State Abstraction for Programmable Reinforcement Learnirg
Agents

David Andre and Stuart J. Russell
Computer Science Division, UC Berkeley, CA 94720
{dandre,russell@cs.berkeley.edu

Report No. UCB/CSD-1-1156

/l October 2001

[

\

\

| ‘| Computer Science Division (EECS)
\ University of California

\ Berkeley, California 94720

\

\

4

State Abstraction for Programmable
Reinforcement Learning Agents*

David Andre and Stuart J. Russell
Computer Science Division, UC Berkeley, CA 94720
{dandre,russejl@cs.berkeley.edu

Abstract

Safe state abstraction in reinforcement learning allowsi@ent to ig-
nore aspects of its current state that are irrelevant toutseat deci-
sion, and therefore speeds up dynamic programming andifearhike
Dietterich’s MAXQ framework, this paper develops methods $afe
state abstraction in the context of hierarchical reinfareat learning,
in which a hierarchical partial program is used to constth policies
that are considered. We extend techniques from MAXQ to theesd
of programmable hierarchical abstract machines (PHAMs)iciv ex-
press complex parameterized behaviors using a simple ggteof the
Lisp language. We show that our methods preserve the psopehi-
erarchical optimality, i.e., optimality among all polisieonsistent with
the PHAM program. We also show how our methods allow safectieta
ment, encapsulation, and transfer of learned “subroutieétaviors, and
demonstrate our methods on Dietterich’s taxi domain.

1 Introduction

The ability to make decisions based on ordjevantfeatures is a critical part of intelli-
gence and efficient decision making. For example, when fagdda flight of stairs to
climb, there is little need to consider the address of thé&dimg containing those stairs, let
alone the current price of tea in Chin&tate abstractiofis the process of eliminating as-
pects of state descriptions to reduce the effective stateespuch reductions can speed up
dynamic programming and reinforcement learning algorghlnonsiderably. Without state
abstraction, each new staircase, each new circumstanckvimy the existing staircase,
and even each step of each staircase requires the agergdaralpolicy from scratch. An
abstraction is calledafeif optimal solutions in the abstract space are also optimahé
original space. Safe abstractions were introduced by Ahjigyéor the Missionaries and
Cannibals problem. Boutiliegt al. [5] proposed a general method for deriving safe state
abstractions for Markov decision processes (MDPs).

Faster problem solving and learning can also be achieveddwiding prior constraints
on behaviors through some form of partial program. The fidldierarchical reinforce-
ment learning has developed several partial programmingdésms and associated al-
gorithms that construct policies consistent with partimdgrams. Hierarchical abstract
machines or HAMs [11], are hierarchical finite automata with nondatmistic choice
pointswithin them where learning is to occur. MAXQ programs [7, 8§anize behavior
into a hierarchy in which each “subroutine” is simply a refgeelachoice among a fixed set

*David was supported by the generosity of the Fannie and Jeintz Houndation. The work was
also supported by the following grants: NSF ECS-9873474RQOMNJRI N00014-00-1-0637

of lower-level subroutines until a termination conditiaamet. DTGolog [6] allows par-
tial programming in Prolog combined with symbolic dynamiogramming as a solution
method. Programmable HAMs, or PHAMSs [4], are described iatiSa 2; in short, they
augment Lisp with choice points and interrupts to give a \exgressive agent languade.
All these methods construct policies that are “optimal’eéme sense. HAMs, PHAMs, and
DTGolog uséhierarchical optimality i.e., optimality among all policies consistent with the
partial program. MAXQ usegecursive optimalityin which choices within a subroutine
are optimized independently of the calling context, assignsbme fixed relative valuation
of the possible “exits” from the subroutine.

The combination of state abstraction and hierarchicalfoet@ment learning is natural,
because the notion of “subroutine” is predicated on the ttl@a decisions “internal” to
the subroutine ought to be made based on little or no “outsidermation; any relevant
outside information can be passed in through arguments. ddg36] derives abstrac-
tions that are safe with respect to hierarchical optimdlitcomputing logical descriptions
of state sets with constant value. Abstractions in MAXQ pres recursive optimality,
which is a weaker condition and therefore allows strongstralotions. Additionally, Di-
etterich [8] makes a crucial observation: a state variabtele irrelevant to a decision in
a particular stateven if the variable affects the value of the stdffer example, suppose
a taxi driver is on her way to pick up a passenger at locatiofitfe value of the current
state depends on the passenger’s destination, B, becandfi@@ces the fare that will be
paid. Yet B has no bearing on the current decision about h@etto A. Dietterich obtains
this additional form of abstraction by developing a twotpd@composition of the value
function, reflecting the structure of the partial MAXQ pragmn, and shows that it yields
substantial additional speedup.

In comparing recursive and hierarchical optimality, Déeith [8] remarks that “State ab-
stractions [of this kind] cannot be employed without loshiigrarchical optimality,” which
may be true for a two-part value decomposition. Section disfpaper develops a three-
part decomposition that allows safe state abstractionn@gpect to hierarchical optimality.
We also give a decomposed dynamic programming formulatiodériving hierarchically
optimal solutions. Section 4 derives a set of conditionsidentifying safe abstractions,
and Section 5 describes a convergent reinforcement lggalgorithm for PHAMs with
state abstraction. Finally, Section 6 describes experiahessults for this algorithm using
Dietterich’s taxi domain. Detailed proofs of all theoremns amitted for space reasons.

2 Background

Our framework for MDPs is standard [8, 9]. An MDP is a 4-tupl§, A, 7, R), where
S is a set of statesd is a set of actions] is a probabilistic transition function mapping
S x AxS —[0,1], andR is a reward function mappin§ x A x S to the reals. In this
paper, we focus on infinite-horizon MDPs with a discountdagt A solutionto an MDP is
an optimal policyr* that maps fronS — A and achieves maximum expected discounted
reward for the agent. An SMDP (semi-Markov decision proga#lews for actions that
take more than one time steff. is modified to be a mapping frofi, 4,S,N — [0, 1],
whereN is the natural numbers; i.e., it specifies a distributionrdyeth output states
and action durationsR is then a mapping frons, A, S, N to the reals. The expected
discounted reward for taking an actierin states and then following a policyr is known
as the) value of that state/action pair, and is define@ass, a) = E[ro+8r1+%ra+...].
Note thatr = 7* if 7(s) = argmax, Q™ (s, a).

The PHAM programming language consists of the LISP lang@aggnented with three
special macros that enable reinforcement learning to biemeed:

1Options [12] augment the set of primitive actions with useitten complex behaviors without
restricting the possible policies considered; althougty thpeed learning, they are not truly partial
policies and are thus not directly comparable to the othehous.

(defun root () (if (not (have-pass)) (get)) (put))
Y B (defun get () (choice get-choice
(pham action ' pi ckup)
(cal | - subpham Navi gate (pass-loc))))
(defun put () (choice put-choice
(pham action ' put down)
(cal | - subpham Navi gate (pass-dest))))
(defun navi gate(t)
(loop until (at t) do
(choi ce nav (phamaction 'N)
(pham action 'E)
R G (pham action 'S)
(phamaction "W)))

Figure 1: The taxi world. It is a 5x5 world with 4 special cells (RGBY) ete the passenger is
picked up and dropped off. In each episode, the taxi stads@amdomly chosen square, and there is
a passenger at a random one of the 4 special cells with ranéstindtion. The taxi must pick up
the passenger and deliver her, using the commah8&,WPi ckup,Put down. The taxi receives

a reward of -1 for every action, +20 for successfully deliwgrthe passenger, -10 for attempting to
pi ckup or put down the passenger at incorrect locations. The discount fast@rd. The partial
program shown on the right is a PHAM for this problem that esges the same constraints as
Dietterich’s taxi MAXQ program. It breaks the problem downria the tasks of getting and putting
the passenger, and further isolates the navigation conmpone

o (choi ce <label> <form0> <form1l> ...) takes 2 or more arguments, where the
forms are LISP S-expressions. The agent must learn which forexecute.

o (cal | - subpham<subroutine- <arg0> <arg1>) calls a subroutine with its argu-
ments and alerts the learning mechanism that a subroutsbden called.

o (pham acti on <action-name-) executes a “primitive” action in the MDP.

A PHAM program consists of an arbitrary LISP program thatlisveed to use these macros
and obeys the constraint that all subroutines that inclinbéce points (either directly, or
indirectly, through nested subroutine calls) are callethwhe call-subphanmacro. De-
fine C as the set of choice points (one for eadipi ce macro) in a PHAM program and
© as the set of possible machine states achievable by thegonogvhere a machine state
includes the program counter, all memory variables, and#lestack). In previous work
[2, 4], we showed that, under appropriate restrictionst{agthat the number of machine
stateg©®| stays bounded in every run in the environment), the probléfmding the op-
timal choices for each choice-poinin C is equivalent to finding a solution for the joint
SMDP created by executing the PHAM program in an MDP. We prteska hierarchically
optimal learning algorithm (based on [11]), and demonsttélhe advantages of using the
PHAM language in terms of both expressive power and learrdtey An example PHAM
is shown in Figure 1 which also describes the Taxi world deonficm Dietterich’s experi-
ments [8], on which we illustrate our techniques.

3 Value Function Decomposition

A value function decomposition splits the value of a statida pair into mulitple additive
components. In Dietterich’s decomposition, for exampie, €xpected discounted return
for executing actiorm and then followingr until the end of the current subroutihés writ-
ten agx)™ (h, s, a) and is splitinto two partst’ ™ (s, a) (the expected reward from executing
a in world states) andC™ (h, s, a) (the expected reward for finishing subroutihaftera

is executed), wher®™(h, s,a) = V™(s,a) + C™(h, s,a). This two-part decomposition
allows only for recursive optimality precisely becauseé¢lpected rewardfter subroutine

h is executed is not a component of the value functiortfar, a.

To achieve hierarchical optimality for a value function dewosition in the PHAM frame-
work, we must redefine these two components slightly and atel\acomponent for the
expected reward outside the current subroutine. Firsg thatt we will express value func-
tions in the joint SMDP space, where each statis comprised of an environment state
s and an internal staté. The actionsA consist of the choices at the choice points in the
PHAM program. Define4, as the set of actions where the corresponding choice isreithe
not a sub-PHAM call or calls only subroutines containing hoice points.

The@-value for executing actiomin w is writtenQ™ (w, a) and is decomposed as follows:
Ni—1 No—1
> B

E [iﬁtn] =E [Z Btry +E[3 5%]
t=0 t=0 t=N; t=Ny

= Q:(w7a) + Q:(w7a) + Q:.r(waa)

whereN; is the number of primitive steps to finish actienV, is the number of primitive
steps to finish the current subroutine, and the expectagiomer tracjectories starting in

with actiona and then followingr. @, thus expresses the expected discounted reward for
doing the current actior) . for completing rest of the current subroutine, ad for all

the reward external to the current subroutine.

Before presenting the Bellman equations for the decompessieé function, we must first
define transition probability measures that take the hi¢naof the program into account.
First, we have the standard SMDP transition probabijlity’, N|w, a), which is the prob-
ability of an SMDP transition ta’ taking N steps given that actiomis taken inw. Next,
let S be a set of states, and [Bf (w’, N|w, a) be the probability that' is the first element
of S reached and that this occursprimitive steps, given that is taken inw. Two such
distributions are usefukgs) andFy), whereSS(w) are those states in the same sub-
routine asw and E X (w) are those states that are exit points for the subroutineagung

w. Using these probabilities, we can write the Bellman equmtiusing our decomposed
value function, as follows:

Q" (w,a) +E

w', N|w, a)r(w', N,w,a ifa € A,
O o) - {Z]jvm lw,a)r(w', N, w, a) ifa € »
OF (10(), (10 () + Q7 (ia(), 7(ia(w))) otherwise
Qf(w,a) = Y Fis)(W', Nw,a)BV[QF (W', (&) + QI (W', (w))] @)
QI (w,a) = D Fixp) W, Nw,a)8V[Q (o(w"), m(o(w)))] @)

whereo(w) returns the next choice state at the parent level of the fuleyaandi, (w)
returns the first choice state at the child level, given atic?

Theorem 1 If @}, @, and @} are solutions to Equation 1, Equation 2, and Equation 3
for 7*, then@* = @ + @ + Q} is a solution to the standard Bellman equation.

Theorem 2 Decomposed value iteration and policy iteration algorithfomitted here)
derived from Equation 1, Equation 2, and Equation 3 convésd@:, Q%, @, andn*.

4 State Abstraction and Transfer

There are several opportunities for state abstractionanahi task (Figure 1). For example,
while completing theGet subroutine, the the passenger’s destination is not releean
decisions about getting to the passenger’s location. Sitypjlwhen navigating, only the
current x/y location and the target location are importanthether the taxi is carrying

a passenger is not relevant. Taking advantage of thesdivetyiappealing abstractions
requires a value function decomposition, as Table 1 shotws K€y idea of state abstraction

is that we want to treat certain sets of states as equivaderihé different components of
our decomposition. We first require some notation to set uphmoretical results. Let(c)

be an abstraction function specifying the set of relevarthire and environment features
for each choice point. For the example shown in Table 1 where the x and y locations do

2\We make a trivial assumption that calls to subroutines am@snded by choice points with no
intervening primitive actions at the calling level. Wherstisn't the case, single-choice choice points
are inserted, which allows simpler analysis(w) ando(w) are thus simple deterministic functions,
determined from the program structure. See [3] for moreitieta

4 X [y | pass| dest] Qw,a) | @r(w,a) | Qu(w,a) | Qc(w,a)
{get-choice} [33| R G 0.23 -7.5 -1.0 8.74
{get-choice} | 3|3| R B 1.13 -7.5 -1.0 9.63
{get-choice} | 3| 2| R G 1.29 -6.45 -1.0 8.74

Table 1: Table of Q values and decomposed Q values for 3 states amhact: (nav pass).
Note that{get-choicé is sufficient to describe the stack space for the simple tariain, and that
although none of th€) values listed are identicad). is the same for all three cases, afd is the
same for 2 out of 3, an@ . is the same for 2 out of 3.

not matter for the. value,z(get - choi ce) = { 4, pass, dest}. Note that this
functionz groups states together into equivalence classes (for dranipstates that agree
on assignments t@, pass, anddest would be in an equivalence class). bet(w) be a
mapping from states to a canonical member of the equivalelass to which they belong
for the abstraction. For our exampley, would map all states get—choice, %, *, R, G >

to some state in the class, s&y, get — choice,0,0, R,G >. An abstraction can also
be dependent on the action takeruatand is writtenz(w, a), where the corresponding
mapping function isy, (w,a). Finally, define the recursive closure of rc(w), as the
set of all states contained in any subroutine in the callregbtooted by the subroutine
containingu. We now define 3 types of equivalence that provide safe sksteaactions.

Definition 1 (R-equivalence) z,. is R-equivalent iff for allv;, w»,anda,

Xzr (wlv (l) = Xzr (wQa (l) = Z p(wlv N‘wlv a)r(w', N, wi, (l) = Z p(wlv N|w21 a)r(w', N, wa, (l)
w!,N N
Definition 2 (E-equivalence) z, is E-equivalentiff/, . Q7T (w,a) = Q7 (x.. (w,a), a)
Definition 3 (SSP-equivalence)An abstraction function, is strongly sub-PHAM (SSP)
equivalent iff the following 4 conditions hold for all PHAMmsistent policies:
1. If z; ignores a feature (e.gfy) at one level, it must do so at all lower levels in the
hierarchy:V,, 1 fr € zs(w) = VYw' € re(w) fir € z5(w').
2. Equivalent states have equivalent transition prob&bst vV, ., o, n
p(W', Nlw',a) = p(xs, (@), Nlx:, (@), a) ®
3. Equivalent states have equivalent rewards;, 4. n
r(wla N: w: a’) = T(Xls (w’)7 N7 Xls (w)7 a)
4. The variables ir, are enough to determine the optimal politd; m(w) = 7(x-, (w))

The last condition states that in the optimal policy, theicks of action are the same for
any states that are abstracted together. This is relatdtetodtion that states can only
be abstracted together if the contexts of those states iasiemough that the policy is
the same. It could also be described as “passing in enoughmiation to determine the
policy”. This is the critical constraint that allows us to imt&in hierarchical optimality
while still performing state abstraction.

Now, we can express the abstracted Bellman equations, trenghorthand of.. = x..,
Xz, = Xs» @ndy., = Xe.

Vaca,Qr (xr(w,a),a) = Zp(w’,N\Xr(w,a),a)r(w',N, xr(w,a),a) 4
Vaga,Qr (xs(w,a),a) = Qf(w'7 71'(11/’)) + Q:(w', 77(11)')), wherew’ = ia(xs(w)) (5)
Ot = 3 P (N8I .)

Q7 (Xs (W), m(xs (w))]
VaQI (xe(w,a),a) = D FEx() W', Nixe(w,a),a)8Y[Q(o(w"), m(o(w))] (7)

w!' N

3We can actually use a weaker condition: Dietterich’s [8}daed condition for subtask irrele-
vance; see [3] for details.

Theorem 3 If z, is R-equivalentz, is SSP-equivalent, and is E-equivalent, then, i),
»,and @ are solutions to Equation 4, Equation 5, Equation 6, and Eigua7 for 7*,
then@Q* = Q; + Q% + @} is a solution to the standard Bellman equation.

Theorem 4 Decomposed abstracted value iteration and policy iteratitgorithms (omit-

ted here) derived from Equation 4, Equation 5, Equation & Bquation 7 converge to
L QE Qr, andr*,

Note that abstraction reduces the size of the system of ieqsalescribing the SMDP by

an amount dependent on the abstraction functigns,, andz..

5 The PHAM-SA learning algorithm

We present a simple model-free state abstracted learngagigdm based on MAXQ [8]
for our three level value function decomposition. We stonel aipdateq),(x,(w), a)

and Q. (xs(w,a),a) for all a € A, and#(x,(w,a),a) for thosea € A,. We calculate
Qw,a) = Qr(w,a) + Qo(xs(w),a) + Qu(x.(w, a), a). Note that as in Dietterich’s work,

Qr(w,a) is recursively calculated a8y, (w, a), a) if a € A, for the base case and other-
wise as), (w, a) = Q, (ia(w),a') + Qc(xs(ia(w)),a'), Wherea' = argmax, Q(w', b).

When transitioning to a state’ contained in subroutingé, where the last choice point
visited inh wasw, wherea was executed, anll primitive steps were taken betweerand
w’, we do the following updates, wheti¢ = arg max; Q(w', b).

oifae Ay, f(xr(w,a),a) «+ (1 —a)f(x,(w,a),a)+ ars

0 Qe(xs(w),a) & (1=)Qe(xs (W), a) + aBN [Qr(xs (W), a') + Qelxs (W), a')]
o Qe(xe(w,a),a) « (1 - @)Qe(xe(w, a),a) + aBN Qe(xe (&', a'), ')

Theorem 5 (Convergence of PHAM-SAQ-learning with State Absaction) If z,, zs,
and z, are R-,SSP-, and E- Equivalent, respectively, then the ebearning algorithm
will converge (with appropriately decaying learning ratasd exploration method) to a
hierarchically optimal policy.

6 Experiments

Figure 2 shows the performance of five different learninghds on Dietterich’s taxi-
world problem. The learning rates and Boltzman explorationstants were tuned for
each method. The Q-learning method is just regular Q-legrfor the problem. Note
that it performs better than the PHAM w/o SA (state abstoemtimethod — this is because
the problem is episodic, and the PHAM has states that arewsilgd once per episode,
whereas Q learning can visit states multiple times per remfoPming better than Q learn-
ing is the “Better PHAM w/o SA", which is a PHAM where extra airaints have been
expressed, namely that tipé ckup (put down) action should only be applied when the
taxi is co-located with the passenger (destination). Tipeprforming methods both use
state abstraction. The fact that the “Better PHAM w/ SA’ penfis essentially the same as
the “PHAM w/ SA” method is interesting, and appears to be duthé fact that it is rela-
tively easy for the state abstracted PHAM to learn nggita kup andput down unless it

is at the right place.

7 Conclusions and Future Work

This paper has shown that it is possible to obtain safe stetaation while maintaining
hierarchical optimality. Although it is possible to usetstabstraction in an approximate
fashion as a form of function approximation [10], we are stigating the possibility of

Results on Taxi World
500 T T T T T

-500 W

-1000

-1500

-2000 |

-2500 | k 1

T

-3000

Score (Average of 10 trials)

-3500 |:

T

-4000

T

Q-Learning - --e--
PHAM w/o SA —+—
1 PHAM w/ SA —*— |
4 Better PHAM w/o SA —&—

Better PHAM w/ SA —e—
5000 L L L L h
0 5 10 15 20 25 30

Num Primitive Steps, in 10,000s

Figure 2:Learning curves for the taxi domain, averaged over 50 tnginiins. Every 10000 primitive
steps (x-axis), the greedy policy was evaluted for 10 triel the score (y-axis) was averaged.

-4500

T

starting with safe state abstraction, and then doing fonaipproximation for each com-
ponent of our three part abstracted and decomposed vale&dnon Additionally, we are
investigating the use of shaping and model-based appreaairaprove the speed of learn-
ing and allow the use of these techniques on real-world dasnai

Note that, as in Dietterich’s work, our system requires thatuser specify the set of state
abstractions to use. As previously mentioned, it would ledgrable to automatically iden-
tify those state abstractions which are warranted by thér@mwment's dynamics. Com-
bining our three part value function decomposition with Bitiar's [6] offline inferential
approach to finding state abstractions seems promising.

References

[1] S. Amarel. On representations of problems of reasonlmguaactions. In D. Michie, editor,
Machine Intelligence 3volume 3, pages 131-171. Elsevier, 1968.

[2] D Andre. Programmable hams. tech report: www.cs.besketlu/"pham.ps, 2000.

[3] D Andre. State abstraction in phams. tech report: wmbeskeley.edu/"sa.ps, 2001.

[4] D. Andre and S.J. Russell. Programmatic reinforcemeatriing agents. In Dietterich T.G.
Tresp V. Leen, T. K., editoNIPS 13 MIT Press, Cambridge, Massachusetts, 2001.

[5] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploitisgucture in policy construction. In
Proc. of the Eleventh National Conf. on Artificial Intelliggg 1995.

[6] C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. ci3@n-theoretic, high-level agent
programming in the situation calculus. AAAI-2000 2000.

[7] T. G. Dietterich. The maxg method for hierarchical reirdement learning. IRProceedings of
the Fifteenth International Conference on Machine Leagnit998.

[8] T. G. Dietterich. Hierarchical reinforcement learningth the maxq value function decomposi-
tion. Journal of Artificial Intelligence Research3:227-303, 2000.

[9] Leslie P. Kaelbling, Michael L. Littman, and Andrew W. M. Reinforcement learning: A
survey.Journal of Artificial Intelligence Research:237—285, 1996.

[10] R. Makar, S. Mahadevan, and M Ghavamzadeh. Hierarchialti-agent reinforcement learn-
ing. InFifth International Conference on Autonomous Agehentreal, 2001.

[11] R. Parrand S.J. Russell. Reinforcement learning wigthelnchies of machines. In M. I. Jordan,
M.J. Kearns, and S. A. Solla, editoi8IPS 10 MIT Press, Cambridge, Massachusetts, 1998.

[12] R. Sutton, D. Precup, and S. Singh. Between mdps andseips: A framework for temporal
abstraction in reinforcement learningrtificial Intelligence 112(1):181-211, February 1999.

