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Abstract

Medical image segmentation, or computing voxelwise semantic masks, is a fundamental yet 

challenging task in medical imaging domain. To increase the ability of encoder-decoder neural 

networks to perform this task across large clinical cohorts, contrastive learning provides 

an opportunity to stabilize model initialization and enhances downstream tasks performance 

without ground-truth voxel-wise labels. However, multiple target objects with different semantic 

meanings and contrast level may exist in a single image, which poses a problem for adapting 

traditional contrastive learning methods from prevalent “image-level classification” to “pixel-

level segmentation”. In this paper, we propose a simple semantic-aware contrastive learning 

approach leveraging attention masks and image-wise labels to advance multi-object semantic 

segmentation. Briefly, we embed different semantic objects to different clusters rather than 

the traditional image-level embeddings. We evaluate our proposed method on a multi-organ 

medical image segmentation task with both in-house data and MICCAI Challenge 2015 BTCV 
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datasets. Compared with current state-of-the-art training strategies, our proposed pipeline yields a 

substantial improvement of 5.53% and 6.09% on Dice score for both medical image segmentation 

cohorts respectively (p-value<0.01). The performance of the proposed method is further assessed 

on external medical image cohort via MICCAI Challenge FLARE 2021 dataset, and achieves 

a substantial improvement from Dice 0.922 to 0.933 (p-value<0.01). The code is available at: 

https://github.com/MASILab/DCC_CL

Index Terms—

Medical image segmentation; contrastive learning; attention map; query patches

I. INTRODUCTION

CONTRASTIVE learning methods learn an augmentation invariant feature embedding, 

which opens a new window of developing a deep learning model with large-scale 

unannotated data and few annotated data [1], [2]. Traditional contrastive learning approach 

consists of two primary concepts: 1) the learning process pulls the target image (anchor) and 

a matching sample close to each other as a “positive pair” in the embedding space, and 2) 

the learning process pushes the anchor from non-matching samples away from each other as 

“negative pairs” in the embedding space. Data augmentation is used to generate the positive 

samples from a training sample, while the negative pairs are formed from the remaining 

samples of non-matching objects. Previous studies demonstrate the advantages of contrastive 

learning in image-level classification tasks [3]-[5]. Meanwhile, multi-organ segmentation 

in medical domain is a fundamental yet challenging task when limited annotated samples 

are available. Previous proposed self-supervised learning model is able to extract semantic 

oriented spatial context for initializing a multi-object segmentation deep neural network 

[6]. We posit that contrastive learning can also leverage the capability of sub-image-level 

feature encoding, to advance pixel-level segmentation tasks. However, some gaps need to 

be filled to achieve the latter goal, especially for multi-organ segmentation tasks in medical 

imaging [7]-[9]. For example, multiple semantic objects may exist in medical images (e.g., 

abdomen, organs, brain tissues), while each element in the convoluted/downsampled feature 

may correlate to multiple objects. Thus, it is difficult to align the object-wise semantics 

with the learned representation to enhance model interpretability in the latent space for 

multi-organ segmentation as the downstream task.

In this work, we propose a semantic-aware attention-guided contrastive learning (AGCL) 

framework to advance multi-object medical image segmentation with contrastive learning. 

We integrate object-corresponding attention maps as additional input channels to adapt 

representations into corresponding semantic embeddings (as shown in Fig. 1). To further 

stabilize the latent space, we propose a multi-class conditional contrastive loss that 

increases the arbitrary number of positive pairs within the same sub-class for contrastive 

learning. Instead of leveraging pixel-wise label, radiological conditions such as modality and 

organ semantics, are provided as image-wise multi-class label to constrain the normalized 

embedding. By introducing multiple semantics with our proposed contrastive learning 

strategy, the learned features can be classified into embeddings with multiple semantic 
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meanings, thus enhancing the feature intrepretability in the latent space. Furthermore, such 

latent space is easily to provide explainability about the mdoel robustness to the clinical 

teams, by observing the separability between each semantic embeddings. Fig. 2 provides a 

visual explanation of our proposed framework. Our proposed contrastive learning strategy 

AGCL is evaluated with three medical imaging datasets (two public contrast-enhanced 

CT dataset [10], [11] and one in-house non-contrast dataset). The results demonstrate that 

consistent improvements are achieved on both ResNet-50 and ResNet-101 architectures 

[12]. Our main contributions are summarized as below:

1. We propose a semantic-aware contrastive learning framework to advance multi-

object pixel-level semantic segmentation.

2. We propose a multi-conditional contrastive loss to integrate multiple radiological 

conditions as additional constraints for classifying representations into sub-class 

embeddings.

3. We demonstrate that the proposed AGCL generalizes the CT contrast phase 

variation in each organ and significantly boosts the segmentation performance.

II. RELATED WORKS

Contrastive Learning:

Self-supervised representation learning approaches have recently been proposed to learn 

useful representation from unlabeled data. Some approaches propose learning embeddings 

directly in lower-dimensional representation spaces instead of computing a pixel-wise 

predictive loss [13]. Self-distillation with a teacher-student network is further proposed to 

enrich the semantic correspondence using pseudo-label predictions [14], while the masked 

autoencoder provides an alternative to learn the spatial feature correspondence with the 

image reconstruction task [15]. Contrastive learning is one of such state-of-the-art methods 

for self-supervised learning to model the semantic-wise relationships in the latent space [1], 

[16]. It employs a loss function to pull latent representations closer together for positive 

pairs, while pushing them apart for negative pairs. Maximizing mutual information between 

embeddings has also been proposed as an alternative to extract the similar information 

between targets [17|. Adapting with memory bank and momentum contrastive approaches 

have been proposed to increase the batch sizes and generate more dissimilar pairs in 

a minibatch for contrastive learning [18]. Additionally, to constrain and stabilize the 

embedding spaces, class label information has been added to provide additional supervision 

to stabilize contrastive learning process [2].

However, most of the prior works in contrastive learning focused on improving the “image-

wise classification”, while relatively fewer methods have been proposed for the “pixel-wise 

segmentation”. Pixel-wise contrastive loss is proposed to adapt the representation from the 

ground-truth label information [9], while dense contrastive loss is also proposed to minimize 

the discrepancy of image-level prediction and pixel-level prediction [19]. Furthermore, one-

stage contrastive learning framework is proposed to enforce the pixel embeddings belonging 

to a same semantic class to be more similar than embeddings from different classes [20]–

[22]. In the medical domain, the contrastive learning framework is extended to leverage the 
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structural similarity and learn the distinctive representations of local regions without using 

pixel-wise ground truth labels [7] and image-wise labels [23]. Similarly, limited ground-

truth labels are adapted into the pretraining step for contrastive learning and enhanced the 

segmentation performance [24], [25]. However, such methods typically need pixel-wise 

segmentation labels. Therefore, our proposed method identifies the semantic-aware regions 

with one-hot attentional guidance and leverages multi-class image-level labels to define 

region-bounded representations as an arbitrary number of positive pairs for contrastive 

learning, without using pixel-wise labels.

Medical Image Segmentation & Multi-Organ Segmentation:

Fully-supervised deep learning methods have been developed to enhance both the 

segmentation performance and the generalizability across different datasets [26]–[29]. 

However, the supervised learning strategies are limited to the quality of pixel/voxel-wise 

labels and the resolution of volumes [30]. Thus, hierarchical approaches and patch-wise 

approaches have been proposed to perform segmentation across scales and resolutions 

[31]-[33]. Another study further enhances the segmentation accuracy with the statistical 

fusion from multi-view predictions [34]. Apart from the multi-view attention, shape-aware 

network is proposed to consistently smoothen the label prediction by learning the signed 

distance function as additional constraints [35]. Furthermore, RAP-Net is proposed to 

leverage one-hot shape-aware mappings to provide additional localization context as 

additional input channel and refine the segmentation mapping hierarchically [36]. nn-UNet 

further enhances the generalizability with self-configuring structure to diversely predict 

segmentation for multi-modality imaging [37]. In terms of generic network backbone, vision 

transformer is introduced as the encoder network to extract attention features with large 

receptive field for robust segmentation [38]. On the other hand, partially-supervised, semi-

supervised and self-supervised learning have also been explored to adapt unlabeled data 

in the medical imaging domain. Multiple single organ-labeled datasets are used to provide 

structural prior knowledge during the training process with multiple organ-labeled dataset 

to enhance multi-organ segmentation performance [39]. A quality assurance module have 

been proposed to adapt the segmentation quality as the supervision from unlabeled data 

[40]. Pretext tasks such as colorization, deformation and image rotation, have been used as 

pre-training features to initialize the segmentation networks [41]. Self-supervised context 

has also been explored by predicting the relative patch location and the degree of rotation 

[42], [43]. Contrastive learning has been used to extract global and local representations 

for domain-specific MRI images [7]. A contrastive predictive network has been used to 

summarize the latent vectors in a minibatch and predicts the latent representation of adjacent 

patches [6].

III. METHOD

We present our co-training approach AGCL that integrates one-hot organ attention into 

contrastive learning by adapting radiological context labels (modality and organ) to classify 

representations into sub-classes embeddings, as presented in Fig. 3.
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A. Hierarchical Coarse Segmentation

The input data of the entire pipeline is a multi-contrast 3D image volume V i = Xi, Y i i = 1, …, L, 

where L is the number of all imaging samples, X is the volumetric image and Y  is the 

corresponding multi-organ label. The corresponding outcomes of the preprocessing stage are 

coarse segmentation masks (attention maps) Ai = RAP Xi  from a hierarchical segmentation 

network RAP ⋅  [36]. We define A ∈ RH × W × D × C, where H and W  denote as the axial 

dimension of the image, D denote as the number of slices and C denotes as the number of 

label classes. The coarse segmentation network RAP-Net consists of two hierarchical stages: 

1) low-resolution whole volume segmentation and 2) organ-specific patch segmentation 

refinement. The low-resolution model generates a rough segmentation map and provide 

anatomical context as additional channel input to refine the segmentation in patch-wise 

setting as the second step. Both low-resolution model and patch-wise model are trained in 

supervised setting with 5-fold cross-validations.

B. Data Preprocessing

The goal of the data preprocessing step is to randomly sample 2D training patches for 

downstream contrastive learning. In our design, we first slice all the volumetric scans 

(image, ground truth labels and coarse segmentations) and utilize the slice-wise attention 

maps (1) as spatial restrictions of the organ-specific sampling process, and (2) highlight the 

current organ of interest to define semantic-wise embeddings for segmentation refinement. 

Briefly, organ-specific patches pi = xC, i, yC, i, sC, i i = 1, …, N are randomly sampled within each 

organ class C in attention maps. The center point is randomly sampled from attention maps 

to crop the region of interest (ROI), N denotes as the total number of query patches, xC, i

is the organ-corresponding image patch, yC, i is the binary ground-truth label patch, and sC, i

is the coarse organ-specific attention map from Ai slice in binary setting. As the significant 

difference between yC, i and sC, i is the variation of segmentation quality, the trained model 

aims to refine the segmentation with the prior knowledge of sC, i as an additional input 

channel. As a standard process in data augmentation, random cropping, rotation (−30 to 30 

degrees), scaling has been applied to augment the size of training samples.

C. Contrastive learning with Organ-Specific Attention

After generating augmented image pairs, pairwise images are then used as the inputs for 

contrastive learning. Specifically, a convolutional encoder network E ⋅  is used to extract 

high dimensional features. We further project each high-level feature mapping into 1D 

vector zi using a multi-layer perceptron network P ⋅ , zi = P E ai , zi ∈ ROE (pink box 

in Fig. 2), where OE is the size of the output vector. Then, the standard self-supervised 

contrastive loss (SSCL) [1] can be defined as the following:

ℒself = −
k = 1

2N
log exp zk ⋅ zp k /T

j ∈ J k exp zk ⋅ zj/T
(1)

where T  is a hyperparameter indicating temperature scaling to control the radius weighting 

on the positive pair/negative pairs. Both k and p k  represent the index of the anchor sample 
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and the corresponding positive sample, respectively. J k  represents the number of remaining 

negative samples. To incorporate the attention with modality and organ semantic meanings, 

we extend SSCL to adapt an arbitrary number of positive pairs by introducing multi-class 

image-level labels into contrastive loss. Here, modalities indicate the different contrast types 

in CT (we have utilized both contrast-enhanced and non-contrast CT scans in the training 

set). As the organ-specific attention only provides one-hot voxel-wise context to preserve 

organ regions, the multi-class labels represent different modalities and organs for the learned 

representations under the attention regions. It provides flexibility to further constrain the 

representations into semantic-aware clusters, which is conditional to multiple image-level 

labels. In each batch, pairwise patches with the same organ and modality label are defined 

as positive pairs, while the remaining pairs are specified as negative pairs. With such 

positive-negative pairs definition, we further extend the contrastive loss with conditional 

constraints as follows:

ℒMT =
k = 1

2N −1
L k l ∈ L k

log exp zk ⋅ zl/T
j ∈ J k exp zk ⋅ zj/T

(2)

where L k ≡ l ∈ J k :mk = ml, op = ol , m and o denote as the corresponding modality 

and organ label, respectively. l and z l are the index number and the projected feature 

representation of the corresponding positive sample with same organ and modality 

label. The feature vector output with 256 channels is directly used to compute the 

contrastive loss of modality and organ class respectively. By classifying the learned 

representations into multi-classes embeddings, the model is initially learned the attention-

bounded representations with semantic meanings, which are hypothesized to be beneficial 

for downstream segmentation tasks.

D. Co-training with Multi-Organ Segmentation

The ultimate goal of our framework is to achieve a robust patch-wise contrastive learning 

without using pixel-wise labels, which benefits for downstream segmentation tasks. The 

native two-stage strategy is to train both contrastive loss and downstream segmentation loss 

independently. Here, we attempt to have a co-training strategy, by training the contrastive 

loss and segmentation refinement tasks simultaneously. The encoder network is followed 

with an atrous spatial pyramid pooling (ASPP) module as the decoder network to resample 

the bottleneck feature with multiple effect Field Of Views (FOVs) [44]. The DeepLabV3+ 

is employed as the segmentation part with the shared encoder structure for contrastive 

learning [44]. The distinctiveness of adapting ASPP is to obtain multi-scale features during 

upsampling. One 1 × 1 convolution and three 3 × 3 convolution layers with different dilation 

rate (e.g., 6, 12,18) are leveraged. With the increased number of dilation rate, kernel 

stride is constrained while a larger FOV is accomplished without increasing the number 

of model parameters. Furthermore, image pooling is also performed in parallel to extract 

the global features. Features from different FOVs are finally concatenated. The channel-wise 

features are mixed using a 1 × 1 convolution layer before passing through the final layer 

for high-resolution prediction. The rationale of such design is to adapt the multi-view 

behavior and search the optimal tradeoff between the localized features (small FOV) and the 

global-assimilated features (large FOV). Dice loss is used to compute the predicted output 
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with the ground truth label in binary setting for the co-training segmentation task. After 

computing all organ-specific patches predictions, we fuse the organ-wise patches according 

to the center point recorded in the data preprocessing stage. We employ majority voting [45] 

as the label fusion module to fuse predictions into multi-organ labels.

IV. EXPERIMENTS

Datasets:

To evaluate our proposed learning approach, one in-house research cohort and two publicly 

available cohorts in medical imaging are used with multi-organ segmentation as the 

downstream task.

MICCAI 2015 Challenge Beyond The Cranial Vault (BTCV) dataset is comprised 

of 100 de-identified unpaired 3D contrast-enhanced CT scans with 7,968 axial slices in 

total. 20 scans are publicly available for the testing phase in the MICCAI 2015 BTCV 

challenge. All CT scans are in portal venous phase. Peak enhancement of contrast is 

observed in several organs, such as liver, kidney, spleen, and portal splenic vein. For each 

scan, 12 organ anatomical structures are well-annotated, including spleen, right kidney, left 

kidney, gallbladder, esophagus, liver, stomach, aorta, inferior vena cava (IVC), portal splenic 

vein (PSV), pancreas and right adrenal gland. Each volume consists of 47 ∼ 133 slices of 

512 × 512 pixels, with the resolution of 0.54 ∼ 0.98 × 0.54 ∼ 0.98 × 2.5 ∼ 7.0 mm3.

Non-contrast clinical cohort is retrieved in de-identified form from ImageVU database of 

Vanderbilt University Medical Center. It consists of 56 unpaired 3D CT scans with 3,687 

axial slices and expert-refined annotations for the same 12 organs as the MICCAI 2015 

BTCV challenge dataset. All volumetric scans are generated without contrast enhancement 

procedures. Each volume consists of 49 ∼ 174 slices of 512 × 512 pixels, with the resolution 

of 0.64 ∼ 0.98 × 0.64 ∼ 0.98 × 1.5 ∼ 5.0 mm3.

MICCAI 2021 Challenge Fast and Low GPU memory Abdominal Organ Segmentation 
(FLARE) dataset leverage large scales of abdominal contrast-enhanced CT with 

511 unpaired cases from 11 medical centers in multi-contrast phases (including 

both portal venous phase and non-contrast phase CTs). It consists of 361 3D CT 

scans with four organ-specific labels including spleen, kidney, liver and pancreas. 

Each volume consists of 43 ∼ 384 slices of 512 × 512 pixels, with the resolution of 

0.64 ∼ 0.98 × 0.64 ∼ 0.98 × 1.0 ∼ 5.0 mm3.

Preprocessing:

We apply the preprocessing steps as follows: (i) applying soft tissue windowing within the 

range of −175 to 250 Hu and performing intensity normalization of each 3D volume, v with 

min-max normalization: v − v1 / v99 − v1 , where vp denote as the pth intensity percentile in 

v, and (ii) applying volume-wise cropping in z-axis with body part regression algorithm 

to extract the abdominal region only for segmentation and ensure the similar field of view 

between scans [48].
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Network Training:

Our proposed framework AGCL is trained with unpaired samples in our scenario, while 

it also allows to train with paired samples. 5 -fold cross-validation is performed for 

both contrast-enhanced phase and non-contrast phase CT (Training: 60 volumes (contrast-

enhanced) and 44 volumes (non-contrast), validation: 20 volumes (contrast-enhanced) and 

6 volumes (non-contrast), and testing: 20 volumes (contrast-enhanced) and 6 volumes 

(non-contrast)). For training the coarse segmentation network RAP-Net, we downsample 

all training volumes to a resolution of 2 × 2 × 6 with the dimension of 168 × 168 × 64. The 

low-resolution volumes are leveraged to train a low-resolution segmentation model with 

Adam optimizer using a batch size of 1 and a learning rate of 1e − 4. We then use the 

coarse segmentation output to guide and extract organ-specific patches with the dimension 

of 128 × 128 × 48. The patch-wise segmentation refinement model is trained with Adam 

optimizer using a batch size of 2 and a learning rate of 1e − 4. For contrastive learning, we 

perform patients-level sampling and extract 30 2D query patches of each anatomical target 

in each axial slices of a subject scan. Such sampling strategy ensures that all patches are 

fully covered the organ-specific ROIs with significant variation of anatomical morphology. 

More than 400k patches with dimensions 128 × 128 are used and shuffle to train with 

stochastic gradient descent (SGD) optimizer for 5 epochs with a batch size of 4 and a 

learning rate of 5 × 10−4. We have evaluated the variation of the temperature parameter 

towards the segmentation performance and T = 0.1 achieves the best performances across all 

other temperature values. For segmentation task, the encoder’s weight is frozen and only the 

decoder with ASPP module is trained for 10 epochs with Adam optimizer using a batch size 

of 4 and a learning rate of 10−4. We use the validation set to choose the model with the 

highest mean Dice score for all semantic targets segmentation and perform inference as the 

quantitative representation on the testing set.

Experimental Setup:

We evaluate the segmentation performance with Dice similarity coefficient on current 

state-of-the-art approach in contrastive learning and segmentation task for medical imaging 

domain, including the testing phase of the BTCV dataset, testing cohort of the non-contrast 

clinical cohort and the random sampled cohort from FLARE dataset. We further perform 

different pre-training strategies with the multi-class image-level label using different 

scenarios. Apart from learning image-wise embeddings with self-supervised setting, inspired 

by Khosla et al. [2], we introduce patch-wise multi-label (modality & organ) classification as 

the pretext task via the canonical cross-entropy (CE) loss in a fully-supervised setting. The 

learned representations are classified into label-corresponding clusters, as in AGCL. The CE 

loss is defined as following:

ℒce =
i = 1

C
yilog pi (3)

where yi is the ground-truth multi-class label and pi is the Softmax probability for the ith, 

i ∈ 1, …, C classes. Apart from different pretext task strategies, we also perform ablation 

studies with the variation of hyperparameters such as temperature and the number of 
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label used for pretraining, to investigate the optimal effect on fine-tuning segmentation 

task. For the encoder network, we evaluate with two common backbone architectures for 

segmentation in medical imaging domain: DeeplabV3+ with ResNet-50 and ResNet-101 

encoder. The normalized activation of the final pooling layer with DE = 2048 are used as 

the distinctive feature representation vector. More details of both network training and data 

preprocessing are demonstrated in the supplementary material.

A. Segmentation Performance—We first compare the proposed AGCL with a 

series of state-of-the-art approaches including 1) fully supervised approaches (training 

on ground-truth labeled data only), 2) a partially-supervised approach (training on one 

contrast phase dataset, and another with partial labels), and 3) contrastive learning 

approach for segmentation tasks. As shown in Table I, the contrastive learning 

approach demonstrates significant improvement followed by the partial-supervision and 

full-supervision approaches. Chaitanya et al. integrates the SSCL across global to local 

scale and demonstrates significant improvement across organs. Khosla et al. provides 

an additional single class label to address the correspondence on embeddings, which 

outperforms all current approaches in supervised and self-supervised contrastive learning 

settings. By further adding multi-class labels as conditional constraints, AGCL achieves 

the best performance among all state-of-the-arts with a mean Dice score of 0.926. The 

additional gains demonstrate that our use of supplemental imaging information allows for 

recognition of more positive pairs with additional label constraints. To further evaluate 

the generalizability of our approach, we perform external evaluations on another public 

multi-organ labeled datasets FLARE for multi-organ segmentation. In Table IV, AGCL 

demonstrates substantial improvement on all organs segmentation when comparing against 

the current all contrastive state-of-the-arts.

B. Ablation Study for AGCL

Comparing with first stage training approaches:  To investigate the effect of using 

multi-class label for contrastive learning, we perform evaluation of different pretraining 

approaches with/out multi-class label: 1) training with self-supervised contrastive loss 

(SSCL), 2) training with cross-entropy (CE) loss as classification tasks, and 3) random 

initialization (RI) without any contrastive learning on both ResNet-50 and ResNet-101 

encoder backbone. As shown in Table II and Fig. 4, SSCL improves the segmentation 

performance over RI by 3.12%, which is expected because RI considers no constraint in 

the lower-dimensional space and relies on the decoder ability for downstream tasks. With 

the supervision of modality and anatomical information, the supervised image classification 

strategies significantly boost the segmentation performance by 5.93%. Pretraining with CE 

is to classify representations into corresponding embeddings related to the label given and 

representations in the same class is moved towards each other. Therefore, such improvement 

demonstrates that a good definition of the latent space in encoder can help address the 

corresponding representation for each semantic target and starts to achieve more favorable 

with the segmentation task. Eventually, AGCL surpasses CE by 1.32% in mean Dice and 

demonstrates the best performance across all pretraining strategies. Instead of constraining 

same class representations to move near only, our contrastive loss allows to push the 
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representations out if they are not in the same class and provide a better definition on 

separating embeddings than pretraining with CE.

To further evaluate the segmentation using different contrastive learning approaches, the 

qualitative representation of the segmentation prediction with each training method is 

demonstrated on Fig. 5 comparing with the ground truth label. With SSCL, the boundary 

of the segmentation is significantly smoother than that of with RI. However, we found that 

additional segmentation is performed near the neighboring structures. The similar intensity 

range and morphological appearance may lead to the instability of representation extraction 

from SSCL. Pretext task with CE demonstrates a significant improvement in label quality, 

while the boundaries on particular organs (e.g. gall bladder) is not well preserved. With the 

additional constraints by AGCL, the boundary information between neighboring organs are 

clearly defined and the segmentation quality is comparable to the ground truth label.

Comparing with different constraints scenario in contrastive loss:  We further perform 

evaluation in our proposed contrastive loss with class-wise label constraint: 1) modality-only 

label constraint, 2) organ-only label constraint, and 3) modality plus organ constraints with 

ResNet-50 encoder as the network backbone. As shown in Table III, the overall superior 

performance is achieved when applying both modality and organ constraints.

Comparing with reduced label for AGCL:  In Fig. 6(a), we perform AGCL with 

the variation of label quantity and compare the segmentation performance by leveraging 

the amount of label information. We observe that the segmentation model has the best 

performance with fully labeled input. A significant improvement is shown with 20% labels 

for AGCL comparing to that with 10% labels, while an improvement to a small extent is 

demonstrated by using 50% label for AGCL.

Comparing with temperature variability:  We experiment with the variation of 

temperature to investigate the optimal effect towards the segmentation performance. Fig. 

6(b) demonstrates the effect of temperature on the multi-organ segmentation across all 

subjects in the BTCV testing dataset. We observe that low temperature achieves better 

performance than high temperature, as the radius of the hypersphere defined in the latent 

space is inversely proportional to the temperature scaling, which increases the difficulty of 

finding positive samples with the decrease of radius.

Comparing with single/multiple modal contrastive learning: The segmentation 

performance is evaluated with single modality and with multi-modality contrastive learning 

respectively. From Fig. 6(c), a better segmentation performance for contrast-enhanced 

dataset is achieved by contrastive learning with multi-modality images. Interestingly, we 

observe that the segmentation performance of non-contrast imaging is improved to a small 

extent with non-contrast modal pre-training only.

C. Discussion & Limitations—In this work, we present a co-training framework 

that leverages organ attention into contrastive learning and defines representations into 

conditional embeddings with image-level labels only. We hypothesize that the conditional 

embeddings defined are beneficial to the downstream segmentation task. By using organ 
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attention as an additional input channel, we can extract meaningful representation within the 

organ-specific regions, instead of randomly extracting representations that may affect by the 

neighboring organs.

It also allows to learn and define the organ-specific context into corresponding semantic 

categories. Apart from using organ attention, we further leverage the multi-class labels 

to constrain pairwise representations into sub-class embeddings. Instead of constraining 

contrastive loss in pixel-wise setting, we demonstrate that constraining the latent space with 

multiple image-level labels is also beneficial to enhance the segmentation performance for 

each organ of interest. From Table I, we have shown that our proposed learning scheme 

outperforms the current contrastive learning state-of-the-art for multi-organ segmentation. 

Furthermore, Table II has shown the comparison of different pre-training strategies with/out 

multi-class image-level labels. It provides a better understanding about the contribution of 

our proposed contrastive loss in defining semantic-aware latent space for segmentation task.

Although AGCL tackles current challenges of integrating contrastive learning into multi-

object segmentation, limitations still exist in the process of AGCL. One limitation is the 

dependency of the coarse segmentation quality. As 2D patches are extracted with the 

attention information in each slice, patches without corresponding organ regions may also 

be possible to extract due to inaccurate coarse segmentation. Incorrect label definition inputs 

may bring into contrastive learning process. Another limitation is performing contrastive 

learning in object-centric setting. We aim to innovate con- trastive learning strategy with 

complete volume inputs for multi-object segmentation in our future work.

V. CONCLUSION

Performing robust multi-object semantic segmentation using deep learning remains a 

persistent challenge. In this work, we propose a novel semantic-aware contrastive framework 

that extends self-supervised contrastive loss to adapt multiple semantic meanings into the 

learned features and integrates attention guidance from coarse segmentation to extract 

organspecific features. Our proposed method leads to a significant gain in segmentation 

performance on two public contrast-enhanced CT datasets and one in-house non-contrast CT 

dataset.
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Fig. 1: 
With multiple organs located in a single image, organ attention maps guide their 

representations into corresponding embeddings and adapt contrastive learning for multi-

object segmentation. Categorical information can be used for supervisory context to 

constrain the separation of clusters (grey arrow: pull the matching representations together, 

red arrow: push the non-matching representations apart).
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Fig. 2: 
A 2D/3D segmentation pipeline (2D for natural image, 3D for medical image) is used to 

generate attention map for organ localization. 2D organ-corresponding query patches are 

randomly extracted and concatenated with the regional attention maps as an additional 

channel to guide embeddings of the organ targets. Data augmented pairs of the attention 

queries are constrained into corresponding radiological embeddings (such as organs and 

modalities) with additional label supervision in the proposed contrastive loss. The encoder is 

co-trained with decoder to generate refined segmentation with label fusion.
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Fig. 3: 
The latent distributions of four randomly selected organs using principal component analysis 

(PCA) are plotted with their corresponding modality (Blue: contrast-enhanced phase CT, 

red: non-contrast phase CT). The first two components are plotted as a visualization. With 

AGCL, the organ representation can be well separated into specific modal clusters.
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Fig. 4: 
Comparison of different supervised / self-supervised pre-training strategies using multi-class 

labels for multi-organ segmentation. AGCL outperforms the current state-of-the-art pre-

training methods with SSCL and classification pre-training with CE across all organs. (*: p 
< 0.05, **: p < 0.01, with Wilcoxon signed-rank test)
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Fig. 5: 
Qualitative representations of different pretraining strategies are demonstrated with 

ResNet-50 encoder backbone. Incremental improvement on segmentation quality is shown 

and AGCL demonstrates smooth boundaries and accurate morphological information 

between neighboring organs.
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Fig. 6: 
a) The segmentation performance gradually improved with the additional quantities of 

image-level labels for AGCL. b) Ablation studies of temperature scaling the distance 

between positive/negative pairs demonstrates that the segmentation performance is best 

optimized when T = 0.1. c) Performance trade-off is demonstrated between non-contrast and 

contrastenhanced CTs with multi-modal training.
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TABLE IV:

Comparison of the current contrastive state-of-the-art methods on FLARE dataset.

Method Spleen Kidney Liver Pancreas Average Dice

Lee et al. [36] 0.956 0.903 0.954 0.730 0.885

Chai. et al. [49] 0.961 0.923 0.956 0.787 0.908

Wang et al. [19] 0.966 0.918 0.964 0.800 0.912

Khosla et al. [2] 0.963 0.918 0.966 0.830 0.919

Wang et al. [20] 0.968 0.940 0.964 0.811 0.922

Ours (SSCL) 0.960 0.910 0.960 0.756 0.896

Ours (AGCL) 0.975 0.952 0.971 0.835 0.933
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