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1 Introdu
tionMCMC simulation is a powerful and a

urate strategy for inferen
e and learning (Gilks,Ri
hardson and Spiegelhalter 1996, Robert and Casella 1999). However, it often requiresthe design of 
omplex proposal distributions when applied to new tasks. Otherwise, thealgorithms 
an take very long to 
onverge (i.e., mix poorly). On the other hand, varia-tional methods have been shown to provide fast approximate estimates in many s
enarios(Jaakkola and Jordan 1999, Jordan, Ghahramani, Jaakkola and Saul 1999). Yet, theyrely on simpli�
ations of the original problem in order to ensure mathemati
al tra
tability.This often results in algorithms that yield poor estimates of high order moments, su
h a
ovarian
es and kurtosis.In this paper, we introdu
e a 
lass of Markov 
hain Monte Carlo (MCMC) algorithmsthat exploits the fa
t that variational approximations 
an be used as proposal distribu-tions. We show that naive algorithms exploiting this property 
an mix poorly, but solvethis problem by introdu
ing more sophisti
ated MCMC kernels based on blo
k samplingand mixtures of MCMC kernels. In parti
ular, we use mixtures with variational kernels thatallow the algorithm to dete
t the regions of high probability qui
kly and metropolis kernelsthat enable it to explore the neighbourhood of these regions. The resulting algorithm 
on-verges qui
kly to the regions of high probability and also yields reasonable approximationsto the entire distribution of interest. Our approa
h makes it possible to 
ombine variationaland MCMC algorithms within a rigorous probabilisti
 setting so as to exploit the bene�tsof both approa
hes simultaneously.There have been other attempts at 
ombining spe
i�
 approximation te
hniques and sim-ulation methods; indeed, resear
hers in the statisti
s 
ommunity often 
ombine the Lapla
eapproximation with simulation methods (Gilks et al. 1996). However, the Lapla
e methodis based on trun
ated Taylor expansions of derivative terms that 
an often lead to poorapproximations. Re
ently, Ghahramani and Beal (2000) showed that using a variationalapproximation for mixtures of fa
tor analyzers as the proposal for an importan
e sampler
ould lead to an improvement in the a

ura
y of the results. The approa
h we take hereis far more general and surmounts many of the problems en
ountered in the importan
esampling approa
h.We demonstrate the approa
h on the task of Bayesian parameter estimation of logisti
(sigmoidal) belief networks with latent variables. This problem is of interest for several rea-sons. First, it exhibits nonlinearity an non-Gaussianity. Se
ond, it in
ludes the problemsof logisti
 regression and 
lassi�
ation with missing observations as a sub-
ase. That is,our approa
h 
an handle situations in whi
h we have many partially observed input signals.1



Third, the noise is very uninformative and 
onsequently one has to be very 
areful whenapplying model testing te
hniques su
h as 
ross-validation. This motivates the Bayesianparadigm and, in parti
ular, the introdu
tion of a Gaussian prior as a regularisation me
h-anism. Lastly, this type of network has important 
onne
tions with resear
h 
arried out inthe area of neural 
omputation.The remainder of this paper is organised a follows. The probabilisti
 models and estima-tion goals are outlined in Se
tion 2. In Se
tion 3, we present the variational approximationsto the original models and the expe
tation maximisation (EM) algorithm to perform thene
essary 
omputations. The presentation of variational te
hniques for parameter estima-tion begins at a very general level. Subsequently, it fo
uses on the 
ases of fully observedBayesian networks (BNs) and BNs with hidden nodes. A novel strategy that 
ombinesMCMC and variational methods is proposed in Se
tion 4. The experimental results ob-tained with this method for logisti
 BNs are presented in Se
tion 5. Con
lusions andre
ommendations for future work are drawn in Se
tion 6. Finally, the notation appears inthe appendix.2 Model Spe
i�
ationIn this se
tion, we present our probabilisti
 model for parameter estimation in belief net-works (BNs). These networks provide a 
onvenient pi
torial representation of probabilitydistributions that 
an be fa
torised as follows1p(x1:nx j�) = nxYi=1 p(xijx�(i);�i)where x1:nx , fx1;x2; : : : ;xnxg represents a sta
ked set of nodes, xi denotes the variableasso
iated with node i, x�(i) denotes the parent nodes of node i and �i are some unknownparameters asso
iated with node i. Figure 1 shows a simple BN where all the nodes areobserved (A) and a BN where the value of one of the nodes is unknown (B). In both 
ases,we will show that it is possible to design algorithms to estimate the parameters.More formally, we 
onsider a 
ountable set of random variables xi 2 X , and partitionthe set into a visible part, xvi 2 X v, and a hidden part, xhi 2 X h, su
h that X = fX v [X hg.1For simpli
ity, we use xt to denote both the random variable and its realisation. Consequently, we express
ontinuous probability distributions using p (dxt) instead of Pr (Xt 2 dxt) and dis
rete distributions usingp (xt) instead of Pr (Xt = xt). If these distributions admit densities with respe
t to an underlying measure� (usually 
ounting or Lebesgue), we denote these densities by p (xt). For example, when 
onsidering thespa
e Rn , we will use the Lebesgue measure, � = dxt, so that p (dxt) = p (xt) dxt. To make the materiala

esible to a wider audien
e, we shall allow for a slight abuse of terminology by, sometimes, referring top (xt) as a distribution. 2



xπ(i),1

θi

j

i

j

x

x

θ

xπ(i),2 xπ(i),nπ

(B)

j

i

j

x

x

θ

xπ(i),2

(A)

xπ(i),nπxπ(i),1

θi

T T

Figure 1: (A) Fully observed belief network. (B) Belief network with one hidden node(right). The parameters � are treated as hidden units in the Bayesian framework. Thedashed box represents the Markov blanket for node �i, while the 
ontinuous box is a tem-plate indi
ating that there are T 
opies of x.We shall assume that we have T sets of measurements for the observed variables; that isxv , xv1:nxv;1:T 2 (X v)nxv�T . The distribution of the random variable xi is parameterisedby �i 2 Rn�(i) , where n�(i) is the number of variables on whi
h xi depends; that is thenumber of parent nodes in the 
ase of a belief network. In general, the 
ardinality of �is n� , Pi n�(i). Even though parameters in the Bayesian setting are to be regarded ashidden variables, we will here make a notational distin
tion between the hidden states andthe distributional parameters of the hidden states.We shall restri
t the parameterisation of the 
onditional probability distributions to thefollowing Bernoulli family with a logisti
 mappingp(xijx�(i);�i) = TYt=1 g ('i;t) = TYt=1 11 + exp (�'i;t)= TYt=1 " 11 + exp ���� �0ix�(i);t�#xi;t+12 " 11 + exp ��+ �0ix�(i);t�#�xi;t�12where 'i;t , xi;t(� + �0ix�(i);t), xi 2 f�1; 1gT and � is assumed to be �xed. (Note that weonly make the latter assumption for presentation purposes. One 
ould always introdu
e anextra node �xed to 1 and treat � as an extra parameter.) To 
omplete the spe
i�
ation ofthe Bayesian model, we assume a Gaussian prior N (�0;�0) on the parameters �i and prior3



independen
e, that is p(d�) =Qi p(d�i).The goal of the analysis will be to 
ompute the posterior distribution p(d�jxv). Fromthis distribution, one 
an easily derive other quantities of interest, su
h as predi
tive dis-tributions and marginal distributions. As illustrated in Figure 1, we need to distinguishbetween two s
enarios: fully observed networks and networks with hidden nodes.(i) Fully observed BNs: As shown in the left plot of Figure 1, the Markov blanket of�i (the nodes inside the dashed box) does not in
lude any other parameters. As a result ofthis, the problem of parameter estimation for BNs simpli�es to several logisti
 regressionsub-problems; one for ea
h node with parents. The posterior for ea
h of these nodes 
an be
omputed using Bayes rulep(d�jx) = Qnx
i=1QTt=1 p(xi;tjx�(i);t;�i)p(d�i)R�Qnx
i=1QTt=1 p(xi;tjx�(i);t;�i)p(d�i)where nx
 denotes the number of nodes that have at least one parent.(ii) BNs with hidden nodes: Hidden nodes introdu
e dependen
ies between the param-eters of the model. For example, in the right plot of Figure 1, the parameters �j depend onthe parameters �i be
ause xi is unknown. To 
ompute the posterior, we need to marginaliseover the hidden variablesp(d�jxv) = PxhQnx
i=1QTt=1 p(xi;tjx�(i);t;�i)p(d�i)R�PxhQnx
i=1QTt=1 p(xi;tjx�(i);t;�i)p(d�i)The posterior distributions, in both 
ases, 
annot be 
al
ulated analyti
ally be
ause ofthe large integrals and sums appearing in the denominators. To 
ir
umvent this problem, inthe next se
tion we introdu
e variational methods to obtain approximate solutions. Thesemethods will require that we map the original model to a simpli�ed model that is moreamenable to analyti
al and 
omputational treatment. We shall 
orre
t for this 
hange ofmodel using Markov 
hain Monte Carlo simulation in Se
tion 4.3 Variational ApproximationWe begin this se
tion by presenting a general variational framework for parameter esti-mation. We then enfor
e the belief network topologi
al 
onstraints and, �nally, deriveapproximations for parameter estimation in logisti
 belief networks. The resulting approx-imations are similar to the ones of (Jaakkola and Jordan 2000), with the ex
eption that weintrodu
e an extra parameter, �, to treat multimodality.4



3.1 Variational methods for parameter estimationThe aim of variational methods is to 
onvert a 
omplex problem into a simpler, moretra
table problem: see for example (Jordan et al. 1999). The simpler problem is generally
hara
terised by a de
oupling of the degrees of freedom in the original problem. Thisde
oupling is a
hieved by introdu
ing an extra set of parameters, the so-
alled variationalparameters. The variational parameters are then optimised so that the solution to thesimpler problem resembles the solution to the 
omplex problem.Bounds and 
onvexity play an important role in the variational paradigm. In manysituations, in
luding our BNs, the likelihood of the data p(xvj�) 
annot be easily evaluated.However, if we know a lower bound on the likelihood, we 
an maximise this bound toobtain an approximate solution. Lower bounds on the likelihood 
an be easily obtainedusing Jensen's inequalitylog p(xvj�) = log E q(xh ) �p(xj�)q(xh) � � E q(xh ) [log p(xj�)℄� E q(xh ) hlog q(xh)i (1)where q(xh) is an arbitrary density over the hidden states with respe
t to the Lebesgueor 
ounting measure. The right hand side is the negative Kullba
k Leibler \distan
e"between q and p (that is, �KL(qkp)) while the the last term is known as the entropy,H(q(xh)) , �E q(xh ) �log q(xh)�, of the distribution q. It is 
lear, therefore, that maximisingthe lower bound is equivalent to minimising the Kullba
k Leibler \distan
e".The distribution q that yields the tightest bound 
an be found by free-form maximi-sation, but this typi
ally leads to bounds that 
annot be evaluated (Chandler 1987). Analternative approa
h is to 
hoose a parametri
 form, bq(xhj�), of q(xh) that makes the righthand side of equation (1) easy to evaluate. The variational parameters � 
an then be opti-mised to get a bound that is as tight as possible. This approa
h is similar to what is done instatisti
al me
hani
s where one uses a tra
table energy fun
tion and the Gibbs-Bogoliubov-Feynman inequality to 
al
ulate the partition fun
tion (the normalising density in Bayes'rule) of a system with an intra
table energy fun
tion (Zhang 1993).It may be impossible, in general, to 
hoose a spe
i�
 fun
tional form of bq(xhj�) thatmakes the evaluation of E bq(xhj�) [log p(xj�)℄ tra
table. However, additional 
exibility 
an beintrodu
ed by lower bounding p(xj�) with a well-
hosen fun
tion bp(xj�; �), where � denotesan additional set of variational parameters. To summarise, the variational approa
h involvesthe following two steps1. Introdu
e the variational parameters � to make the 
onditional joint distribution ofthe hidden and visible variables, p(xj�), tra
table.5



2. Introdu
e the variational distribution q with parameters � to make the 
onditionalmarginal distribution of the visible variables, p(xvj�), tra
table.Following these steps, we 
an obtain an unnormalised lower bound on the likelihoodbp(xvj�;�; �) / expnE bq(xhj�) [log bp(xj�; �)℄� E bq(xhj�) hlog bq(xhj�)io (2)and, using Bayes' rule, we 
an easily obtain a lower bound on the posterior distributionbp(d�jxv;�; �) / p(d�) expnE bq(xhj�) [log bp(xj�; �)℄o (3)Finally, we 
an obtain a lower bound, bp(xv j�; �), on the eviden
e, p(xv), by standardmarginalisation p(xv) = Ep(d�) [p(xvj�)℄ � E p(d� ) [bp(xvj�;�; �)℄ = bp(xvj�; �) (4)Impli
itly, we are repla
ing the integrand in the normalising expression of the posteriordistribution with a tra
table lower bound (that is, one that 
an be integrated easily). We,then, maximise the resulting lower bound on the integral to approximate the true integral.In other words, we have repla
ed the integration problem by an easier optimisation problem.An alternative approa
h to obtain a lower bound on the likelihood was proposed in(Jaakkola and Jordan 2000). The method is also based on 
onvexity and Jensen's inequality.In parti
ular, it is based on the fa
t that the geometri
 average, Qi pqii , where qi is aprobability distribution, is less than or equal to the arithmeti
 average, Pi qipi. Followingthis result, the likelihood 
an be lower bounded as followsp(xv j�) = E bq(xhj�) � p(xj�)bq(xhj�)� � E bq(xhj�) � bp(xj�; �)bq(xhj�) ��YXh �bp(xj�; �)bq(xhj�) �bq(xhj�) = C(q)YXh (bp(xj�; �))bq(xhj�)where logC(q) is the entropy of the random variable xh under the distribution bq(xhj�).The lower bound on the likelihood 
an be written as followsbp(xvj�;�; �) /YXh (bp(xj�; �))bq(xhj�)That is, the dependen
ies between the variables x that would have resulted from performingexa
t marginalisation have been repla
ed with dependen
ies through a shared variationaldistribution. We shall however use the bound given by equation (2) as it is more generaland tra
table.To 
ompute the parameters �, � and �, we maximise the lower bound on the eviden
e,bp(xvj�; �). This step 
an be 
arried out using the 
oordinate as
ent maximum likelihood6



1. Expe
tation step: Compute the expe
tation of the 
omplete log-likelihood usingthe old values of the variational parametersQ , E bp(d�jxv;�old;�old) [log bp(xv ;�j�; �)℄2. Maximisation step: Maximise with respe
t to the variational parameters(�new; �new) = argmax�;� Q3. Go to 1 until a maximum number of iterations or required error toleran
e arerea
hed.
Figure 2: EM algorithm for variational approximation.algorithm shown in Figure 2 (Dempster, Laird and Rubin 1977). This algorithm is guaran-teed to maximise the lower bound on the eviden
e bp(xvj�; �), but it is not guaranteed tomaximise the a
tual eviden
e p(xv). That is, monitoring 
onvergen
e on bp(xv j�; �) 
an bemisleading. However, if the bounds on the likelihood of the observed and 
omplete data are
hosen 
arefully, some existing empiri
al results suggest that this framework 
an performvery well in 
omplex s
enarios (de Freitas, Niranjan and Gee 2000, Jaakkola and Jordan1999, Jaakkola and Jordan 2000). For the BNs introdu
ed in the previous se
tion, theexpe
tation of the 
omplete log-likelihood is de�ned asQ , E bp(d�jxv;xv�;�old;�old) "log nx
Yi=1 bp(xvi jxv�(i);�i;�i; �i)p(d�i)!#/ E bp(d�jxv;xv�;�old;�old) "H(bq) + log nx
Yi=1 expnE bq(xhi j�i) �log bp(xijx�(i);�i; �i)�o p(d�i)!#(5)where xhi denotes the hidden nodes in fxi;x�(i)g and H(bq) , Pnx
i=1H(bq(xhi j�i)). In thefollowing two se
tions, we show how to 
ompute this quantity in the 
ase of logisti
 beliefnetworks.
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3.2 Variational approximation for fully observed logisti
 BNsWhen analysing logisti
 BNs, we 
an 
an lower bound the likelihood of the data using aGaussian approximation (Jaakkola and Jordan 2000), as followsp(xijx�(i);�i) = g ('i) � g(�i) exp�'i � �i2 � �(�i) �'2i � �2i �� (6)where 'i = xi(�+ �0ix�(i)) and �(�i) , tanh(�i=2)4�i . It is then trivial to apply Bayes' rule to
ompute a lower bound on the posterior distribution of the parametersbp(d�ijxi;x�(i); �i) / bp(xijx�(i);�i; �i)p(d�i)where bp(xijx�(i);�i; �i) 
orresponds to the right hand side of equation (6). Using 
onjugateanalysis and 
ompleting squares, we 
an obtain the following re
ursive expressions for themean, �, and varian
e, �, of the Gaussian posterior distribution��1i;t = ��1i;t�1 + 2�(�i;t�1)x�(i);tx0�(i);t�i;t = �i;t h�xi;t2 � 2�(�i;t�1)��x�(i);t +��1i;t�1�i;t�1iAs an instan
e of equation (5), we 
an 
ompute the variational parameters by maximis-ing the lower bound on the eviden
e�newi = argmax�i E bp(d�ijxi;x�(i);�oldi ) �log bp(xijx�(i); �i)p(d�i)�Sin
e all the distributions are Gaussian, one 
an take derivatives and equate to zero toobtain the following re
ursive formula for the variational parameters�2i;t = E bp(d�ijxi;x�(i);�oldi ) �(�+ �0ix�(i);t)2�= �2 + 2��0i;tx�(i);t + x0�(i);t ��i;t + �i;t�0i;t�x�(i);t= �2 + 2��0i;tx�(i);t + tr���i;t + �i;t�0i;t�x�(i);tx0�(i);t�The EM algorithm used for 
omputing the variational approximation of fully observedlogisti
 BNs is shown in Figure 3.3.3 Variational approximations for logisti
 BNs with hidden nodesTo obtain the EM update equations for logisti
 networks with hidden nodes, we �rst 
al
u-late a lower bound on the posterior distributionbp(d�ijxvi ;xv�(i);�i; �i) / bp(xvi jxv�(i);�i;�i; �i)p(d�i)/ expnE bq(xhi j�i) �log bp(xijx�(i);�i; �i)�o p(d�i)/ exp�E bq(xhi j�i) �'i � �i2 � �(�i) �'2i � �2i ��� p(d�i)8



For ea
h 
hild node xiInitialise �i;0, �i;0 and �i;0For t=1 to t=TInitialise iterations 
ounter: k = 0While (k < maxIterations and error toleran
e � Tol)k = k + 1��1(k)i;t = ��1i;t�1 + 2�(�i;t�1)x�(i);tx0�(i);t�(k)i;t = �(k)i;t ��xi;t2 � 2�(�i;t�1)��x�(i);t +��1i;t�1�i;t�1��2(k)i;t = �2 + 2��0(k)i;t x�(i);t + tr���(k)i;t + �(k)i;t �0(k)i;t �x�(i);tx0�(i);t�Compute toleran
eEnd While(k)End For(t)End For(i) Figure 3: EM for fully observed logisti
 BNs.Pro
eeding as in the previous se
tion, one 
an easily obtain the following re
ursive formulasfor �, � and ���1i;t = ��1i;t�1 + 2�(�i;t�1)E bq(xhi j�i) hx�(i);tx0�(i);ti�i;t = �i;t �E bq(xhi j�i) h�xi;t2 � 2�(�i;t�1)�� x�(i);ti+��1i;t�1�i;t�1��2i;t = �2 + 2��0i;tE bq(xhi j�i) �x�(i);t�+ tr���i;t + �i;t�0i;t� E bq(xhi j�i) hx�(i);tx0�(i);ti�To obtain an update equation for the variational distribution, q, we introdu
e the followingparametri
 mean �eld approximationbq(xhj�) = Yfj;xj2Xhg�xj+12j (1� �j)�xj�12
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That is, ea
h hidden node is represented by an independent Bernoulli distribution. To �ndthe optimal parameters, we need to 
ompute argmax� Q, whereQ / E bp(d�jxv;xv� ;�old;�old) "H(bq) + log nx
Yi=1 expnE bq(xhi j�i) �log bp(xijx�(i);�i; �i)�o p(d�i)!#= H(bq) + E bp(d�jxv ;xv�;�old;�old) "nx
Xi=1 E bq(xhi j�i) �log bp(xijx�(i);�i; �i)�+ log (p(d�i))#= H(bq) + E bp(d�jxv ;xv�;�old;�old) "nx
Xi=1 E bq(xhi j�i) �'i � �i2 � �(�i) �'2i � �2i ��+ log (p(d�i))#We 
an a

omplish this by 
omputing the derivative ���jQ (for all j su
h that xj 2 X h)and equating to zero. In doing so, we �rst noti
e that ���jH(bq) = log 1��j�j . Consequently,�j = exp (Dj)1 + exp (Dj)where,Dj = ���j E bq(xhj j�j) "E bp(d�jxv;xv�;�old;�old) �'j � �j�2 � �(�j)E bp(d�jxv;xv� ;�old;�old) �'2j � �2j�# :(7)The EM algorithm for logisti
 BNs with hidden nodes is analogous to the one for fullyobserved BNs, with the ex
eption that now one has to 
ompute expe
tations with respe
tto E bq(xhj j�j) and in
lude equation (7). As an example, if an observed node, �i has a hiddenparent, x�(i);j , the se
ond term on the right hand side of equation (7) is equal to zero,yielding Di = ���j E bq(x�(i);j j�j) �xi�0ix�(i) � �i2 � : (8)4 Variational MCMCIn the previous se
tion, we showed how variational methods 
an be used to map a 
omplexproblem to a simpler problem, to whi
h one 
an apply methods that exploit some of theanalyti
al properties of the fun
tions under 
onsideration. Su
h a strategy, of 
ourse, 
anresult in biased estimates. To 
orre
t for this error, we 
an resort MCMC simulation.In parti
ular, we shall use the variational posterior distribution, bp(d�jxv;xv�;�; �), as theproposal distribution for various MCMC samplers. Before we 
an explain how this is done,we need to introdu
e some basi
 notions of MCMC simulation.MCMC te
hniques are a set of powerful simulation methods that may be applied to solveintegration and optimisation problems in large dimensional spa
es (Gilks et al. 1996, Robert10



and Casella 1999, Tierney 1994). These two types of problem play a fundamental role inthe �elds of ma
hine learning, physi
s, e
onometri
s, statisti
s and de
ision analysis. In the
ontext of maximum likelihood estimation, MCMC te
hniques 
an be used for 
arrying outthe ne
essary maximisations (Geyer and Thompson 1992). Within the Bayesian framework,given some unknown variables � 2 � and data y 2 Y , MCMC simulation 
an be adoptedto solve the following integration problems (Brooks 1998, Gilks, Thomas and Spiegelhalter1994)Normalisation: To obtain the posterior distribution p(d�jy) given the prior p(d�) andlikelihood p(yj�), the normalising fa
tor in Bayes' theorem needs to be 
omputedp(d�jy) = p(yj�)p(d�)R� p(yj�)p(d�)Marginalisation: Given the joint posterior of (�; z) 2 ��Z, we may often be interestedin the marginal posterior p(d�jy) = ZZ p(d�; dzjy)Expe
tation: The obje
tive of the analysis is often to obtain summary statisti
s of theform E (f(�)jy) = Z� f(�)p(d�jy)for some fun
tion of interest f : �! Rnf integrable with respe
t to p (d�jy). Exam-ples of appropriate fun
tions in
lude the 
onditional mean, in whi
h 
ase f (�) = �,or the 
onditional 
ovarian
e of � where f (�) = ��0 � E p( d�jy) [�℄ E 0p( d�jy) [�℄.We emphasize again that the diÆ
ult problem of 
omputing integrals is not only restri
tedto Bayesian learning. For example, in statisti
al me
hani
s, one needs to 
ompute thepartition fun
tion, Z, of a system with states, s, and Hamiltonian (potential and kineti
energy), E(s), Z =Xs exp ��E(s)kT �where k is the Boltzmann's 
onstant and T denotes the temperature of the system. Itturns out that the basi
 problem of equilibrium statisti
al me
hani
s is to 
ompute thissum, whi
h be
omes and integral 
ontinuum systems and a tra
e for quantum me
hani
alsystems (Baxter 1982).The idea of perfe
t Monte Carlo integration methods is to draw an i.i.d. set of samplesf�(i); i = 1; 2; : : : ; Ng from the target distribution p(d�) (it 
ould be the posterior, p(d�jy),11



in Bayesian analysis) to obtain the following empiri
al distributionPN (d�) = 1N NXi=1 Æ�(i) (d�)where Æ�(i) (d�) denotes the delta-Dira
 mass lo
ated in �(i). Consequently, one 
an ap-proximate the integrals, I (f), by dis
rete sums, IN (f), as followsIN (f) = 1N NXi=1 f(�(i)) a:s:����!N!1 I (f) = Z� f(�)p(d�) (9)The estimate IN (f) is unbiased and by the strong law of large numbers, it will almost surely
onverge to I (f). That is P� limN!1 IN (f) = I (f)� = 1If the varian
e of f (�) satis�es �2f , E p(d�) �f2 (�)� � I2 (f(�)) < +1, then the varian
eof IN (f) is equal to var (IN (f)) = �2fN and a 
entral limit theorem yields 
onvergen
e indistribution of the error pN�IN (f)� I (f)� =)N!+1 N (0; �2f )where =) denotes 
onvergen
e in distribution (Robert and Casella 1999, Se
tion 3.2). Theadvantage of Monte Carlo integration over deterministi
 integration arises from the fa
tthat the former positions the integration grid (samples) in regions of high probability. Onthe other hand, the main disadvantage of simple Monte Carlo methods is that often it is notpossible to draw samples from p(d�) dire
tly. This problem 
an, however, be 
ir
umventedby the introdu
tion of MCMC algorithms. Assuming that we 
an draw samples from aproposal distribution �(d�), the key idea of MCMC simulation is to design Markov 
hainme
hanisms that 
ause the proposed samples to migrate so that their empiri
al distributionapproximates p(d�).The most popular example of this 
lass of algorithms is the Metropolis-Hastings (MH)algorithm (Hastings 1970, Metropolis, Rosenbluth, Rosenbluth, Teller and Teller 1953). AMetropolis-Hastings step of invariant distribution, say p (d�), and proposal distribution,say � (d�?j�), involves sampling a 
andidate value �? given the 
urrent value � a

ord-ing to � (d�?j�). The Markov 
hain then moves towards �? with a

eptan
e probabil-ity A(�;�?) = minf1; [p(d�)�(d�?j�)℄�1 p(d�?)�(d�j�?)g, otherwise it remains at �. Thepseudo-
ode is shown in Figure 4.In the pseudo-
ode, we assume that the proposal and target distributions admit densitieswith respe
t to the Lebesgue or 
ounting measures. The transition kernel asso
iated with12



1. Initialise �(0) and set i = 0.2. Iteration i+ 1� Sample u � U[0;1℄.� Sample �(i+1)? from �(d�(i+1)?j�(i)).� If u < A(�(i);�(i+1)?) = min�1; p(�(i+1)?)�(�(i)j�(i+1)?)p(�(i))�(�(i+1)?j�(i)) ��(i+1) = �(i+1)?else �(i+1) = �(i)3. i+ 1 i+ 2 and go to 2.Figure 4: Metropolis-Hastings algorithm.the MH algorithm, assuming Lebesgue measure for more generality, is given byK(�(i); A) = ZAK(�(i); d�(i+1)?) + r(�(i))IA(�(i)) (10)where K(�(i); d�(i+1)?) = �(d�(i+1)?j�(i))A(�(i);�(i+1)?)and A(�(i);�(i+1)?) = min�1; p(d�(i+1)?)�(d�(i)j�(i+1)?)p(d�(i))�(d�(i+1)?j�(i)) �is the probability asso
iated with a 
andidate being a

epted, while the probability ofstaying at the same point is 1�A(�(i);�(i+1)?). The reje
tion term is, therefore, given byr(�(i)) = 1� ZX �(d�(i+1)?j�(i))A(�(i);�(i+1)?)It is fairly easy to prove that the samples generated by MH algorithm will mimi
 samplesdrawn from the target distribution (a property known as ergodi
ity). By 
onstru
tion,K(�; d�) satis�es the detailed balan
e 
ondition (reversibility). That is,p(d�(i))K(�(i); d�(i+1)?) = p(d�(i+1)?)K(�(i+1)?; d�(i))p(d�(i))r(�(i+1)?)IA(�(i+1)?) = p(d�(i+1)?)r(�(i))IA(�(i))
13



it follows that for any measurable set AZ�K(�(i); A)p(d�(i)) = Z� ZAK(�(i); d�(i+1)?)p(d�(i))= Z� ZAK(�(i+1)?; d�(i))p(d�(i+1)?)= ZA p(d�(i+1)?) = p(A) (11)sin
e R�K(�(i+1)?; d�(i)) = 1. Thus, by 
onstru
tion, the MH algorithm admits p as invari-ant distribution. To show that the MH algorithm 
onverges, we need to ensure that thereare no 
y
les (aperiodi
ity) and that every state that has positive probability 
an be rea
hedin a �nite number of steps (irredu
ibility). Sin
e the algorithm always allows for reje
tion,it follows that it is aperiodi
. To ensure irredu
ibility, we simply need to make sure that�(�) > 0 over the entire state spa
e. Under these 
onditions, we obtain the 
onvergen
eresult of equation (9) (Tierney 1994, Theorem 3, page 1717). If the spa
e � is small (forexample, bounded in Rn), then it is possible to use minorisation 
onditions to prove uni-form (geometri
) ergodi
ity (Meyn and Tweedie 1993). It is also possible to prove geometri
ergodi
ity using Foster-Lyapunov drift 
onditions (Meyn and Tweedie 1993, Roberts andTweedie 1996).Some properties of the MH algorithm are worth mentioning. Firstly, the normalising
onstants of the target distribution are not required. We only need to know the targetdistribution up to a 
onstant of proportionality. Se
ondly, although the pseudo-
ode makesuse of a single 
hain, it is easy to simulate several 
hains in parallel. Finally, the su

essor failure of the algorithm often hinges on the 
hoi
e of proposal distribution. This isdemonstrated in Figure 5. Here the proposal is a simple random walk, �(�(i+1)?j�(i)) =N (0; ��2). If the proposal is too narrow, only one mode of p(d�) might be visited. Onthe other hand, if it is too wide, the reje
tion rate 
an be very high. If all the modesare visited while the a

eptan
e probability is high, the 
hain is said to \mix" well. Inthe following subse
tions, we show how one 
an use the variational approximation as theproposal distribution so as to improve the mixing of the 
hains in some s
enarios.4.1 Naive variational MCMC approa
hThe most obvious and immediate way of improving the variational approximation usingMCMC is to sample new 
andidates a

ording to the variational distribution. That is,�(d�(i+1)?j�(i)) = bp(d�(i+1)?jxv;xv�;�; �)
14
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(i) θFigure 5: Approximations obtained using the Metropolis algorithm with three Gaussianproposal distributions of di�erent varian
es.In this 
ase, the a

eptan
e probability of the MH algorithm simpli�es toA(�(i);�(i+1)?) = min�1; p(d�(i+1)?jxv;xv�)bp(d�(i)jxv ;xv�;�; �)p(d�(i)jxv ;xv�)bp(d�(i+1)?jxv ;xv�;�; �)�= min�1; w(�(i+1)?)w(�(i)) �where w(�) , p(�)=bp(�) denotes the importan
e weights. This type of algorithm is knownas the independent MH algorithm and it is 
losely related to the standard importan
esampler (Geweke 1989). In the previous se
tion, we pointed out that this algorithm will
onverge to the posterior distribution under mild 
onditions. Moreover, we 
an state someen
ouraging results using \metri
s" 
ommonly used in the variational literature; namely,sin
e p(d�jx;x�) is the unique invariant distribution of the Markov 
hain, it follows that therelative entropy (Kullba
k Leibler \distan
e" between the true posterior and the MCMCapproximation) 
onverges to zero as the number of iterations in
reases (Cover and Thomas15



1991). However, both the importan
e sampler and independent MH algorithm are wellknown to perform poorly in high dimensions unless the proposal distribution is very 
loseto the target distribution (Geweke 1989, Mengersen and Tweedie 1996). (In pra
ti
e, thea

eptan
e ratio usually tends to zero after approximately 10 dimensions.) In fa
t, we havethe following resultProposition 1 (Mengersen and Tweedie 1996, Theorem 2.1) The independent MHalgorithm 
onverges at a uniformly (geometri
) rate if there exists a 
onstant � > 0 su
hthat p(�jxv;xv�)bp(�jxv;xv�) � �; � 2 supp(p(�))in whi
h 
ase, kK(i)(�; :) � pkTV � 2�1� 1��iwhere k � kTV denotes the total variation norm. Conversely, if there exists a set of positivemeasure where the bound on the importan
e weights does not hold, then the algorithm is noteven geometri
ally ergodi
.The negative result in this proposition is, perhaps, the most interesting one. Unless we
an bound the importan
e weights in the regions of high probability and in the tails, theapproa
h is bound to fail. One 
an apply the result of Proposition (1) to obtain the following
orollaryCorollary 1 (Uniform Ergodi
ity of naive variational MCMC) The independentMH algorithm for logisti
 BNs, using the variational approximation, N (b�; b�), as proposaldistribution, 
onverges at a uniformly (geometri
) rate if(� � �0)0��10 (� � �0)� (� � b�)0 b��1(� � b�) � 0 (12)in whi
h 
ase, kK(i)(�; :) � pkTV � 2�1� 1��iThe 
onverse result of Proposition (1) also applies.Proof. Sin
e both the target distribution and the variational approximation to it are properand sin
e the likelihood is bounded for all possible values of �, we only require that the ratioof the prior distribution, N (�0;�0), to the proposal distribution, N (b�; b�), be bounded. Itis then trivial to see that this is the 
ase when 
ondition (12) is satis�ed �In the one-dimensional 
ase, the bound in the previous 
orollary is satis�ed when thevarian
e of the prior distribution is less than or equal to the varian
e of the proposaldistribution. 16



4.2 Blo
k MCMC approa
hIn the previous se
tion, we argued that the a

eptan
e rate of the independent MH sampler
an be very low in high dimensions. To surmount this problem to a 
ertain extent, we 
anexploit the nature of the variational approximation and propose to update the parametersin blo
ks. The modi�ed algorithm, using bj to denote the size of the j-th blo
k and nbto denote the number of blo
ks, is shown in Figure 6. It uses the notation �(i+1)�[bj+1:bj+1℄ ,1. Initialise �(0) and set i = 0.2. Iteration i+ 1� Sample the blo
k �(i+1)1:b1 a

ording to an MH step with proposal dis-tribution bp1(d�(i+1)1:b1 j�(i+1)�[1:b1℄;�(i)1:b1 ;xv ;xv�) and invariant distributionp(d�(i+1)1:b1 j�(i+1)�[1:b1℄;xv ;xv�).� Sample the blo
k �(i+1)b1+1:b2 a

ording to an MH step with proposal distri-bution bp2(d�(i+1)b1+1:b2 j�(i+1)�[b1+1:b2℄;�(i)b1+1:b2 ;xv ;xv�) and invariant distributionp(d�(i+1)b1+1:b2 j�(i+1)�[b1+1:b2℄;xv;xv�). ...� Sample the blo
k �(i+1)bnb�1+1:bnb a

ording to an MH step with proposal distribu-tion bpnb(d�(i+1)bnb�1+1:bnb j�(i+1)�[bnb�1+1:bnb ℄;�(i)bnb�1+1:bnb ;xv;xv�) and invariant distribu-tion p(d�(i+1)bnb�1+1:bnb j�(i+1)�[bnb�1+1:bnb ℄;xv ;xv�).3. i+ 1 i+ 2 and go to 2.Figure 6: Blo
k variational MH algorithm.f�(i+1)1:b1 ;�(i+1)b1+1:b2 ; : : : ;�(i+1)bj�1+1:bj ;�(i)bj+1+1:bj ; : : : ;�(i)bnb�1+1:bnbg. (This algorithm in
ludes theGibbs sampler as a spe
ial 
ase; when the proposals 
orrespond to the full 
onditionalsand the a

eptan
e is equal to 1 (Geman and Geman 1984).) Ea
h proposal distribution
orresponds to a Gaussian distribution whose mean is a subset of the elements of the meanof the original variational distribution and whose 
ovarian
e is the 
orresponding blo
k-diagonal 
omponent of the original 
ovarian
e.The transition kernel for this algorithm is given by the following expressionK(�(i); A) = nbYj=1KMH�j(�(i)bj�1+1:bj ;�(i+1)�[bj�1+1:bj ℄;Aj)17



whereKMH�j(�; d�) denotes the j-th MH algorithm in the 
y
le. Sin
e this kernel allows oneto visit all sets of positive measure, while being aperiodi
, the algorithm's simple 
onvergen
eholds true as the number of samples be
omes very large.Obviously, 
hoosing the size of the blo
ks poses some trade-o�s. If one samples the
omponents of a multi-dimensional ve
tor one-at-a-time, the 
hain may take a very longtime to explore the target distribution. This problem gets worse as the 
orrelation betweenthe 
omponents in
reases. Alternatively, if one samples all the 
omponents together, thenthe probability of a

epting this large move tends to be very low.4.3 Mixtures of MCMC stepsA very powerful property of MCMC is that it is possible to 
ombine several samplers intomixtures and 
y
les of the individual samplers (Tierney 1994). This way we 
an have globalproposals to explore vast regions of the parameter spa
e and lo
al proposals to dis
over �nerdetails of the target distribution (Andrieu, de Freitas and Dou
et 2000, Andrieu and Dou
et1999). If the transition kernels K1 and K2 have invariant distribution p(�) ea
h, then the
y
le hybrid kernel K1K2 and the mixture hybrid kernel �K1 + (1 � �)K2, for 0 � � � 1,are also transition kernels with invariant distribution p(�).In this paper, we 
ombine the variational MCMC algorithm dis
ussed in Se
tion 4.2with a random walk metropolis (also in blo
ks). This will be useful, for example, whenthe target distribution has many narrow peaks. Here, the variational proposal lo
ks into aparti
ular peak while the random walk allows one to explore the spa
e around this peak.The pseudo-
ode for this mixture is shown in Figure 7.1. Initialise �(0) and set i = 0.2. Iteration i+ 1� Sample u � U[0;1℄.� If u < �Perform the blo
k MH algorithm with the variational proposal.� else Perform a blo
k Metropolis algorithm with a random walk proposal.3. i+ 1 i+ 2 and go to 2.Figure 7: Mixture MCMC algorithm.18



5 SimulationsWe performed experiments on fully and partially observed logisti
 BNs. When all the nodesare observed, the posterior is unimodal and symmetri
. This allows us to 
ompare thealgorithms by evaluating the distan
e between their estimates of the mean and the optimalmean. The likelihood will be higher for estimates 
lose to the optimal mean. Noti
e that theoptimal mean 
an be very di�erent from the generating mean. To illustrate this, we useda model with a single parameter set to 1 and generated 1000 observations. We repeatedthis four times and, ea
h time, we evaluated the likelihood distribution on a dis
rete grid.As shown in Figure 8, the generating mean is not ne
essarily equal to the optimal mean.Our non-informative noise model is, therefore, not amenable to model testing te
hniquessu
h as 
ross-validation. We also performed experiments on multimodal distributions thatshow the performan
e of the algorithm not only in terms of approximating the mean, butin terms of approximating the entire posterior distribution.
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Figure 8: Likelihood of the data (1000 observations) when generated by a Bernoulli logisti
node with a single parameter set to 1. Clearly, 1000 observations are not enough to re
overthe true value of the parameter. We are dealing with a very uninformative noise model and
onsequently standard 
ross-validation tests are not expe
ted to perform well.
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5.1 Unimodal modelsWe used a logisti
 model 
onsisting of one 
hild and a varying number of parents to gen-erate sets of 1000 data samples. We then 
omputed posterior approximations using thevariational EM algorithm, the blo
k M-H sampler with the variational proposal distribu-tion (VarMCMC), the random walk Metropolis (RW), and the MCMC mixture with avariational kernel and a Metropolis kernel (VarMixMCMC). We repeated this experiment10 times to obtain estimates of the performan
e in terms of means and error bars. Weused 5000 MCMC samples, set the random walk varian
e to 0:01, the bias parameter to0:5, the Bernoulli mean to 0:5 and the generating parameters to uniformly random valuesbetween on (0; 1℄. We 
hose a fairly 
at prior N (0; 100I) The results are shown in Figure9. It is 
lear that the VarMixMCMC algorithm outperforms the VarMCMC algorithm,
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Figure 9: The MCMC mixture with variational and Metropolis kernels provides betterestimates of the mean for di�erent numbers of parents.whi
h in turn outperforms the standard variational algorithm. The performan
e of the RWalgorithms varies 
onsiderably be
ause it depends on the initialisation and data set realisa-tion. That is, it might or might not perform well depending on whether it is initialised inregions of high probability or not. Of 
ourse, as the number of samples goes to in�nity, theRW algorithm will approximate the mean a

ording to the 
entral limit theorem. Yet, in20



pra
ti
al s
enarios we often need reliable and faster options. Noti
e also that this example... Computational time .......other performan
e measures next se
tion .......5.2 Multimodal modelsIn this experiment, we 
onsidered a network with two parents (one hidden and one observed).The posterior for � is, therefore, bivariate and 
an have two modes. These modes need notbe symmetri
al. For demonstration, we set the generating parameters for the hidden andobserved nodes to 2 and �1 and the respe
tive Bernoulli means of the hidden variablesto 0:6 and 0:5. We set the bias parameter to 2, the number of data 50 and the prior toN (3; 10I). The posterior in this 
ase 
an be evaluated numeri
ally on a two-dimensionalgrid. We show its 
ontour 
urves in Figure 10.The posterior is bimodal and asymmetri
. The �gure also shows the 
ontour plot of theRW MCMC histogram after 1000 iterations and the variational approximation. We noti
e
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Figure 10: Convergen
e of the random walk Metropolis algorithm after 1000 iterationsfor a bivariate model. These 
ontour plots indi
ate that the random walk 
an spend a
onsiderable time in regions of low probability.21



that the variational approximation �ts 
losely to one of the modes. We also noti
e that ifthe random walk starts in a region of low probability, it 
an take long to lo
ate one of themodes. Its performan
e will, therefore, be poor when dealing with posteriors with elongated
ontours...........

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

θ
1

θ 2

True posterior           
Variational approximation
MCMC−Var approximation   

Figure 11: Convergen
e of the variational MCMC algorithm after 1000 iterations for abivariate model. The variational approximation allows us to lo
ate a region of high proba-bility.6 Con
lusionsMention generality of the methodQMR, mixtures.It is possible to 
onstru
t more 
omplex and powerful sampling algorithms than the onesdes
ribe so far, while still exploiting the variational approximations. e.g. adaptive MCMC,parallel 
hains, approximating marginals only,
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Symbolsz1:t Sta
ked ve
tor z1:t , (z1; :::; zj�1; zj ; zj+1; :::; zt)0.z�j Ve
tor with j-th 
omponent missing z�j , (z1; :::; zj�1; zj+1; :::; zk)0.Ai;j Entry of the matrix A in the ith row and jth 
olumn.A1:p;1:q;1:r Three-dimensional matrix of size p� q � r.In Identity matrix of dimension n� n.Rn Eu
lidean n-dimensional spa
e.N The set of natural numbers (positive integers).p(z) Distribution of z.p(zjy) Conditional distribution of z given y.p(z;y) Joint distribution of z and y.z �p(z) z is distributed a

ording to p (z).zjy �p (z) The 
onditional distribution of z given y is p (z).B(�) Sigma �eld of subsets of the spa
e �.O(N) The 
omputation 
omplexity is order N operations.Operators and fun
tionsA0 Transpose of matrix A.A�1 Inverse of matrix A.tr(A) Tra
e of matrix A.jAj Determinant of matrix A.IE(z) Indi
ator fun
tion of the set E (1 if z 2E, 0 otherwise).Æzi(dz) Dira
 delta fun
tion (impulse fun
tion).bz
 Highest integer stri
tly less than z.E(z) Expe
tation of the random variable z.var(z) Varian
e of the random variable z.exp(�) Exponential fun
tion.�(�) Gamma fun
tion.log(�) Logarithmi
 fun
tion of base e (ln).min, max Extrema with respe
t to an integer value.inf, sup Extrema with respe
t to a real value.argminz The argument z that minimises the operand.argmaxz The argument z that maximises the operand.k�kTV Total variation norm k�kTV , supA2B(�)�(A)� infA2B(�)�(A).24
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