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Abstract

Crohn’s disease (CD) is a debilitating inflammatory bowel disease with no known cure. 

Computational analysis of hematoxylin and eosin (H&E) stained colon biopsy whole slide 

images (WSIs) from CD patients provides the opportunity to discover unknown and complex 

relationships between tissue cellular features and disease severity. While there have been works 

using cell nuclei-derived features for predicting slide-level traits, this has not been performed on 

CD H&E WSIs for classifying normal tissue from CD patients vs active CD and assessing slide 

label-predictive performance while using both separate and combined information from pseudo-

segmentation labels of nuclei from neutrophils, eosinophils, epithelial cells, lymphocytes, plasma 

cells, and connective cells. We used 413 WSIs of CD patient biopsies and calculated normalized 

histograms of nucleus density for the six cell classes for each WSI. We used a support vector 

machine to classify the truncated singular value decomposition representations of the normalized 

histograms as normal or active CD with four-fold cross-validation in rounds where nucleus types 
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were first compared individually, the best was selected, and further types were added each round. 

We found that neutrophils were the most predictive individual nucleus type, with an AUC of 0.92 

± 0.0003 on the withheld test set. Adding information improved cross-validation performance for 

the first two rounds and on the withheld test set for the first three rounds, though performance 

metrics did not increase substantially beyond when neutrophils were used alone.
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1. INTRODUCTION

More than 3 million people in the United States have been diagnosed with inflammatory 

bowel disease (IBD), which includes Crohn’s disease (CD) and ulcerative colitis1. Although 

CD is becoming more commonly diagnosed, its precise cause is still to be determined2. 

Among other tests, analysis of biopsies plays a key role in CD diagnosis, traditionally 

performed under a light microscope by a trained pathologist2. The advent of whole slide 

imaging has allowed for the digitization of microscope slides as high-resolution gigapixel 

images. The analysis of these gigapixel images is now an active field of study in digital 

pathology, with computational methods frequently involving deep learning3,4.

Pathologist-assigned disease severity scores for CD biopsies are often given at the 

slide level, though the disease features that resulted in the scoring might not present 

homogeneously across the slide. More fine-grained labels may allow computational methods 

to better learn biopsy subtleties, but acquiring such labels is more time-intensive and costly, 

sparking interest in automatic segmentation methods. For IBD, the segmentation of glands 

on H&E5 and multimodal imaging data6 has been investigated for predicting disease grading 

of the slide6. At a smaller scale, nucleus segmentation can be used to investigate the cells 

within biopsies. For the colon, interest in this space has been illustrated by the organization 

of the Colon Nuclei Identification and Counting (CoNIC) Challenge, which used a dataset 

of 4,981 patches with dimensions 256 × 256, from images at 20× objective magnification7. 

The challenge was introduced to engage the community and improve algorithmic nucleus 

segmentation7.

A sensible approach for analysis of imaged slides is to extract features from the nuclei 

and then use these features to make predictions about known traits of the biopsy. This 

process can be generally applied to images of tissue-containing slides and has been used 

on lung cancer tasks8,9. For IBD, sub-microscopic scale features from nuclei have been 

used to differentiate between high and low-risk samples for development of neoplasia10. 

Specifically for Crohn’s disease, segmented nuclei have been used as a component in 

determining desirable anatomical locations for biopsies with respect to a present ulcer11. In 

ulcerative colitis, deep learning has been used to assess eosinophil density which was found 

to correlate with certain disease features but not with histologic activity12 which refers to 

mucosal neutrophils existing in specific locations within the tissue13. A recent IBD study 

looked at 24 samples, used imaging mass cytometry to generate highly multiplexed images, 
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segmented nuclei into 13 classes, and performed an analysis to find differences between 

cases and controls14. However, they did not have distinct myeloid cell classes clearly 

separating eosinophils and neutrophils14, which are both markers of interest in IBD15.

Comparisons of the predictive value of separate and mixed densities from neutrophils, 

eosinophils, lymphocytes, plasma cells, epithelial cells, and connective cells for slide-level 

CD severity binary classification have not been previously investigated using H&E WSIs. 

The purpose of this study was to investigate predictiveness for differentiating normal tissue 

from CD patients and active (mild, moderate, severe) CD using only pseudo-label-derived 

input for six cell types and to determine how combining information from different cell 

types impacted performance. In Figure 1. we visualize our approach for aggregating slide-

level nucleus information before performing classification. In this pursuit, we segmented 

nuclei using the baseline deep learning model from the CoNIC Challenge 20227, which 

was trained on external data, computed slide-level normalized histograms of nucleus density, 

performed dimensionality reduction, and used a support vector machine (SVM) for binary 

classification in a series of rounds, where we first assessed cell types individually, and then 

added types incrementally to the best performer(s) from each round.

2. METHODS

2.1 Data

Our dataset of 1,115 H&E whole slide images was retrieved in deidentified form from 

Vanderbilt University Medical Center under Institutional Review Board (IRB) approval 

corresponding to both Vanderbilt IRB #191738 and #191777. From these 1,115 images, we 

selected a subset of data that included 81 subjects and 413 WSIs, all from CD patients 

where biopsies came from four anatomical region classes: right colon, transverse colon, 

left colon, sigmoid/rectosigmoid colon. This dataset included 247 images of biopsies with 

a pathology score of normal, and 166 with a pathology score of mild, moderate, or severe 

disease activity. Splitting the data into these two groups allowed us to investigate the data 

in a binary classification manner, where 60% of the slides had normal-appearing tissue and 

40% depicted active CD. The images were collected at 20 × objective magnification.

Data that were not used from the full dataset of 1,115 images were removed based on the 

following set of exclusions: 1) subjects not labeled as having CD, 2) anatomical regions that 

were either non-colon regions, or uncategorized/various surgical regions, 3) slides graded 

as quiescent CD, or with an unknown pathology score, 4) slides in which the nucleus 

segmentation failed (e.g., sharpie on the slide).

2.2 Image processing and feature extraction

Methods for image processing and classification are illustrated in Figure 2. The images 

had regions containing tissue divided into patches of size 256 × 256 pixels using tools 

from the CLAM pipeline4. These patches were then segmented for six types of cell nuclei 

(neutrophils, eosinophils, lymphocytes, plasma cells, epithelial cells, and connective cells) 

using the pretrained baseline cell nucleus segmentation model from the CoNIC Challenge 
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20227. Pseudo labels were generated using a workstation equipped with an NVIDIA Quadro 

RTX 5000 GPU with 16 GB of RAM.

For each of the six cell types, we calculated the nucleus density at each non-overlapping 

patch from CLAM. Density here is defined as the number of pixels of the nucleus type 

divided by the number of pixels in a patch, which constrained the patch density between 

zero and one. Patch densities were then aggregated at the slide level and represented as a 

histogram, where the x-axis denoted nucleus type density. The number of bins was set at 

1024 for each cell type, which allowed a ratio of one bin to 64 pixels in each patch. To 

account for the varying amount of tissue across slides, each histogram bin was normalized 

based on the number of patches in the image, which is a rough estimate for the amount 

of segmented tissue in the WSI, as only tissue containing areas were patched. This process 

gave us normalized histograms where the number of bins was always 1024, the maximum 

possible patch nucleus density was one (x-axis), and the maximum possible count was one 

(y-axis), regardless of the cell type or other factors.

Because 1024 was the constant number of bins across cell nucleus types and images, 

many bins were often empty. We addressed this by performing dimensionality reduction 

using truncated singular value decomposition (TSVD)16. We used 20 TSVD components as 

they explained at least 80% of the variance in the training data from fold zero on all of 

the cell types individually. For each fold, a separate TSVD transformation was fit to the 

corresponding training data, and then applied to the fold’s validation data.

2.3 Feature aggregation and classification via support vector machine

In the dataset, there was at least one image per subject, however many subjects had more 

than one WSI. All subjects had CD, though biopsies either depicted normal tissue or active 

disease tissue, thus images from the subjects had binary labels of normal CD or active 

CD. Using a random seed, the data were split 80:20 on unique subjects into two groups. 

The seed was selected such that the balance of corresponding WSIs was as close to 60% 

normal CD and 40% active CD in both groups as possible. The larger group was used 

for cross-validation and the smaller as the withheld test set. Again, using a random seed, 

the cross-validation data were split into four folds on the subject level. Each fold in the 

cross-validation data was stratified over the two image classes. This resulted in the balance 

of each cross-validation fold, and the withheld test set, being approximately 60% normal 

images and 40% active disease images.

To assess for separability between normal and active disease biopsies, we used an SVM 

with a radial basis function kernel for binary classification. We performed four-fold cross-

validation, where threshold moving was computed for each fold using Youden’s index, 

based on its training set predictions. We did this in rounds; the best cell type for the 

classification task was selected and used as the starting point for the next round, where other 

cell types were added in one at a time and compared. Adding in cell types was done by 

concatenating the TSVD components. The best was selected and this process was repeated, 

resulting in 6 rounds. Round 1 experiments had 20 features, and each subsequent round had 

20 more features. Final testing was performed on the withheld test set, evaluating all models 

that were generated during cross-validation.
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3. RESULTS

3.1 Quantitative results on Round 1

Table 1. gives numerical details for all experiments that were performed. When only 

comparing individual cell nucleus types against each other in Round 1, we were able to 

see that neutrophils provided the most predictive value in terms of area under the receiver 

operating characteristic curve (AUC) and average precision (AP), with both metrics sitting at 

or above 0.91 on cross-validation and the withheld test set. Additionally, neutrophils showed 

the most stability, with almost identical scores on both cross-validation and the withheld 

test set, differing only by the standard deviation—this phenomenon happened separately for 

AUC and AP.

While neutrophils were the most predictive, other cell types were also predictive, though 

not to the same degree. Non-neutrophil AUC scores ranged from 0.75 ± 0.0386 (eosinophil) 

to 0.83 ± 0.0520 (connective) on cross-validation, and from 0.72 ± 0.0059 (plasma) to 

0.83 ± 0.0055 (connective) on the withheld test set. Looking at AP scores, we see that 

non-neutrophil performance ranged from 0.70 ± 0.0913 (eosinophil) to 0.78 ± 0.0750 

(connective) on cross-validation, and from 0.66 ± 0.0115 (plasma) to 0.81 ± 0.0065 

(eosinophil) on the withheld test set.

Inspecting the cross-validation and withheld test set receiver operating characteristic (ROC) 

and precision-recall curves (Figure 3), neutrophils consistently stood out as the most 

predictive cell nucleus type, even when accounting for the shaded standard deviation. For 

non-neutrophil cell type curves, there was a large amount of overlap on cross-validation, 

especially when noting the shaded standard deviations. The withheld test set curves for 

non-neutrophil cell types show more clear delineation of performance, however because of 

the curve overlap on cross-validation, where evaluation is on separate data for the four folds, 

the withheld test set performance for these cell nucleus types may be misleading if taken to 

imply overall generalizability.

3.2 Quantitative results on remaining rounds

As we added information in each round to the best performer(s) (Table 1.), we saw increased 

performance, though subtle, on cross-validation up to the second round, before tapering 

off. On the withheld test set, we saw a more marked increase in performance through the 

third round, before a decrease. This decrease in performance may be due to the increase in 

dimensionality, as each subsequent round added 20 features. The best performer(s) differed 

between cross-validation and the withheld test data on the third and fourth rounds but were 

the same on all other rounds. The highest scoring combinations of cell types only marginally 

surpassed performance of neutrophils by themselves.

3.3 Qualitative results

We performed a uniform manifold and projection (UMAP) clustering of the neutrophil 

normalized histogram representation of all the data to assess separability of the two images 

classes, which can be seen in Figure 4. In the UMAP, we found that the normal and 

active disease samples generally separated into two distinct but overlapping clusters. To 
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interpret the WSIs corresponding to the clustering, we pulled the maximum neutrophil 

density CLAM patch (256 × 256 pixels) from each image and incorporated them into the 

clustering visualization. We found that these max neutrophil patches in the normal cluster 

more often clearly depicted crypts and edges of tissue than the active disease cluster.

4. CONCLUSIONS

The separate use of nucleus types showed that WSI neutrophil density was very predictive 

for differentiating normal from active (mild, moderate, severe) disease, when looking at 

biopsies from CD patients. The other cell types (lymphocytes, plasma cells, epithelial 

cells, eosinophils, and connective cells) showed varying degrees of predictiveness, implying 

that WSI density of these nucleus types on their own store information about slide-level 

CD severity. Combining cell types was expected to improve the ability of the SVM to 

differentiate between classes. While we saw some marginal increase in performance, we 

did not see large performance boosts beyond the performance of neutrophils alone. Future 

work will investigate different ways to fuse information from cell nucleus types to increase 

predictiveness.

This work is limited in that all input to our SVM was derived from predicted cell nucleus 

segmentations produced by a deep learning model trained on external data, and so our 

conclusions are dependent upon the reliability of the initial predictions. Despite this, we saw 

promising predictive ability—during development a UMAP of neutrophil nucleus density 

led to the discovery of a mislabeled sample, which shows that an approach like the one 

demonstrated in Figure 4. could be used as a quality assurance method for large amounts of 

data.
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Figure 1. 
WSIs were patched and segmented for six types of cell nuclei. The density for each nucleus 

type was separately computed at the patch level, and then aggregated into a normalized 

histogram to represent the nucleus type’s density at the slide-level. The normalized 

histograms were then reduced in dimensionality with truncated singular value decomposition 

before using a SVM to classify examples as normal tissue from CD patients or active CD. 

By using cell nucleus pseudo labels and calculating slide-level nucleus density, we retained 

global information while greatly reducing the dimensionality of gigapixel WSIs.
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Figure 2. 
Whole slide images were patched around tissue regions and had cell nuclei segmented. 

The density of cell nucleus types in each patch was computed and aggregated into slide-

level normalized histograms (scaled only for visualization in this figure), which were then 

reduced in dimensionality using TSVD. Components from TSVD were used for binary 

classification of normal vs active disease using a support vector machine.
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Figure 3. 
Average ROC and precision-recall (PR) curves are shown from cross-validation and the 

withheld test set. Shaded regions represent ± one standard deviation. When comparing the 

six cell types by themselves, neutrophils consistently performed best.
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Figure 4. 
UMAP of the normalized histogram representation of WSI neutrophil density for the 

entire dataset. All patches in this figure depict the 256 × 256 pixel CLAM patch with 

the maximum neutrophil density from the corresponding WSI. The UMAP displayed with 

patches depicts more clearly visible crypts and tissue edges in the normal cluster max 

patches than the active disease cluster (A). The UMAP displayed with circle markers 

highlights the separability of the two classes (B). Example patches are shown with their 

predicted neutrophil segmentation in green (C, D, E, F). Looking deep into the normal 

cluster, expected patches (C) and active disease outliers (D) show tissue edges and few 

segmented neutrophils. In the active disease cluster, expected patches (E) and normal tissue 

CD outliers (F) both show a larger number of segmented neutrophils, with fewer tissue 

edges visible (F).
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Table 1.

Results from each round are shown for cross-validation and the withheld test data.

Cross-Validation Withheld Test

AUC AP AUC AP

Round 1
20 fts

N 0.92 ± 0.0540 0.91 ± 0.0486 0.92 ± 0.0003 0.91 ± 0.0004

C 0.83 ± 0.0520 0.78 ± 0.0750 0.83 ± 0.0055 0.81 ± 0.0074

L 0.81 ± 0.0515 0.77 ± 0.0530 0.81 ± 0.0059 0.70 ± 0.0030

EPI 0.78 ± 0.0599 0.76 ± 0.0609 0.79 ± 0.0036 0.72 ± 0.0132

P 0.79 ± 0.0732 0.71 ± 0.0945 0.72 ± 0.0059 0.66 ± 0.0115

EOS 0.75 ± 0.0386 0.70 ± 0.0913 0.81 ± 0.0059 0.81 ± 0.0065

Round 2
40 fts

N, L 0.93 ± 0.0432 0.92 ± 0.0403 0.93 ± 0.0030 0.92 ± 0.0022

N, C 0.92 ± 0.0565 0.92 ± 0.0460 0.91 ± 0.0028 0.90 ± 0.0021

N, P 0.92 ± 0.0471 0.91 ± 0.0413 0.91 ± 0.0023 0.91 ± 0.0021

N, EPI 0.91 ± 0.0424 0.91 ± 0.0429 0.93 ± 0.0008 0.91 ± 0.0008

N, EOS 0.90 ± 0.0321 0.90 ± 0.0351 0.91 ± 0.0082 0.91 ± 0.0055

Round 3
60 fts

N, L, P 0.92 ± 0.0425 0.92 ± 0.0373 0.92 ± 0.0023 0.92 ± 0.0010

N, L, C 0.92 ± 0.0507 0.92 ± 0.0421 0.91 ± 0.0016 0.91 ± 0.0029

N, L, EPI 0.92 ± 0.0361 0.91 ± 0.0414 0.94 ± 0.0040 0.92 ± 0.0066

N, L, EOS 0.91 ± 0.0314 0.91 ± 0.0304 0.91 ± 0.0076 0.92 ± 0.0049

Round 4
80 fts

N, L, P, C 0.92 ± 0.0504 0.92 ± 0.0386 0.90 ± 0.0027 0.90 ± 0.0022

N, L, P, EPI 0.91 ± 0.0351 0.91 ± 0.0314 0.93 ± 0.0031 0.92 ± 0.0028

N, L, P, EOS 0.91 ± 0.0271 0.90 ± 0.0272 0.91 ± 0.0082 0.92 ± 0.0063

Round 5
100 fts

N, L, P, C, EPI 0.92 ± 0.0489 0.92 ± 0.0363 0.91 ± 0.0041 0.90 ± 0.0027

N, L, P, C, EOS 0.90 ± 0.0397 0.91 ± 0.0232 0.90 ± 0.0068 0.90 ± 0.0063

Round 6
120 fts

All 0.90 ± 0.0408 0.91 ± 0.0294 0.91 ± 0.0053 0.91 ± 0.0047

AUC stands for ROC AUC, AP stands for average precision, N stands for neutrophil, C stands for connective, L stands for lymphocyte, EPI stands 
for epithelial, P stands for plasma, and EOS stands for eosinophil. The best performer(s) at each round were picked by equally weighting AUC and 
AP. Only cross-validation best performers were used for selecting the combinations of cell types in the subsequent rounds. The AUC and AP for the 
best performer(s) are bolded; the bolding does not denote the best individual AUC or AP from a round. Bolding is always on the same cell type for 
AUC and AP within a set, indicating the round’s best performer.
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