Jądrowa stała sprzężenia spinowo-spinowego

Jądrowa stała sprzężenia spinowo-spinowego (J) – pojęcie stosowane w spektroskopii magnetycznego rezonansu jądrowego (NMR), opisuje oddziaływanie momentów magnetycznych jąder pomiędzy sobą. Konsekwencją tego oddziaływania jest pojawienie się w widmie NMR, zamiast jednego sygnału pochodzącego od danego jądra, tzw. multipletu, czyli kilku sygnałów, których odległość od siebie zależy od wielkości stałej sprzężenia spinowo-spinowego (w najprostszym przypadku jest jej równa). Najczęściej używaną jednostką stałej sprzężenia jest herc.

Bezpośrednia i pośrednia stała sprzężenia spinowo-spinowego

edytuj

W ogólności są dwa mechanizmy przenoszenia sprzężenia pomiędzy momentami magnetycznymi jąder: „przez przestrzeń”, któremu odpowiada bezpośrednia stała sprzężenia spinowo-spinowego (zwana też dipolową, oznaczana D) oraz „przez elektrony”, któremu odpowiada pośrednia stała sprzężenia spinowo-spinowego (zwana też skalarną, oznaczana J). Bezpośrednia stała sprzężenia spinowo-spinowego jest 3-4 rzędy wielkości większa od pośredniej, ale w cieczach i gazach ulega uśrednieniu do zera, zatem zwykle obserwuje się tylko pośrednią stałą sprzężenia spinowo-spinowego J. Bezpośrednią stałą sprzężenia spinowo-spinowego można zmierzyć w ciałach stałych oraz jako tzw. resztkowe sprzężenie dipolowe w częściowo zorientowanych cieczach (np. zawierających długie łańcuchy polimeryczne).

Bezpośrednia stała sprzężenia spinowo-spinowego

edytuj

Bezpośrednia (dipolowa) stała sprzężenia spinowo-spinowego jąder P i Q zależy wyłącznie od odległości RPQ pomiędzy jądrami, kąta pomiędzy wektorem RPQ i zewnętrznym polem magnetycznym oraz ich współczynników magnetogirycznych.

Hamiltonian tego oddziaływania można wyrazić jako

 

Pomiar dipolowej stałej sprzężenia dostarcza zatem informacji o odległości pomiędzy jądrami.

Zredukowana pośrednia stała sprzężenia spinowo-spinowego

edytuj

W spektroskopii NMR w ośrodkach niezorientowanych, czyli cieczach i gazach, obserwuje się tylko pośrednią stałą sprzężenia spinowo-spinowego J. Wielkość jej zależy od wielkości współczynników magnetogirycznych sprzężonych jąder oraz struktury elektronowej cząsteczki, w której się znajdują, a poprzez nią, od geometrii cząsteczki. W chemii kwantowej używa się często zredukowanej pośredniej stałej sprzężenia spinowo-spinowego, niezależnej od współczynników magnetogirycznych.

Zredukowana pośrednia stała sprzężenia spinowo-spinowego KPQ, opisuje oddziaływanie momentów magnetycznych jąder, które jest przenoszone przez elektrony znajdujące się wokół nich.

Otaczające jądro elektrony oddziałują wzajemnie z momentami magnetycznymi (czy też spinami) jądra. Dzieje się tak, ponieważ elektrony są naładowanymi cząstkami przebywającymi w ruchu w stosunku do molekuły, a także ponieważ elektrony posiadają niezerowy spin. Te oddziaływania są jednak małe względem oddziaływań elektrostatycznych między elektronami i jądrami. Ponieważ oddziaływania magnetyczne modyfikują energię elektronową tylko nieznacznie, parametry NMR mogą być właściwie analizowane przy użyciu teorii perturbacji. Dla cząsteczek zamkniętopowłokowych, nie ma pierwszorzędowych poprawek do energii elektronowej związanych z momentami magnetycznymi jąder, a poprawka drugorzędowa jest opisana jako tensor zredukowanej stałej sprzężenia spinowo-spinowego, KPQ:

 

gdzie M jest zbiorem wszystkich momentów magnetycznych, MP, w cząsteczce. Wszystkie wyrazy wyższych rzędów w powyższym równaniu są bardzo małe i mogą spokojnie zostać zaniedbane. Z równania 1 wynika, że KPQ jest po prostu drugą pochodną energii elektronowej E(M), przy wypadkowym momencie magnetycznym równym zero:

 

Wkłady do zredukowanej pośredniej stałej sprzężenia

edytuj

Podstawowe równania opisujące nierelatywistyczne podejście do obliczania stałych sprzężenia spinowo-spinowego zostały wyprowadzone przez Ramseya. W teorii nierelatywistycznej występują cztery odrębne wkłady do pośredniej stałej sprzężenia spinowo-spinowego, będące wynikiem nadsubtelnego sprzężenia spinu jądra z ruchem orbitalnym elektronów i ich spinami. Operatory opisujące te oddziaływania to pochodne Hamiltonianu elektronowego, opisującego cząsteczkę w polu magnetycznym, z którym oddziałuje, po momentach magnetycznych jąder.

Pierwsze to sprzężenie spinowo-orbitalne (SO), które reprezentuje oddziaływanie jąder z naładowanymi cząstkami, np. elektronami, poruszającymi się w potencjale wektorowym, Anuc(r), wygenerowanym przez jądro. Istnieją dwa takie operatory spinowo-orbitalne – operator diamagnetyczny spinowo-orbitalny (DSO):

 

i operator paramagnetyczny spinowo-orbitalny (PSO):

 

gdzie pi jest operatorem pędu i-tego elektronu, I jest macierzą 3 × 3 elementową, a sumowanie następuje po wszystkich elektronach.

Operator paramagnetyczny,   opisuje oddziaływania spinu jądra z ruchem orbitalnym elektronów. Natomiast operator diamagnetyczny,   opisuje oddziaływania spinów dwóch jąder z ruchem orbitalnym elektronów.

Kolejne spinowe oddziaływania nadsubtelne są zdeterminowane przez pole magnetyczne jądra, Bnuc(r). Powyższe pole, które oddziałuje ze spinem elektronów, si, stanowi podstawę dla dwóch operatorów pierwszorzędowych – kontaktowego Fermiego (FC):

 

i spinowo-dipolowego (SD):

 

Operator kontaktowy Fermiego,   reprezentuje bezpośrednie oddziaływanie spinu jądra ze spinem elektronu, który to elektron znajduje się w pozycji jądra. Wkład spinowo-dipolowy, SD, odpowiada za oddziaływanie spinu jądra ze spinem elektronu, ale z pewnej odległości. Możemy opisać je jako oddziaływanie typu dipolowo-dipolowego.

Multiplety

edytuj
Multipletowość Stosunek intensywności
Singlet (s) 1
Dublet (d) 1:1
Tryplet (t) 1:2:1
Kwartet(q) 1:3:3:1
Kwintet 1:4:6:4:1
Sekstet 1:5:10:10:5:1
Septet 1:6:15:20:15:6:1

Sprzężenie jądra z n równocennymi jądrami o spinie ½ (np. protonami) powoduje rozszczepienie sygnału na n+1 sygnałów (tzw. multiplet), których intensywności można obliczyć z trójkąta Pascala (jak opisano po prawej stronie). Jeśli stała sprzężenia jest znacznie mniejsza od różnicy przesunięć chemicznych sprzężonych jąder, odległość sygnałów w multiplecie odpowiada wielkości stałej sprzężenia. Sprzężenie z innymi jądrami powoduje dalsze rozszczepianie sygnałów w multiplecie – np. sprzężenie z dwoma jądrami o spinie ½ i wyraźnie różnych stałych sprzężenia powoduje powstanie dubletu dubletów. Na ogół obserwuje się stałe sprzężenia przenoszone przez 1-3 wiązania, choć w szczególnych przypadkach (układ sprzężonych wiązań wielokrotnych) można zaobserwować sprzężenia przez więcej wiązań.

 
 


Nazewnictwo stałych sprzężenia

edytuj

Podając stałą sprzężeń podaje się zwykle liczbę wiązań oddzielających sprzęgające się jądra oraz rodzaj jąder. I tak na przykład zapis 3JCC oznacza stałą sprzężenia przez trzy wiązania między dwoma jądrami węgla (izotop 13C). Stałe sprzężeń 2JPQ (sprzężenie między jądrami P i Q przez 2 wiązania, np. sprzężenie między protonami przy tym samym atomie węgla) nazywa się stałymi geminalnymi (od łac. gemini = bliźniacy), a 3JPQ stałymi wicynalnymi (łac. vicinus = sąsiad).

Znaczenie stałych sprzężenia

edytuj

Stałe sprzężenia spinowo-spinowego wykorzystuje się w badaniach struktury przestrzennej cząsteczek. Jedną z głównych metod określania struktury białek jest pomiar sprzężeń dipolowych i resztkowych sprzężeń dipolowych. Duże znaczenie dla określania struktury przestrzennej cząsteczek mają też stałe sprzężenia wicynalne, których pomiar pozwala na określanie kątów dwuściennych w cząsteczkach poprzez tzw. równanie Karplusa.

Sprzężenia heterojądrowe

edytuj

W przypadku widm związków zawierających oprócz 1H różne inne atomy aktywne w NMR, np. 13C, 19F, 29Si lub 31P, można obserwować sprzężenia heterojądrowe, czyli pomiędzy jądrami różnych pierwiastków. Pozwala to uzyskać dodatkowe informacje o strukturze cząsteczki. Z drugiej strony sprzężenia heterojądrowe komplikuje widmo. Eksperyment NMR można jednak przeprowadzić w trybie odsprzężenia heterojądrowego (zwykle odsprzężenia proton–heteroatom), dzięki czemu sprzężenia takie nie są rejestrowane, a widma są prostsze. Tego typu widma oznacza się symbolem odsprzęganego jądra w nawiasie klamrowym, np. 13C{1H} (widmo 13C bez sprzężeń z 1H) lub 1H{31P} (widmo 1H bez sprzężeń z 31P)[1][2].

Zobacz też

edytuj

Przypisy

edytuj
  1. Mike Lumsden, Heteronuclear Decoupling – “Using It and Losing It” [online] [dostęp 2023-07-26] (ang.).
  2. Oleg I Kolodiazhnyi, Natalia Prynada, Alkylamides of trivalent phosphorus-acids: phosphorus–nitrogen diad tautomerism, „Tetrahedron Letters”, 41 (41), 2000, s. 7997–8000, DOI10.1016/S0040-4039(00)01388-5 [dostęp 2023-07-26] (ang.).

Bibliografia

edytuj
  • Trygve Helgaker, Michał Jaszuński, Kenneth Ruud, Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin−Spin Coupling Constants, „Chemical Reviews”, 99 (1), 1999, s. 293–352, DOI10.1021/cr960017t [dostęp 2023-07-26] (ang.).
  • Trygve Helgaker, Michał Jaszuński, Magdalena Pecul, The quantum-chemical calculation of NMR indirect spin–spin coupling constants, „Progress in Nuclear Magnetic Resonance Spectroscopy”, 53 (4), 2008, s. 249–268, DOI10.1016/j.pnmrs.2008.02.002 [dostęp 2023-07-26] (ang.).
  • Zbigniew Kęcki, Podstawy spektroskopii molekularnej, wyd. 4, Warszawa: Wydawnictwo Naukowe PWN, 1998, ISBN 98301105038.
  • Joanna Sadlej, Spektroskopia molekularna, Warszawa: Wydawnictwa Naukowo-Techniczne, 2002, ISBN 978-83-204-2705-9.