 3D semantic segmentation tasks in various medical image analysis 

applications 24. To train a deep learning-based membrane segmentation framework, we 

propose to investigate nine input options by employing five different sets of inputs: (i) nine 

individual and separate membrane markers, (ii) z-stack max projection image, (iii) z-stack 

mean projection image, (iv) ilastik probability map (intermediate output from the baseline, 

referenced from 14), and (v) DAPI & MUC2. We utilized four SOTA deep neural networks 

to generate 2D membrane skeletons: U-Net 25, U-Net++ 26, Attention U-Net 27, and SegNet 
28. We also evaluated four different loss functions to perform gradient descent: binary cross-

entropy (BCE) Loss 29, Dice Loss 30, SoftDice Loss (Dice Loss with Laplacian smoothing) 
31, and clDice Loss (combining SoftDice with a topology-preserving Loss function specific 

for tubular structure segmentation) 31. Similar to the baseline, the final membrane from the 
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proposed deep learning framework was converted to a skeleton by skeletonizing network 

output as shown in Figure 3.

Evaluation metric.

We use the adjusted rand index (ARI) to validate the segmentation topology performance to 

measure the similarity between two cell segmentation clusters. The clusters can be generated 

from a filled membrane skeleton followed by indexing each closed contour. In addition to 

ARI, to validate the skeleton’s volumetric performance, the target and predicted skeletons 

may have multiple paths to segment a broad membrane region without necessarily being 

fully overlayed but sharing a similar topology. Thus, the regular Dice or clDice metrics 
31 might not suit for evaluating the volumetric overlapping for such scenarios. We extend 

the clDice and propose a new metric, clDiceSKEL, to estimate the volumetric similarity of a 

ground truth skeleton y and the predicted skeleton p while maintaining the topology (an 

illustrative example is shown at the bottom of Figure 3), as defined in the equation (1):

clDiceSKEL(y, p) = 2 × T p(p, D(y)) × T s(y, D(p))
T p(p, D(y)) + T s(y, D(p)) (1)

where D is a dilation 32 function that dilate the input skeleton. Tp interprets the topology 

precision, and Ts determines the topology sensitivity as defined in equation (2):

T p(p, D(y)) = p ∩ D(y)
p ; T s(y, D(p)) = y ∩ D(p)

y (2)

Experiment design.

Two primary validation purposes were designed: (1) to investigate the best deep neural 

network and loss function pair, we trained models with different combinations over three 

deep learning frameworks (U-Net++, Attention U-Net, and SegNet) and four loss functions. 

We only implemented U-Net with the SoftDice Loss case. All models used the same input 

channel option (11 channels that contained z-stack max, z-stack mean, and nine separate 

membrane images) to reduce the complexity of the experimental configuration. And (2) to 

validate the sensitivity of model input channels (in total, nine options as described in Figure 

3), we tested U-Net++, Attention U-Net, and SegNet with SoftDice Loss equipped only.

All deep neural networks were implemented in PyTorch 1.8 and Python 3.8. The networks 

followed standard architectures, which can be downloaded from a public GitHub repository 

(https://github.com/Andy-zhujunwen/UNET-ZOO). The models were trained on a high-

performance computing datacenter with GPU nodes equipped with NVIDIA Titan Xp 12GB 

graphic cards. The training batch size of U-Net, U-Net++, and Attention UNet is 32, while 

the batch Size is set as 4 for SegNet to saturate the GPU. We empirically set 25 iterations 

and α = 0.01 (the ratio of SoftDice loss and topology-preserving Loss) for clDice Loss. We 

conducted a 5-fold cross-validation for each model with static training/validation split per 

fold. No duplicate validation data were allowed across folds. Each network was trained by 

100 epochs and the highest clDiceSKEL score on validation data decided the best model to 

save. A 3×3 isotropic structuring kernel dilates each pixel in function D of clDiceSKEL metric.
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3. RESULTS

Exploring the best deep learning framework.

The quantitate results on 5-fold cross validation across the ilastik baseline and 13 proposed 

deep learning works are shown in Figure 4. In summary, for volumetric performance, 

the SegNet with SoftDice Loss has the best clDiceSKEL score (mean ± std: 0.757±0.068) 

that outperforms the baseline by 20.2%. For topology performance, Attention U-Net with 

SoftDice Loss (mean ± std: 0.309 ± 0.143) outperforms the baseline by 41.3%. The 

Wilcoxon sign rank test was employed as the statistical model, where the significant 

difference (p-value < 0.05) is marked. Figure 5 demonstrates the qualitative results that 

include good/average/bad clDiceSKEL across all models. The relevant clDiceSKEL score is 

marked for reference.

Sensitivity analysis on different input channel.

Table 1 demonstrates the different deep learning frameworks with training by different input 

channel options when they are all using the SoftDice Loss. The Wilcoxon sign rank test was 

computed for each method. Table 1 shows that two of the input options (6 & 7, where input 

channels integrate z-stack max and mean projection image with/without individual markers) 

have better performance on average with a significant difference (p-value < 0.05).

4. DISCUSSION AND CONCLUSION

From Figure 4, the SegNet with SoftDice Loss leads to better performance over other 

configurations. Figure 5 shows that the baseline ilastik model is prone to over-segment 

the membrane. We also find that the epithelial region brings good segmentation results. 

The bad segmentation performance patch is mainly on the stromal section. Furthermore, 

the predicted skeleton contains a loose segment end that causes low ARI scores, even 

when the topology of the skeleton shape matches the ground truth label. The sensitivity 

analysis results show a moderate difference between employing or not utilizing individual 

markers. Moreover, we observe that adding DAPI channels degrades the overall skeleton 

volumetric and topology performance, indicating that the membrane across nuclei scenario 

is not random.

In summary, this is the first comprehensive work that studies deep learning-based membrane 

segmentation on large-scale MxIF marker images. We exploit the efficiency of how global 

and local spatial information from the markers can help membrane segmentation. Our work 

explores a promising direction for advancing further MxIF imaging cell segmentation to 

maximize topology preservation. Interestingly, there is no significant difference between 

SoftDice Loss and clDice Loss (aim to preserve tubular topology), which is worth further 

investigating on other topological loss functions (i.e., evaluating 33,34) as the next steps. Our 

proposed clDiceSKEL has the potential to be extended as a loss function and cooperate with 

SoftDice Loss. Advancing the post-processing on generated membrane skeleton mask (i.e., 

bridge the loose, remove island, and avoid over-segmenting) should improve the overall cell 

clusters topology performance. Finally, we could extend the work by working on DAPI and 
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MUC2 channels and analyzing how to outline the cell when membrane signals across the 

DAPI and identify the cell when nuclei staining is absent.
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Figure 1. 
This figure presents the 27 markers that are used in our MxIF study. The red channel 

indicates the marker show positive. The patches with blue channel (DAPI), green channel 

(MUC2), and gray channel (β-catenin) are collected from epithelium, while the patches with 

only blue and red channels are acquired from stroma. The magenta regions represent the 

overlay between red and blue channels.
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Figure 2. 
(A) one random tissue section on DAPI and MUC2 stain is selected. (B) Nine markers 

highlight cell membrane structures in the same region of interest. There is no particular 

marker that can stain all cell membrane boundaries. Some nuclei might not be stained 

(right yellow arrow in β-catenin). (C) Merging all marker channels provides complementary 

structural information across different markers but might hide or over enhance the 

underlying information. (D) Recent MxIF cell segmentation methods focus on segmenting 

DAPI images first with watershed segmentation, leading to the mismatch between 

membrane topology. (E) The proposed method segments the membrane skeleton of MxIF 

images that integrates global (projection images) and local (separate individual markers) 

information to maximize the topology preservation.
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Figure 3. 
The manual label is created by iteratively tracing over nine separate membrane markers on 

the same ROI and their z-stack max/mean projection images (instead of including the DAPI 

and MUC2 channels). The baseline method is an ilastik Autocontext model. We investigated 

the feasibility of four SOTA 2D deep networks and four volumetric-based loss functions. 

Moreover, we conducted a comprehensive ablation study to assess the sensitivity of the 

proposed method with various combinations of input channels. Beyond using the existing 

Adjusted Rand Index based evaluation metric, we propose a novel metric, clDiceSKEL, to 

assess topology preserving and skeleton-based membrane segmentation in MxIF.
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Figure 4. 
The quantitate results on 5-fold cross-validation across the ilastik baseline method and 13 

proposed deep learning-based approaches. For the clDiceSKEL results, SegNet and SoftDice 

Loss leads to the best average results. U-Net++ and SoftDice Loss conduct the best 

overall results for the Rand Index results. The Wilcoxon signed rank test is calculated with 

significant differences marked in red asterisks (p<0.05).
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Figure 5. 
The qualitative results on three randomly selected MxIF image patches with good/

average/bad SKEL-clDice performance. Segmentation results (in green) are overlayed 

on manual labels (in red). The yellow skeletons represent the overlay between red and 

green channels. The relevant clDiceSKEL values of different techniques are presented (in 

parentheses) for reference.
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Table 1.

Sensitivity analysis results (mean ± standard deviation) from different input channel options on individual 

deep learning frameworks. The Wilcoxon sign rank test is calculated per column, where the reference of each 

test and significant difference (p-value < 0.05) with other input options per method is highlighted with ‘*’.

clDiceSKEL ARI

Input options U-Net++ Attention U-Net SegNet U-Net++ Attention U-Net SegNet

1: 9 separate 
makers

0.750 ±0.064 0.759±0.066(*) 0.761±0.065(*) 0.313±0.135 0.313±0.139 0.292±0.165

2: z-stack max 
projection image

0.738±0.071(*) 0.757±0.068(*) 0.754±0.072(*) 0.288±0.160(*) 0.318±0.147 0.280±0.167(*)

3: z-stack mean 
projection image

0.745±0.058(*) 0.761±0.059(*) 0.760±0.061(*) 0.314±0.139(ref) 0.322±0.132(ref) 0.298±0.154

4: 1 & 2 0.754±0.060(ref) 0.763±0.063(*) 0.764±0.066 0.296±0.145(*) 0.306±0.132(*) 0.294±0.165

5: 1 & 3 0.748±0.061(*) 0.759±0.062(*) 0.763±0.062 0.275±0.126(*) 0.303±0.140(*) 0.295±0.138

6: 2 & 3 0.750±0.064 0.768±0.061(ref) 0.766±0.067 0.303±0.139 0.321±0.145 0.295±0.167

7: 1 & 2 & 3 0.750±0.061(*) 0.764±0.061 0.766±0.064(ref) 0.304±0.141 0.309±0.143 0.286±0.157(*)

8: 7 & ilastik 
probability map

0.744±0.066(*) 0.758±0.064(*) 0.765± 
0.063

0.304± 0.144(*) 0.295±0.151(*) 0.305±0.153 
(ref)

9: 8 & DAPI & 
Muc2

0.740±0.059(*) 0.756±0.064(*) 0.762±0.065(*) 0.274±0.138 0.303±0.129(*) 0.284± 0.135(*)
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