First-Order Open-Universe POMDPs

Siddharth Srivastava and Stuart Russell and Paul Ruan and Xiang Cheng
Computer Science Division
University of California
Berkeley, CA 94720

Abstract

Open-universe probability models, representable
by a variety of probabilistic programming lan-
guages (PPLs), handle uncertainty over the ex-
istence and identity of objects—forms of uncer-
tainty occurring in many real-world situations.
We examine the problem of extending a declar-
ative PPL to define decision problems (specifi-
cally, POMDPs) and identify non-trivial repre-
sentational issues in describing an agent’s ca-
pability for observation and action—issues that
were avoided in previous work only by making
strong and restrictive assumptions. We present
semantic definitions that lead to POMDP speci-
fications provably consistent with the sensor and
actuator capabilities of the agent. We also de-
scribe a variant of point-based value iteration for
solving open-universe POMDPs. Thus, we han-
dle cases—such as seeing a new object and pick-
ing it up—that could not previously be repre-
sented or solved.

1 INTRODUCTION

The development of probabilistic programming languages
or PPLs (Koller, McAllester, and Pfeffer, 1997; Milch et
al., 2005; Goodman et al., 2008) has greatly expanded the
expressive power of formal representations for probability
models. In particular, PPLs express open-universe prob-
ability models, or OUPMs, which allow uncertainty over
the existence and identity of objects. OUPMs are a natu-
ral fit to tasks such as vision, natural language understand-
ing, surveillance, and security, where the set of relevant ob-
jects is not known in advance and the observations (pixels,
strings, radar blips, login names) do not uniquely identify
the entities in question.

It is natural, therefore, to consider whether the same bene-
fits can be obtained for decision models, thereby providing
a broader foundation for rational agents. A general decision

model—a partially observable Markov decision process or
POMDP—includes a specification of what the agent can do
and what it will perceive in any given state, as well as the
reward functions.

For less expressive languages such as Bayesian networks
and closed-universe first-order languages, the extension
from probability models to decision models is relatively
straightforward. For open-universe models, however, there
are significant difficulties in defining POMDP representa-
tions that are both expressive enough to model the real
world and mean exactly what is intended. When sensors
supply sentences about named objects and actuators receive
commands to act on named objects, problems arise if the
formal names have uncertain referents. Consider the fol-
lowing example:

The sensors of an airport security system include passport
scanners at check-in kiosks, boarding pass scanners, X-ray
scanners, etc. A person passing through the airport gen-
erates observations from each of these scanners. Thus,
the passport scanner at location A may generate obser-
vations of the form IDName(pa,1) = “Bond”, IDNum-
ber(pa,1) = 174666007, HeightOnlD(pa,1) = 185cm,
..; a boarding-pass scanner at B may generate a se-
quence of the form Destination(pg7) = “Paris”, ID-
Number(pp,7) = 174666007, and finally, an X-ray scan-
ner at C' may generate observations of the form Mea-
suredHeight(pc 32) = 171em, MeasuredHeight(pc 33) =
183cm.

In these observation streams, the symbols p4 ;,pp,; and
pc,k are place-holder identifiers (essentially Skolem con-
stants or “gensyms” in Lisp terminology). Although each
use of a given symbol necessarily corresponds to the same
individual, different symbols may or may not correspond
to different individuals; thus, it is possible that p4 ; and
Dc,32 refer to the same person, while it is also possible that
pa,1 and pp 7 refer to different people even though they are
carrying documents with the same ID number.

The problems in modeling such a scenario are not limited to
probabilistic models and can be illustrated using first-order

logic alone. For the observation model, we might want to
say that, “Everyone in the security line will get scanned”:

Va InLine(x) — Scanned(x)

and “For everyone who gets scanned, we will observe a
measured height”:
Va Scanned(x) — Observable(MeasuredHeight(x)).

(1)

So far, so good. Now, suppose we know, “Bond and his

fiancee are in the security line.” While it is true, in a sense,

that we will get a measured height for Bond’s fiancee, it is

not true that the X-ray scanner will tell us:

MeasuredHeight(Fiancee(Bond)) = 171cm.

Technically, the problem arises because we are trying to
substitute Fiancee(Bond) for = in the universally quanti-
fied sentence (1), but one occurrence of x is inside Observ-
able(-), which is a modal operator; thus, we have a failure
of referential transparency—perhaps not surprising as we
are trying to model what the agent will come to know. Prac-
tically, the problem arises because the sensor doesn’t know
who Bond’s fiancee is. The same issue can arise on the
action side: telling the security guard to “Arrest Bond’s fi-
ancee” doesn’t work if the guard doesn’t know who Bond’s
fiancee is. Thus, any proposed formal approach has to pro-
vide solutions to three fundamental problems: how to in-
corporate detected objects in an agent’s belief while allow-
ing identity uncertainty; how to accurately state what can
be sensed, and how to ensure that arguments in commands
refer to something meaningful for actuators.

In fact, communication between the physical layer and the
formal model requires a restricted vocabulary whose terms
are guaranteed to be meaningful. This is because in a prob-
ability model, an observation has to be frue to be condi-
tioned on. The problem is that an OUPOMDP framework
needs to ensure this even when the observations use uncer-
tain references. We formally define the terms that will be
meaningful, and therefore suitable for use in communica-
tion with the physical layer, using the concept of rigid des-
ignators from modal logic. This notion facilitates a frame-
work where observations are true statements, without being
restrictive. Our solution is analogous to modeling uncertain
observations of a property as certain observations about a
noisy version of that property.

We begin in §2.1 by showing, as a “warm-up exercise,’
how POMDPs may be defined on a substrate of dynamic
Bayesian networks (DBNs). §2.2 provides additional back-
ground on first-order, open-universe probability models. §3
describes our proposed semantics for a decision-theoretic
extension of the BLOG language. We show that the re-
sulting framework models sensor and actuator specifica-
tions accurately. §4 describes a variant of the point-based
value iteration (PBVI) algorithm designed to handle open-
universe POMDPs, and §5 describes experiments in a sim-
ple domain that illustrate the ability of the formalism and

algorithm to handle problems that previous formalisms (§6)
cannot express and previous algorithms cannot solve. It
has been possible for many years to program a robot to
walk into a room, see something, and pick it up; now, it
is possible for the robot to do this without leaving the for-
mal framework of rational decision making.

2 BACKGROUND

2.1 POMDPs

A POMDP defines a decision-theoretic planning problem
for an agent. At every step, the agent executes an action,
then the environment enters a new state, then the agent re-
ceives an observation and a reward.

Definition 1. A POMDP is defined as
(X,U,0,T,Q,R,~), where X,U O are finite sets
of states, actions and observations; T(Xip1=2a" |
X;=x2,U;=u) defines the transition model, ie., the
probability of reaching state x' if action u is applied in
state x; QUOpp1=0 | Xyp1=a',U=u) defines the
observation model, i.e., the probability of receiving an
observation o when state ' is reached via action u; and
R : X x U — R defines the reward that the agent receives
on applying a given action at a given state.

The agent’s belief state at any timestep is the probability
distribution over X at that timestep, given the initial be-
lief and the history of executed actions and obtained ob-
servations. POMDP solutions typically map observation
histories to actions (Kaelbling, Littman, and Cassandra,
1998). We will refer to such solutions as observation-
history policies. On the other hand, belief-state policies
map the agent’s belief states to actions. Both solution rep-
resentations are equally expressive because the belief state
constitutes a sufficient statistic for the agent’s history and
the initial belief (Astrom, 1965). An optimal POMDP pol-
icy policy maximizes the expected value of the aggregate
reward Y, _, __~"-r(i) where (i) is the reward obtained
at timestep ¢ and v < 1.

A DBN (Dean and Kanazawa, 1989) describes a factored,
homogeneous, order-1 Markov process as a “two-slice”
Bayesian network showing how variables at time ¢ + 1 de-
pend on variables at {. At each timestep, any subset of vari-
ables may be observed. To represent POMDPs, Russell and
Norvig (1995) assume a fixed set of always-observable evi-
dence nodes and define dynamic decision networks (DDNs)
by adding to each timestep of a DBN the following vari-
ables:

e An action variable U; whose values are the possible
actions at time t. For now, assume this set of actions is
fixed. The POMDP’s transition model is represented
through the conditional dependence of variables at ¢ +
1 on the value of U; and other variables at ¢.

e A reward variable R;, which depends deterministi-

cally on U; and other variables at time ¢.

This definition of POMDPs by DDNSs is not, however, com-
pletely general, since it does not allow for the observabil-
ity of a variable to depend on the state. Clearly, different
observability conditions correspond to different POMDPs.
To handle state-dependent observability, one can define for
each variable X; that may be observed, a second Boolean
variable ObsX; that captures whether or not X; is ob-
served!. This factors out dependencies for observability
from dependencies for the variable values. Thus, in order
to define POMDPs we can define DDNs consisting of the
following nodes in addition to the action and reward nodes:

e A Boolean observability variable ObsX; for each or-
dinary variable X;. Each observability variable is nec-
essarily observed at each time step, and ObsX; is true
iff X; is observed. Observability variables may have
as parents other observability variables, ordinary vari-
ables, or the preceding action variable. The DBN with
X, and ObsX; variables defines ().

In this model, an always-observable X; has an Obs X; with
a deterministic prior set to 1.

In order to define first-order OUPOMDPs, we need to ex-
tend first-order OUPMs in a manner analogous to the DDN
extension of DBNs. However, as we will show below, the
analogous extension leads to conflicts with what may be
known to the agent during decision making, and results in
the models of sensors and actuators with unintentionally
broad capabilities as seen in the introduction.

2.2 OPEN-UNIVERSE PROBABILITY MODELS

First-Order Vocabularies Given a set of types
T ={m1,...7}, a first-order vocabulary is a set of func-
tion symbols with their type signatures. Constant symbols
are viewed as zero-ary function symbols and predicates as
Boolean functions. A possible world is defined as a tuple
(U, T) where the universe U = (U1, ...Uy) and each Uf; is
a set of elements of type 7; € 7. The interpretation Z has,
for each function symbol in the vocabulary, a function of
the corresponding type signature over U, . ..,Uy. The set
of types includes the type Timestep, whose elements are the
natural numbers. Functions whose last argument is of type
timestep are called fluents. A state is defined by the values
of all static functions and fluents at a particular timestep in
a possible world.

!Observability variables capture the full range of possibilities
in the spectrum from missing-completely-at-random (MCAR) to
not-missing-at-random (NMAR) data (Little and Rubin, 2002).
An alternative would be to say that “null” values are observed
when a variable is not observable. However, this approach has
distinct disadavantages as it requires (a) unnecessarily large par-
ent sets for evidence variables capturing when null values may be
obtained, and (b) additional mechanisms for handling dependen-
cies of child nodes of variables that may get a null value.

1 Type Urn, Ball;

2 origin Urn Source(Ball);

3 #Urn ~ Poisson(5);

4 #Ball(Source = u) {

5 if Large(u) then ~ Poisson(10)

6 else ~ Poisson(2)};

7 random Boolean Large(Urn u)

8 ~ Categorical{true->0.5, false->0.5};

Figure 1: A BLOG model illustrating number statements.

Open-Universe Probability Models in BLOG Our
approach can be applied to formal languages for gen-
erative, open-universe probability models (OUPMs).
BLOG (Milch et al., 2005; Milch, 2006) is one such lan-
guage. We refer the reader to the cited references for de-
tails on this system, and discuss briefly the components rel-
evant to this paper. A BLOG model consists of two types
of statements: (1) number statements, which specify con-
ditional probability distributions (cpds) for the number of
objects of each type in the universe of a structure; and (2)
dependency statements, which specify cpds for the values
of functions applied on the elements of the universe.

Each type can have multiple number statements and each
number statement can take other objects as arguments.
Fig. 1 shows a simple example of a BLOG model with two
types, Urn and Ball. This model expresses a distribution
over possible worlds consisting of varying numbers of urns
with varying numbers of balls in each urn. The number of
urns follows a Poisson(5) distribution (line 3). The num-
ber of balls in an urn depends on whether or not the urn is
Large. Origin functions map the object being generated to
the arguments that were used in the number statement that
was responsible for generating it. In Fig. 1, Source maps a
ball to the urn it belongs to. The number of balls in an urn
follows a Poisson(10) distribution if the urn is Large, and
a Poisson(2) distribution otherwise (lines 4-6). Finally, the
probability of an urn being Large is 0.5 (lines 7 & 8).

Evidence statements in BLOG provide first-order sentences
in the model’s vocabulary as observations; e.g.,

obs (exists Ball b exists Urn u Source(b)==u & Large(u)) = true
states that there exists a large urn that has a ball.

A set evidence statement provides a concise syntax for
naming all the distinct objects satisfying a certain predi-
cation; e.g.,

obs {Ball b: exists Urn u Source(b)==u & !Large(u)}={bl, b2}

states that the set of balls in small urns consists of exactly
two balls, referred to by the constant symbols b1 and b2.

We denote the execution of an action u(x) at a timestep ¢
using the fluent apply_u(z,t). The effects of an action are
represented by defining the value of all fluents affected by
the action at timestep ¢ + 1 in terms of the fluents and non-

fluents at timestep t. The reward function can be expressed
as a fluent in a similar manner. This notation is similar to
successor-state axioms in situation calculus (Reiter, 2001).
For example, a sendToScanner(p,t) action may result in
the person p going to the scanner. Let followedInstruc-
tionCPD, leftScannerCPD and defaultScannerCPD denote
respectively the probability distribution that a person fol-
lows instructions, that s/he has left the scanner and that
s/he is already at the scanner. We express the effect of
this action on the predicate atScanner using the fluent ap-
ply_sendToScanner(x,t) as follows:
atScanner(Person p, Timestep t+1) {

if apply_sendToScanner(p,t)

then ~ followedInstructionCPD()

else if atScanner(p, t) then ~ leftScannerCPD()

else ~ defaultAtScannerCPD()};
Representation theorems for BLOG ensure that every well-
founded specification (that does not create cyclic depen-
dency statements or infinite ancestor sets) corresponds to a
unique probability distribution over all possible worlds.

3 DECISION-THEORETIC BLOG

In this section we present the key components of decision-
theoretic BLOG (DTBLOG), which adds to the BLOG lan-
guage decision variables for representing actions and meta-
predicates for representing observability.

3.1 SOLUTION APPROACH

A natural generalization of the ObsX, idea dis-
cussed in §2.1 is to write dependencies of the form:
Observable(y(Z)) {if ¢(T) then ~ cpdy}, where w.l.o.g.,
o and 1) can be considered to be predicates defined using
FOL formulas with variables in z as free variables. The
interpretation of this formula would be “i(Z) is observed
with probability given by cpd; when ¢(z) holds”. As
noted in the introduction, this formulation leads to prob-
lems associated with referential transparency in first-order
reasoning. In order to model the sensor accurately, we want
to describe a belief state where Vesper = Fiancee(Bond),
Scanned(Vesper) = Scanned(Fiancee(Bond)) = true,
Observable(MeasuredHeight(Vesper)) = true, but
Observable(MeasuredHeight(Fiancee(Bond))) = false.
However, these statements will be inconsistent in any
system based on first-order reasoning. This is because
first-order logic enforces all terms to be referentially
transparent, as a consequence of the application of the
axiom of universal instantiation on the substitution axioms
for equality. The axiom of universal instantiation states
that if Vx «(x) is true, then for any ground term ¢, a(t/x)
(the version of a(z) with all free occurrences of x replaced
by t) is also true. Different truth values for the observ-
ability statements above stem from the fact that the sensor
knows who Vesper is, but not who Fiancee(Bond) is. This
indicates that the knowledge of sensors and actuators needs

to be taken into account while determining the possible
effects of communicating with them.

To address this problem, we draw upon modal logic, where
knowledge of the agent is taken into account (Levesque and
Lakemeyer, 2000). The modal logic version of the axiom
of universal instantiation states that if Va () is true, then
for any ground term ¢ whose value is known, «(t/x) holds.
In order to determine which terms are known, modal logic
develops the notion of rigid designators: terms that have
unique interpretations in all possible worlds according to
the agent’s knowledge. Our formulation ensures that only
the modal logic version of the axiom of universal instan-
tiation is used with statements involving observability and
doability. In practice, we use a modal logic of observations,
so that a term is considered to be known to a system iff its
value is predefined or has been observed. Our framework
to ensure that (a) observations are true statements and are
thus suitable for conditioning, and (b) terms used in the in-
terface with actuators have well-defined values.

3.2 FORMAL SPECIFICATIONS

We begin our formal solution with elementary descriptions
of physical sensors and actuators that clarify the types of
rigid designators that sensors (actuators) can provide (act
upon). We assume that the vocabulary always includes, as
rigid designators, constant symbols for elements of stan-
dard types such as natural numbers and strings; e.g., the
constant symbol 1 represents the natural number 1 in every
possible world. We also assume that standard mathemati-
cal and string operations have fixed interpretations and that
terms that are applications of fixed functions on rigid des-
ignators are therefore also rigid designators (e.g., 1 + 2).
As explained in the following sections, observations may
add to the set of rigid designators.

Any physical sensor can be described in terms of the types
of symbols it can generate and the type signatures of the
properties that it can report:

Definition 2. A sensor specification S is a tuple (Ts,Ts)
where Ty is a tuple of types for the observation values that
S produces and and Tg denotes the type of new symbols
that S may generate.

E.g., an X-ray scanner can be specified as:
scanner = ((PersonRef, Length), (PersonRef)). Such
a scanner can generate new symbols of type PersonRef
and returns observation tuples of the type (PersonRef,
Length); elements of type Length are real numbers with
units (not terms such as Height(Bond)). Note that such
a specification indicates that rigid designators of type T's
and 7, are meaningful to the sensor, but arbitrary terms of
the same types may not be.

A physical actuator can be specified similarly:

Definition 3. An actuator specification A is a tuple of types

#Person ~ Poisson[10]; LocKnownDuration=4;
#PersonRef (Src = p, PersonRef_Time=t) {

if AtScanner (t)=p "Bernoulli (0.5)

else = 0};
observableType (PersonRef) ;
observable (MeasuredHt (p_ref, t))=

(AtScanner (t) == Src(p_ref));
MeasuredHt (p_ref, t) ~ Normal [Ht (Src(p_ref)), 51;
Ht (prsn) ~ Normal[160, 30];

T4 denoting the types of its arguments.

E.g., an actuated camera may be able to take a
picture given an orientation and focusing distance:
TakePhoto = (Orientation, Length).

OO NAEWN—O

Let B be a set of beliefs, U be a set of actions, and O be

a set of observations. A strategy tree Tp .0 = ({r,Lo) is %(1) decision apply_TakePhoto (Orientation o, Distance d,
Timestep t);

defined by a mapping ¢y : B — 2, which defines the set |5

A R . N PictureTaken (Person p, Timestep t) {
of possible actions at each belief state, and a mapping ¢ : 13 if exists d, o RelativeDistance(TrueLoc(p, t)) == d &
14 RelativeOrientation (TrueLoc(p, t)) == o &

B,U — 29, which defines the set of possible observations 15
when an action is applied on a belief state. Given a set 16
of sensors S and actuators .4, an ac.tuator Mapping A * 18 /encrance model
U — A denotes the actuator responsible for executing each %g AtScanner (t) ~ UniformChoice ({Person prsn:
. . !Entered(prsn, t)});
uw € U and a sensor mapping os O—3S denotes.the 21 Entered(pren, b
sensor responsible for generating o. We drop the subscripts %% if t>0 & (AtScanner (t-1)=prsn) then = true
elseif t>0 then = Entered(prsn, t-1)
S and A when they are clear from context. 24 elseif to0 then — falsel;

oo 25 TrueLoc (Person p, t) ~ MovementModel (TrueLoc(p, t-1));
Definition 4. A rerm is a rigid designator in a belief state 36 1 carion(p ref, 1) |

b if it has a unique value in all possible worlds that have 27 if PersonRef_Time(p_ref) < Horizon+l &
b bl .t . d y tt. d 28 & t<= PersonRef_Time (p_ref)+LocKnownDuration
nonzero probability (in a discrete setting) or nonzero den- 5g then - TruelLoc(Src(p_ref, t))

sity (in a continuous setting) in b. 30 else = null};
Figure 2: A DTBLOG model for the airport domain

apply_takePhoto (o, d) then = true
else = False};

Definition 5. A strategy tree T y,o = (lu,lo) is well-
defined w.r.t. a set of sensor specifications S, actuator spec-
ifications A, a sensor mapping o, and an actuator mapping
o iff for every b € B:

e A dependency for Observable(Vs(Ts, Timestep)), in-
dicating the factors influencing the probability that S
generates an observation.

e Every u € Ly (b) uses as terms only the rigid designa-
tors of type Ty in b, where A= a(u).

e For every u € Ly (b), every o € Lo(b,u) is either the
observation of symbol of type Ts or uses as terms only
the rigid designators of type Ts in b, where S = (o).

In other words, a strategy tree is well-defined iff the ac-
tions and observations that it specifies at each step are truly
possible. A framework for solving OUPOMDPs therefore
needs to ensure that the strategy trees it defines and uses
in its solution algorithms are well-defined w.r.t. the given
sensors and actuators. We now present our formulation of
sensors and actuators for achieving this objective.

3.3 MODELING SENSORS

In this section we describe our formulation for a sensor
S = (Ts,Ts). Recall that 75 is the set of symbols generated
by S. By definition, such symbols evaluate to themselves
(just like integers) and are therefore rigid designators. We
specify .S using the following components in DTBLOG:

e A predicate Vg with arguments T's, ¢, representing the
tuples returned by the sensor.

e The statement ObservableType(rs); denoting that
symbols of type 7 are returned by the sensor. Num-
ber statements for 75 constitute a generative model for
the elements generated by S. Each number statement
for symbols of type 75 includes an origin function
Ts_time which maps the symbol to the time when it
was generated.

For ease in representation, we also allow syntax for cap-
turing sensors that return values of functions declared in
the model’s vocabulary, rather than the default Vg predi-
cate. Such observations also create rigid designators. For
instance, it may be convenient to represent the scanner
as a sensor that provides values of the measured height,
captured by the function MeasuredHtscqnner(p,t). In this
case, the relational observability statements would provide
dependencies for Observable(MeasuredHtscanner (D, t)).
Lines 4-6 in Fig.2 capture the DTBLOG specification
for such a scanner. If the agent receives an observation
of the form MeasuredHtscqnner (prefw’l, 7) =171cm, then
MeasuredHf cqnner (preflo,l, 7) gets a unique interpreta-
tion, and thus becomes a rigid designator.

3.3.1 GENERATION OF OBSERVATIONS

Intuitively, if the environment is in state ¢ at timestep ¢, and
Observable(o(Z)) (or ObservableType(Ts)) is true in ¢,
then the value of () (or the symbols of type 7s generated
at a timestep t) must be obtained as evidence at timestep .
We operationalize this intuition through two types of ob-
servations in DTBLOG: observations of the symbols gen-
erated by sensors, and observations about properties of the
observed symbols.

Symbol observations All elements generated via a sen-
sor’s symbol observability statement are assigned unique
names and provided to the agent as an evidence statement.
Suppose the model includes an observability declaration of

the form ObservableType(7s). For every possible world w
at timestep ¢, this declaration results in the generation of a
set evidence statement of the following form:

obs {7s c:Tg_time(c) ==t} = {ct,1, . .

where k(t) =#{rs x : Tg_time(z) == t} in w. Such
a set evidence statement models the observation of a set
of symbols generated by the sensor S. The semantics of
BLOG ensure that c1, ..., ¢y () are interpreted as distinct
objects; e.g., the scanner declaration in Fig. 2 results in the
generation of a set of PersonRef objects at each timestep.
The number of such symbols is given by the CPD for the
number statement for PersonRef. At timestep 10, this ob-
servation could be:

obs {PersonRef x: PersonRef Time(x)==10} = {pref|, | };

o Ct,k(t)};

Relational observations For every true
Observable(o(Z)) atom in a state, the DTBLOG en-
gine creates an observation statement of the form:

obs o(Z) =v;

where all arguments and the value v are rigid des-
ignators. E.g., if in a possible world Observ-
able(MeasuredHt_scanner(prefy, 1, 10))=true and Mea-
suredHt_scanner(prefy, 1,10)=171cm, the generated rela-
tional observation would be:

obs MeasuredHt_scanner(pref,, ;, 10) = 171cm;

Each argument in such evidence statements has to be
a rigid designator. Returning to the informal exam-
ple described in the introduction, suppose Bond and
Vesper were generated PersonRefs. © The DTBLOG
engine will not generate an observation of the form
MeasuredHeight(Fiancee(Bond),t) = 150cm if the value
of Fiancee(Bond) has not been observed (unless Fiancee is
a fixed function, which would be quite unusual), even when
MeasuredHeight() is observable for all PersonRefs. Thus,
the agent being modeled will not “expect” an observation
of the form “MeasuredHeight(Fiancee(Bond), t)=150cm”.
On the other hand, if the agent receives an observation of
the form Fiancee(Bond)=Vesper, the term on the left be-
comes a rigid designator and future user-provided obser-
vations and system-generated decisions may use the term
Fiancee(Bond).

We summarize our formulation of sensor models by noting
that the set of all observations corresponding to a sensor .S,
o~ 1(S), consists of the set evidence statements of type Tg
and value evidence statements for the predicate Vg (or its
functional representation as noted above).

3.4 MODELING ACTUATORS

We represent an actuator A = T4 in a DTBLOG model as a
decision function apply_A(Ta,t). Decision functions are
declared using the keyword decision; e.g., an actuated cam-
era TakePhoto = (Orientation, Length) can be specified as:
decision apply_TakePhoto(Orientation, Distance, Timestep);

The space of all possible actions in a belief state could be
defined using all possible substitutions of the arguments of
decision variables with terms. However, without any fur-
ther restrictions, this would lead to unintended situations
where the user provides a decision of the form:
apply-TakePhoto(Orientation(Loc(Sre(prefy 1).0),
DistanceTo(Loc(Sre(prefi 1),0),t)=true;

even when Loc(Src(prefy, 1),t) has not been observed.
Such a decision would not only be meaningless to the ac-
tuator, it can lead to “fake” solutions, e.g., if the desired
objective was to determine the current location of the per-
son who generated prefy, ; and take their photo. We elim-
inate such situations by allowing only rigid designators as
arguments of decision functions. Lines 10-16 in Fig. 2 cap-
ture the DTBLOG specification for a camera. The remain-
der of Fig. 2 completes the specification with dependencies
for the persons’ locations and their movement through the
scanner. Since a PersonRef is generated when the someone
is at the scanner, the location (of the person) corresponding
to a PersonRef is known for a brief period.

We summarize our formulation of actuator models by not-
ing that the set of all decisions corresponding to an actua-
tor A, a=!(A), consists of decision functions of the form
apply-A(Ta).

3.5 OUPOMDP DEFINED BY A DTBLOG MODEL

Let M(S,.A) be a DTBLOG model defined using the sets
S and A of sensors and actuators respectively. Let V), be
the first-order vocabulary used in M. Then, M defines an
OUPOMDP (X, U, O, T, 2, R) where the set of states X is
the set of all timestep-indexed states corresponding to the
possible worlds of vocabulary Vy,. U is the set of all in-
stantiated decision functions corresponding to A that are
allowed in some state © € X and O is the set of all instan-
tiated functions corresponding to sensor specifications in S
that are allowed in some state x € X. The transition func-
tion T" and observation function {2 are defined by the prob-
abilistic dependency statements in M. This formulation
does not place any requirements on distributions of the val-
ues of observations or the effects of actions. Every BLOG
model must include dependencies for every declared func-
tion; the dependencies for the values of sensor-predicates
and fluents affected by decisions can be defined to capture
arbitrary physical processes.

Strategy tree generated by a DTBLOG model DT-
BLOG represents belief states using collections of sam-
pled, possible states. BLOG’s existing sampling subrou-
tines are used to sample possible worlds corresponding to
the initial state specified in the BLOG model. The seman-
tics developed above implicitly define the strategy tree for
a DTBLOG model: the application of a decision on a be-
lief updates each possible world in the belief to the next
timestep using the stated dependencies. When the belief

state is updated w.r.t. to a decision, the DTBLOG engine
generates the set of observations corresponding to each
possible updated state.

The following results follow from the semantics above.

Lemma 1. The semantics of DTBLOG ensure that in a be-
lief b, (a) every generated observation statement o is either
a set evidence statement for symbols of type 7, (o) or an ob-
servation statement utilizing only rigid designators of type
specified by TG(O), and (b) every possible decision u uses
only arguments that are rigid designator tuples of the type
Ta(u)-

Theorem 1. Let M(S, A) be a DTBLOG model defined
using sensor and actuator specifications S and A respec-
tively, such that os and o are its sensor and actua-
tor mappings. If M satisfies BLOG’s requirements for
well-defined probabilistic models then it generates a well-
defined strategy tree w.r.t. S, A, os, and o 4.

3.6 MODELING REAL-WORLD SITUATIONS

‘We now show that various non-trivial modes of sensing and
acting can be expressed easily in the presented framework.

Observations of composed functions Consider a hu-
man operator who reads the passport of a passenger im-
mediately after she exits the height scanner, and reports
the date of birth along with the person reference gener-
ated by the height scanner. Intuitively, the human op-
erator provides observations of a function composition:
DOB(PassportID(Src(PersonRef))), where DOB maps a
passport number to the date of birth mentioned within.
This appears to be a problem since the use of function
application terms is specifically disallowed in our frame-
work unless each such term has been observed. How-
ever, the situation can be modeled by defining the hu-
man operator as a sensor ((PersonRef,Date), ()), that re-
ports observations about the derived function DOBonPPof-
Src(x)=DOB(PassportID(Src(x))). In fact, our formulation
correctly ensures that the agent will not expect an observa-
tion of DOB(PassportID(Src(x))) from a sensor that reports
the DOB(y) function (perhaps a swipe-through scanner).

Actions on sensor-generated symbols In the real world,
agents need to act upon objects that are detected through
their sensors. Clearly, actuators can be specified to directly
take inputs of the type generated by a sensor. Most com-
monly however, physical actuators such as a robot’s grip-
per cannot act upon symbols. In such situations, sensor-
generated symbols can be used in actions that can be com-
piled down to primitive actions respecting the semantics
defined above. Consider a situation where the scanner re-
ports the estimated Location of the person generating a per-
son reference in addition to their measured heights. Let the
functions RelativeOrientation and CamDistance map posi-
tions to the orientation and distance relative to the camera,
respectively. We can define a camera action that takes a

snapshot given a PersonRef as follows:
apply_TakePhotoPRef(p_ref,t) :=
apply_TakePhoto(RelativeOrientation(Location(p_ref)),
CambDistance(Location(p_ref)),t)

Every instance of apply_TakePhotoPRef() is compiled out
into the primitive action apply_TakePhoto().

Actuators that gain knowledge Although this frame-
work cannot capture completely the beliefs of actuators or
sensors with their own reasoning abilities, it can model
actuators and sensors whose knowledge evolves. Con-
sider an actuator that can dial phone numbers. Sup-
pose this actuator models a human operator, who can
read the phone book to obtain the phone number for any
name. Our system correctly allows decisions such as
apply_Dial(phoneNumber(“John”), t) only if an observa-
tion of PhoneNumber(“John”) is received. However, they
should also be allowed if the operator has been able to look
up John’s phone number in the phone book. The non-trivial
part in designing such a system is to model the growth in
knowledge of the operator.

Such a phone operator can be specified as (String, Time).
The corresponding decision variable takes the form ap-
ply_Dial(s,t). The restrictions developed above, on possi-
bly substitutions for s, apply here. The effects of this action
are determined by a predicate:
dialNumber(n, t) {

if exists String s apply_Dial(s, t)

and n == lookedUpNumber(s, t) then = true

else = false};
where lookedUpNumber(s,t) is either the number repre-
sented by s if s is the string representation of a number, or,
if s is a name, then it is the looked up number for that name
according to a certain distribution:
lookedUpNumber(String s, Time t) {

if strToNumber(s) != null then = strToNumber(s)

else if exists t’ <t operatorLookedUp(s, t’)

then ~ phoneBookCPD(s)

else =null };
With this formulation, the application of decisions like ap-
ply_dialNumber(“John”) will result in a correctly updated
belief state, contingent upon whether or not the operator
performed a lookup.

4 SOLVING OUPOMDPS: OU-PBVI

In order to illustrate the efficacy of our framework, we
developed and implemented an open-universe version of
point-based value iteration (PBVI) (Pineau et al., 2003).
OU-PBVI is designed to handle the main aspects of
OUPOMDPs that prevent a direct application of POMDP
algorithms: (a) belief states are infinite dimensional ob-
jects, and (b) the set of possible observations is unbounded.
Thus, standard POMDP algorithms, which rely upon car-
rying out analytical backup operations using the domain’s

transition function cannot be applied in general (although
closed form backups for special cases may be possible).
The following description focuses upon the key enhance-
ments made to PBVI; a description of PBVI itself can be
found in the cited reference.

PBVI restricts the Bellman backup of the value function
for POMDPs to a finite set of sampled belief states, B. The
|| X ||-dimensional « vector for a policy represents its value
function in terms of the expected value of following the
policy for each state x € X. PBVI approaches construct
t + 1 step policies by computing the ¢ 4+ 1 step value
function for each b € B:

VI (0) = maz{ Bp[r(s,)] + YEq(olp,u) [Vinax (06)]}
where V! (bY) =mazqcy, a-bY, and bY is the belief state

after action w is applied in b and observation o is obtained.
Vi+1(b) represents a 1-step backup of V for b.

In order to apply these ideas to OUPOMDPs, OU-PBVI
represents belief states as sampled sets of possible worlds.
Action application and the generation of observations pro-
ceeds as discussed in detail in the preceding sections. Thus,
for each sampled state in a belief state b, action applica-
tion results in a set of observations corresponding to the
sampled states in b. We use a particle filter with IV, par-
ticles for belief propagation, and replace expectations by
sample averages (Srivastava et al., 2012). In addition, we
evaluate ¢ vectors lazily. In our implementation, the num-
ber of keys (possible worlds) in @ may reach a bound of
N, - || B]|. We also store the policy corresponding to each
o vector. This allows us to dynamically compute missing
components of the vector, as needed. More precisely, dur-
ing backup, if the value of a policy 7 is required for a state
that is not in the current set of states captured by ., that
state is added to a, and its value is computed by carrying
out Ng simulations of the execution of that policy. Dur-
ing each simulation, after each step of policy execution and
observation generation, if the resulting sampled state x is
present in a,» where 7’ is the subpolicy of 7 that remains
to be executed, o,/ (x) is used and the simulation termi-
nates. The estimates of policy value functions converge to
the true value functions as the N,,, Ng — o0.

S TEST PROBLEM AND RESULTS

We conducted experiments to investigate whether point-
based approaches could be used for solving OUPOMDPs.
As a test problem we developed an open-universe version
of the Tiger problem. The agent is surrounded by 4 zones
with an unknown, unbounded number of tigers who may
move among zones at each timestep. Multiple tigers may
be in a zone and the objective is to enter a zone without a
tiger. The agent has two actions, a listen(Timestep t) ac-
tion that allows it to make inaccurate observations about
the growls made by tigers at timestep ¢, and an enter(Zone

z, Timestep t) action which it can use to enter a zone. When
listen is applied, the agent obtains a growl from each tiger
with probability 0.5.
observableType(Growl);
#Growl(Source = m, Time_Growl = t) {

if apply_listen(t-1) then ~ Bernoulli(0.5)

else=0};
The listen action also gives a noisy estimate of the zones
from which growls came. If a growl is made by a tiger
in z, the probability of observing that a growl was made
at z is 0.75, and that of observing that a growl was made
at each of the zones (z + 1 mod 4) and (z — 1 mod 4) is
0.25. At each timestep, each tiger independently either
stays in its zone with probability 0.4 or moves to each of
the neighboring zones with probability 0.3. The agent re-
ceives a reward 10 for entering a door without tiger, —1 for
listening, and —100 for entering a zone with a tiger. The
number of tigers follows a Poisson(1) distribution. The ob-
jective is to find a policy for the belief state specified in the
DTBLOG model. The unknown, unbounded numbers of
tigers and relevant observations, as well as the independent
movements of tigers make this a difficult OUPOMDP that
cannot be expressed using existing approaches.

For our evaluation, we fixed Ng =100,7v=0.9 and the
time horizon at 5. Fig.3 shows the values of the obtained
policies for varying values of || B|| and N, averaged over
10 different runs of the algorithm. To compute estimates of
policy values, we carried out Ng simulations of the com-
puted policy on each of 5000 samples for the initial state.
The results show that the variance in policy value-estimates
decrease as N, and || B|| increase.

Since no other existing approach addresses OUPOMDPs,
we used a belief-state query (BSQ) policy (Srivastava et
al., 2012) as a baseline. BSQ policies map first-order prob-
abilistic queries to belief states. Although such policies are
more succinct than observation-history policies, evaluating
them is non-trivial because the action to be applied at each
step depends on the posterior probability of a first-order
query rather than just the observation history. Algorithms
for policy evaluation are discussed in detail in the cited ref-
erence. For our experiments we used the following, intu-
itively simple BSQ policy:

if Pr(no tiger behind d; att) > 0, enter(d,t)

else if Pr(no tiger behind ds at t) > 6, enter(ds, t)

else listen(t)

We found that § = 0.9 resulted in the highest expected value
for this BSQ policy, shown using the dashed line in Fig. 3.
Our experiments show that OU-PBVI’s computed policies
approach the best value of our hand-written, parameterized
BSQ policy as N, and || B|| increase.

The average runtimes for OU-PBVI ranged from 420s for 8
beliefs and 200 particles to 106, 800s for 1000 particles and
128 beliefs. At least 80% of the time was spent in proba-

3 r r

200p ——
2 500p —s— 1
1 1000p ——
0 BSQ: theta=0.9 ------ |

Expected Value
A

0 20 40 60 80 100 120 140
Number of Belief Points

Figure 3: Expected values for OU-PBVI. Solid lines represent
different numbers of particles used for the belief state representa-
tion (see text for details).

bilistic inference for carrying out belief propagation. Since
we utilize PPLs to express OUPOMDPs, our approach will
automatically scale with improvements in their inference
engines. Indeed, using compiler techniques for improv-
ing inference in PPLs is an active area of research, and has
shown speed-ups of up to 200x in preliminary experiments.
We expect the runtimes of our algorithm to reduce to a frac-
tion of the current estimates as a result of such advances.

These experiments demonstrate that our framework can be
used to effectively express OUPOMDPs and solve them.

6 DISCUSSION

To the best of our knowledge, Moore (1985) presented
the first comprehensive FOL formulation of actions that
did not make the unique names assumption and allowed
terms in the language to be partially observable, in a non-
probabilistic framework. In Moore’s formulation actions
could be executed by an agent only if they were “known” to
it. This notion of epistemic feasibility of an action was also
used in later work (Morgenstern, 1987; Davis, 1994, 2005).
These approaches used a significantly larger axiomatiza-
tion to address the problem of syntactically proving and
communicating facts about knowledge. However, they can-
not be used in open-universe probabilistic languages due
to the requirement of reifying possible worlds and terms
as objects in a universe. Further, they do not address the
problems of expressing observability and action availabil-
ity while conforming to a given agent specification.

Our formulation of action effects uses update rules sim-
ilar to successor-state axioms (SSAs) (Reiter, 2001) with
a significant enhancement: they allow compact expression
of the so-called factored representations that are difficult to
express using SSAs (Sanner and Kersting, 2010). More-
over, usually employed assumptions like having a “closed
initial database” in that line of work preclude the possibility
of expressing identity uncertainty: distinct terms like Ves-
per and Fiancee(Bond) can never represent the same ob-
ject. Sanner and Kersting (2010) use this framework for
first-order POMDPs and make the additional assumption

that all non-fluent terms are fully observable. They suggest
a same-as(t1, t2) predicate for representing identity uncer-
tainty between fluent terms. However, it is not clear how
this predicate can be used in conjunction with their unique
names axioms for actions, which assert that instances of
an action applied on distinct terms must be distinct. The
RDDL language (Sanner, 2010) used in recent probabilis-
tic planning competitions can also express closed-universe
POMDPs as relational extensions of DBNs, under the as-
sumptions that a fixed set of predicates will be observed at
every time step and that all ground terms are unique and
known. Wang and Khardon (2010) present a relational rep-
resentation for closed-universe POMDPs where action ar-
guments have to be in a known 1-1 mapping with actual ob-
jects in the universe. Kaelbling and Lozano-Pérez (2013)
present an approach where action specifications include
preconditions in the form of belief-state fluents. However,
the solution approach requires action-specific regression
functions over the probabilities of such queries. The ap-
proaches discussed so far assume that a POMDP definition
is available. Recent work by Doshi-Velez (2010) addresses
the problem of learning the transition and observation dis-
tributions for an unfactored POMDP with a potentially un-
bounded number of states.

In contrast to these approaches, our formulation allows an
agent to plan and act upon objects discovered through its
sensors. We presented the first framework for accurately
expressing OUPOMDPs and solving them. The central
idea of our solution is that representing observations and
decisions using terms with unique meanings clarifies com-
munication without being restrictive. We utilized this idea
to construct strategy trees reflecting the true capabilities
of an agent—something that could not be achieved by ex-
tending the existing formalisms. We also showed that this
framework facilitates general algorithms for solving a large
class of decision problems that capture real-world situa-
tions and could not previously be expressed or solved. A
number of directions exist for future work. The notion of
high-level actions can be developed further. For instance,
one could define an action that determines the maximum
likelihood estimate for the position of the person who gen-
erated a reference, and takes a picture of that location. Such
actions have to be specified outside the DTBLOG model
since they need to execute queries on the model to construct
their arguments. However, probabilistic effects of such ac-
tions have to be defined in the model in a manner consistent
with their external definitions.

Acknowledgments

This research was supported in part by DARPA contracts
W31P4Q-11-C-0083 and FA8750-14-C-0011, ONR grant
N00014-12-1-0609 and ONR MURI award ONR-N00014-
13-1-0341.

References

Astrom, K. J. 1965. Optimal control of Markov decision
processes with incomplete state estimation. Journal of
Mathematical Analysis and Applications 10:174-205.

Davis, E. 1994. Knowledge preconditions for plans. J.
Log. Comput. 4(5):721-766.

Davis, E. 2005. Knowledge and communication: A first-
order theory. AIJ 166(1-2):81-139.

Dean, T., and Kanazawa, K. 1989. A model for rea-
soning about persistence and causation. Comput. Intell.
5(3):142-150.

Doshi-Velez, F. 2010. The infinite partially observable
markov decision process. In Neural Information Pro-
cessing Systems (NIPS), volume 22.

Goodman, N. D.; Mansinghka, V. K.; Roy, D. M.
Bonawitz, K.; and Tenenbaum, J. B. 2008. Church: A
language for generative models. In UAI-0S.

Kaelbling, L. P., and Lozano-Pérez, T. 2013. Integrated
task and motion planning in belief space. I. J. Robotic
Res. 32(9-10):1194-1227.

Kaelbling, L. P;; Littman, M. L.; and Cassandra, A. R.
1998. Planning and acting in partially observable
stochastic domains. AIJ 101(1-2):99-134.

Koller, D.; McAllester, D.; and Pfeffer, A. 1997. Effective
Bayesian inference for stochastic programs. In AAAI-97.

Levesque, H. J., and Lakemeyer, G. 2000. The logic of
knowledge bases. MIT Press.

Little, R. J. A., and Rubin, D. B. 2002. Statistical analysis
with missing data (second edition). Wiley.

Milch, B.; Marthi, B.; Russell, S. J.; Sontag, D.; Ong,
D. L.; and Kolobov, A. 2005. BLOG: Probabilistic
models with unknown objects. In Proc. IJCAI-05, 1352—
1359.

Milch, B. C. 2006. Probabilistic models with unknown
objects. Ph.D. Dissertation, UC Berkeley.

Moore, R. C. 1985. A Formal Theory of Knowledge and
Action. Ablex. 319-358.

Morgenstern, L. 1987. Knowledge preconditions for ac-
tions and plans. In Proc. IJCAI-87, 867-874.

Pineau, J.; Gordon, G.; Thrun, S.; et al. 2003. Point-based
value iteration: An anytime algorithm for POMDPs. In
Proc. IJCAI-03.

Reiter, R. 2001. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Sys-
tems. The MIT Press.

Russell, S.J., and Norvig, P. 1995. Artificial Intelligence -
A Modern Approach. Prentice Hall.

Sanner, S., and Kersting, K. 2010. Symbolic dynamic pro-
gramming for first-order POMDPs. In Proc. AAAI-10.

Sanner, S. 2010. Relational dynamic influence
diagram language (RDDL): Language descrip-
tion. http://users.cecs.anu.edu.au/

~ssanner/IPPC_2011/RDDL.pdf.

Srivastava, S.; Cheng, X.; Russell, S.; and Pfeffer, A. 2012.
First-order open-universe POMDPs: Formulation and al-
gorithms. Technical report, EECS-2013-243, EECS De-
partment, UC Berkeley.

Wang, C., and Khardon, R. 2010. Relational partially ob-
servable MDPs. In Proc. AAAI-10.

