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Abstract

High-level actions (HLAs) are essential tools for coping with the large search spaces and long decision
horizons encountered in real-world decision making. In a recent paper, we proposed an “angelic” semantics
for HLAs that supports proofs that a high-level plan will (or will not) achieve a goal, without first reducing the
plan to primitive action sequences. This paper extends the angelic semantics with cost information to support
proofs that a high-level plan is (or is not) optimal. We describe the Angelic Hierarchical A* algorithm, which
generates provably optimal plans, and show its advantages over alternative algorithms. We also present the
Angelic Hierarchical Learning Real-Time A* algorithm for situated agents, one of the first algorithms to do
hierarchical lookahead in an online setting. Since high-level plans are much shorter, this algorithm can look
much farther ahead than previous algorithms (and thus choose much better actions) for a given amount of
computational effort. This is a revised, extended version of a paper by the same name appearing in ICAPS
"08.

1. Introduction

Humans somehow manage to choose quite intelligently the twenty trillion primitive motor commands that
constitute a life, despite the large state space. It has long been thought that hierarchical structure in behavior
is essential in managing this complexity. Structure exists at many levels, ranging from small (hundred-step?)
motor programs for typing characters and saying phonemes up to large (billion-step?) actions such as writing
an ICAPS paper, getting a good faculty position, and so on. The key to reducing complexity is that one can
choose (correctly) to write an ICAPS paper without first considering all the character sequences one might
type.

Hierarchical planning attempts to capture this source of power. It has a rich history of contributions (to
which we cannot do justice here) going back to the seminal work of Tate (1977). The basic idea is to supply
a planner with a set of high-level actions (HLAs) in addition to the primitive actions. Each HLA admits one
or more refinements into sequences of (possibly high-level) actions that implement it. Hierarchical planners
such as SHOP2 (Nau et al., 2003) usually consider only plans that are refinements of some top-level HLAs for
achieving the goal, and derive power from constraints placed on the search space by the refinement hierarchy.

One might hope for more; consider, for example, the downward refinement property: every plan that
claims to achieve some condition does in fact have a primitive refinement that achieves it. This property would
enable the derivation of provably correct abstract plans without refining all the way to primitive actions,
providing potentially exponential speedups. This requires, however, that HLAs have clear precondition—effect
semantics, which have until recently been unavailable (McDermott, 2000). In a recent paper (Marthi, Russell,
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& Wolfe, 2007) — henceforth (MRW ’07) — we defined an “angelic semantics” for HLAs, specifying for
each HLA the set of states reachable by some refinement into a primitive action sequence. The angelic
approach captures the fact that the agent will choose a refinement and can thereby choose which element of
an HLA’s reachable set is actually reached. This semantics guarantees the downward refinement property and
yields a sound and complete hierarchical planning algorithm that derives significant speedups from its ability
to generate and commit to provably correct abstract plans.

Our previous paper ignored action costs and hence our planning algorithm used no heuristic information,
a mainstay of modern planners. The first objective of this paper is to rectify this omission. The angelic
approach suggests the obvious extension: the exact cost of executing a high-level action to get from state s to
state s’ is the least cost among all primitive refinements that reach s’. In practice, however, representing the
exact cost of an HLA from each state s to each reachable state s’ is infeasible, and we develop concise lower
and upper bound representations. From this starting point, we derive the first algorithm capable of generating
provably optimal abstract plans. Conceptually, this algorithm is an elaboration of A*, applied in hierarchical
plan space and modified to handle the special properties of refinement operators and use both upper and lower
bounds. We also provide a satisficing algorithm that sacrifices optimality for computational efficiency and
may be more useful in practice. Preliminary experimental results show that these algorithms outperform both
“flat” and our previous hierarchical approaches.

The paper also examines HLAs in the online setting, wherein an agent performs a limited lookahead prior
to selecting each action. The value of lookahead has been amply demonstrated in domains such as chess.
We believe that hierarchical lookahead with HLAs can be far more effective because it brings back to the
present value information from far into the future. Put simply, it’s better to evaluate the possible outcomes
of writing an ICAPS paper than the possible outcomes of choosing “A” as its first character. We derive an
angelic hierarchical generalization of Korf’s LRTA* (1990), which shares LRTA*’s guarantees of eventual
goal achievement on each trial and eventually optimal behavior after repeated trials. Experiments show that
this algorithm substantially outperforms its nonhierarchical ancestor.

2. Background
2.1 Planning Problems

Deterministic, fully observable planning problems can be described in a representation-independent manner
by a tuple (S, so,2, L, T, g), where S is a set of states, s¢ is the initial state, ¢ is the goal state,! £ is a set
of primitive actions, and 7 : S X L — S and g : § X £ — R, are transition and cost functions such that
doing action a in state s leads to state 7'(s,a) with cost g(s,a).> These functions are overloaded to operate
on sequences of actions in the obvious way: if a = (ay,...,a,), then T(s,a) = T(...T(s,a;)...,a,) and
g(s, a) is the total cost of this sequence. The objective is to find a solution a € L* for which T'(sg,a) = t and
g(sp,a) < oo.

Definition 1. A solution a* is optimal iff it reaches the goal with minimal cost:

a" = argmin,, T (so.m)=t 8(50, Q).

We assume the state and action spaces are finite. To ensure that optimal solutions exist, we also assume
that there is at least one finite-cost solution, and every cycle in the state space has positive cost. In this
paper, we will represent S as the set of truth assignments to some set of ground propositions, and 7" using the
STRIPS language (Fikes & Nilsson, 1971).

As a running example, we introduce a simple “nav-switch” domain. This is a grid-world navigation
domain with locations represented by propositions X(x) and Y(y) for x € {0, ..., x4} and y € {0, ..., Yiuax}, and
actions U, D, L, and R that move between them. There is a single global “switch” that can face horizontally
(H) or vertically (—=H); move actions cost 2 if they go in the current direction of the switch and 4 otherwise.

1. A problem with multiple goal states can easily be translated into an equivalent problem with a single goal state.
2. R, denotes the set R U {co}.



The switch can be toggled by action F with cost 1, but only from a subset of designated squares. The goal
is always to reach a particular square with minimum cost. Since these goals correspond to 2 distinct states
(H, —=H), we add a dummy action Z with cost 0 that moves from these (pseudo-)goal states to the single
terminal state z. For example, in a 2x2 problem (X,;,x = Ymax = 1) where the switch can only be toggled from
the top-left square (0, 0), if the initial state sy is X(1) A Y(0) A H, the optimal plan to reach the bottom-left
square (0, 1) is (L, F, D, Z) with cost 5.

2.2 High-Level Actions

In addition to a planning problem, our algorithms will be given a set A of high-level actions, along with a
set I(a) of allowed immediate refinements for each HLA a € A. Each immediate refinement consists of a
finite sequence a € A*, where we define A = A U L as the set of all actions. Each HLA and refinement may
have an associated precondition, which specifies conditions under which its application is allowed. To make
a high-level sequence more concrete we may refine it, by replacing one of its HLAs by one of its immediate
refinements, and we call one plan a refinement of another if it is reachable by any sequence of such steps.
A primitive refinement consists only of primitive actions, and we define /*(a, s) as the set of all primitive
refinements of a that obey all HLA and refinement preconditions when applied from state s. We assume no
plan is a refinement of itself. Finally, we assume a special fop-level action Act € A, and restrict our attention
to plans in I*(Act, o).

This definition of hierarchy is quite general. For instance, ordinary state-space search can be emulated by
a “flat hierarchy” in which Act refines either to the empty sequence, or any primitive action followed by Act.

Definition 2. (Parr & Russell, 1998) A plan a”* is hierarchically optimal iff

he _ .
a"" =arg My er+(Act,so):T(so.2)=t & (80, @).

Remark. Because the hierarchy may constrain the set of allowed sequences, g(so, a) > g(sp,a").

When equality holds from all possible initial states, the hierarchy is called optimality-preserving.

The hierarchy for our running example has three HLAs: ‘A = {Nav, Go, Act}. Nav(x, y) navigates directly
to location (x,y); it can refine to the empty sequence iff the agent is already at (x,y), and otherwise to any
primitive move action followed by a recursive Nav(x, y). Go(x, y) is like Nav, except that it may flip the switch
on the way; it either refines to (Nav(x, y)), or to (Nav(x’,y"), F, Go(x, y)) where (x’,y") can access the switch.
Finally, Act is the top-level action, which refines to (Go(x,,y,), Z), where (xg,y,) is the goal location. This
hierarchy is optimality-preserving for any instance of the nav-switch domain.

3. Cost-Based Descriptions of HLAs

As mentioned in the introduction, our angelic semantics (MRW ’07) describes the outcome of a high-level
plan by its reachable set of states (by some refinement). However, these reachable sets say nothing about
costs incurred along the way. This section describes a novel extension of the angelic approach that includes
cost information. This will allow us to find good plans quickly by focusing on better-seeming plans first, and
pruning provably suboptimal high-level plans without refining them further.

We begin with the notion of an exact description E, of an HLA a, which specifies, for each pair of states
(s, 8"), the minimum cost of any primitive refinement of a that leads from s to s’ (this generalizes the original
definition from (MRW ’07)).

Definition 3. The exact description of HLA a is a function E,(s)(s") = miNper(q,5):7(sb)=s &(S, D).

Remark. Note that the set of primitive refinements may be infinite. The minimum must still be attained,
however, due to the finiteness and positive-cycle assumptions.

3. Technically, GO and Nav also take the current x and y as parameters; to simplify notation, these extra parameters are suppressed in
the text.



Remark. Definition 3 implies that if s’ is not reachable from s by any refinement of a, E,(s)(s") = oo.

Definition 4. A valuation is a function v : S — R,. The initial valuation vy has vy(sg) = 0 and vy(s) = oo
for all s # sp.

We will use valuations to represent outcomes of high-level sequences, mapping each state to the cost of
reaching it by some refinement (or oo, if a state is not reachable). The initial valuation represents the initial
situation of the agent (i.e., the outcome of doing the empty sequence).

We can think of descriptions as functions from states to valuations (see Figure 1(b)). Then, descriptions
can be extended to functions from valuations to valuations, defining E,(v)(s") = min,cg v(s) + E,(s)(s’); for
each final state s/, the agent chooses the initial state s that enables reaching s’ with minimal total cost. Finally,
these extended descriptions can be composed to produce descriptions for high-level sequences.

Definition 5. Given a sequence a = (ay,...,ay), the exact transition function of a is a function mapping
valuations to valuations: E, = E,, o...0 E,,.

Theorem 1. For any integer N, final state sy, and action sequence a € A, the minimum over all state
sequences (s1, ..., SN—1) of total cost Zfil E,(si-1)(s;) equals E.(vo)(sn). Moreover, for any such minimiz-
ing state sequence, concatenating the primitive refinements of each HLA a; that achieve the minimum cost
E,(si—1)(s;) for each step yields a primitive refinement of a that reaches sy from sy with minimal cost.

Proof. The proof is by induction. When N = 1, the theorem follows trivially from Definitions 3 and 4. When
N>1,

(S15ees8N-1 (S15esSN-1)

N N-1
min >,_Zl Eq(si-1)(s:) min [EaN<sN1>(sN> > Ea,.(sm)(si)]

i=1
N-1
= min|Eg, (sy-1)(sy) + min " Eq(si1)(s:)
SN-1 (S1558N-2) P

= min (Eq, (v )(6x) + Eay , 00 By 00)sw)
= E, 0...0E,()(sw)
O

By this theorem, an efficient, compact representation for £, would (under mild conditions) lead to an
efficient optimal planning algorithm. Unfortunately, since deciding even simple plan existence is PSPACE-
hard (Bylander, 1994), we cannot hope for this in general. We will therefore consider principled compact
approximations to E, that still allow for precise inferences about the effects and costs of high-level plans.
3.1 Optimistic and Pessimistic Bounds on Descriptions
Definition 6. Valuation v; dominates valuation v,, written v; < vy, iff (Vs € §) vi(5) < vo(s).

Definition 7. Valuation v, strictly dominates v, written vi < v, iff (Vs € §) vi(s) < va(s) VvV va(s) = co.
Definition 8. Valuation v weakly dominates v,, written vi < vy, iff vi < vy A v £ s,
(The latter two definitions will be used later, when we discuss pruning.)

Definition 9. An optimistic description O, of HLA a satisfies (Ys) O,(s) < E,(s).

For example, our optimistic description of Go (see Figure 1(a/c)) specifies that the cost for getting to the
target location (possibly flipping the switch on the way) is at least twice its Manhattan distance from the
current location; moreover, all other states are unreachable by Go.



(a) Properties of HLA Go(x;, v, X;, yr) (precondition X(x;) A Y(y5))

refs (Nav(xy, ys. X1, Y1)
(Nav(xy, vy, x, ), F, Go(x, y, X;, ¥;)) (Vx,y) s.t. aswitch at (x,y)
optimistic | —X(x), =Y (yy), +X(x;), +Y(y,), £H
cost 2 2 # (|x; = x| + |ye = ysl)
pessimistic | if H: —X(x,), =Y (yy), +X(x1), +Y(y;)

cost < 20x; — xg| + 4y, — ysl
if —H: —X(x), =Y (), +X(x,), +Y ()

cost < 4x; — x| + 2y — ysl

Figure 1: Some examples taken from our example nav-switch problem. (a) Refinements and NCSTRIPS
descriptions of the Go HLA. The extra source position parameters (x;, y;) omitted elsewhere in the
text are shown here, for precision. (b) Exact valuation from sy for Go(l, 0,0, 1). Gray rounded
rectangles represent the state space; in the top four states (circles) the switch is horizontal, and in
the bottom four it is vertical. Each arrow represents a primitive refinement of Go(l, 0,0, 1); the
cost assigned to each state is the min cost of any refinement that reaches it. The exact reachable set
corresponding to this HLA is also outlined. (¢) Optimistic simple valuation X(0) A=X(1) A=Y (0)A
Y(1) : 4 for the example in (b), as would be produced by the description in (a). (d) Pessimistic
simple valuation X(0) A =X(1) A =Y(0) AY(1) AH : 6.

Definition 10. A pessimistic description P, of HLA a satisfies (Vs) E,(s) < P4(s).

For example, our pessimistic description of Go specifies that the cost to reach the destination is at most
the cost incurred by directly navigating there without any further switch flips.

Remark. Primitive action descriptions are always exact. Formally, for primitive actions a € L,
0,(5)(s") = Py(s)(s") = g(s,a) iff s = T(s, a), oo otherwise.

Optimistic and pessimistic descriptions generalize our previous complete and sound descriptions (MRW
’07). In this paper, we will assume that the descriptions are given along with the hierarchy. However, we note
that it is theoretically possible to derive them automatically from the structure of the hierarchy.

As with exact descriptions, we can extend optimistic and pessimistic descriptions and then compose
them to produce bounds on the outcomes of high-level sequences, which we call optimistic and pessimistic
valuations (see Figure 1(c/d)).

Theorem 2. Given any sequence a € AN and state s, the cost ¢ = MiNpers (a,50)T(s0.b)=s 8(S0, b) of the best
primitive refinement of a that reaches s from sg satisfies Oqy © ... 0 Ogf (vo)(s) < ¢ < Py 0...0 Py (vo)(s).

Proof. The theorem is equivalent to the assertion that O, 0. ..00,, (vo) < Eyy0...0E, (vg) < Pyyo...0Py (v).
When N = 1, this follows trivially from Definitions 9 and 10. When N > 1, for optimistic descriptions (the
pessimistic case is symmetric):

O_aN ©...0 O_al (VO)(SN) = min OaN (SN—I)(SN) + O_aN,] ©...0 O_al (VO)(SN—I)
SN-1

< rénln EuN(SN—l)(SN) + EclN,l 0...0 Eal(VO)(sN—l)
N-1

= E_aN ©...0 E_al(VO)(SN)



Moreover, following Theorem 1, these are the tightest bounds derivable from a set of optimistic and
pessimistic descriptions.

The reader might wonder what descriptions are appropriate for Act. Since the agent cannot stop acting
until it reaches the goal state, Act’s pessimistic descriptions cannot assign finite cost to any outcome other
than 7. Moreover, the optimistic cost to ¢ for Act will be our normal notion of an admissible heuristic, which
could be automatically derived from a relaxed version of the problem (e.g., a planning graph).

3.2 Representing and Reasoning with Descriptions

Whereas the results presented thus far are representation-independent, to utilize them effectively we require
compact representations for valuations and descriptions as well as efficient algorithms for operating on these
representations.

In particular, we consider simple valuations of the form o : ¢ where o C § and ¢ € R,, which specify
a reachable set of states along with a single numeric bound on the cost to reach states in this set (all other
states are assigned cost co). As exemplified in Figure 1(c/d), an optimistic simple valuation asserts that states
in o may be reachable with cost at least ¢, and other states are unreachable; likewise, a pessimistic simple
valuation asserts that each state in o is reachable with cost at most ¢, and other states may be reachable as
well.4

Simple valuations are convenient, since we can reuse our previous machinery (MRW ’07) for reasoning
with reachable sets represented as DNF (disjunctive normal form) logical formulae and HLA descriptions
specified in a language called NCSTRIPS (Nondeterministic Conditional STRIPS). NCSTRIPS is an ex-
tension of ordinary STRIPS that can express a set of possible effects with mutually exclusive, conjunctive
preconditions. Each effect consists of four lists of propositions: add (+), delete (—), possibly-add (+), and
possibly-delete (=). Added propositions are always made true in the resulting state, whereas possibly-added
propositions may or may not be made true; in a pessimistic description, the agent can force either outcome,
whereas in an optimistic one the outcome may not be controllable. By extending NCSTRIPS with cost
bounds (which can be computed by arbitrary code), we produce descriptions suitable for the approach taken
here. Figure 1(a) shows possible descriptions for Go in this extended language (as is typically the case, these
descriptions could be made more accurate at the expense of conciseness).

With these representational choices, we require an algorithm for progressing a simple valuation repre-
sented as a DNF reachable set plus numeric cost bound through an extended NCSTRIPS description. If
we perform this progression exactly, the output may not be a simple valuation (since different states in the
reachable set may produce different cost bounds). Thus, we will instead consider an approximate progression
algorithm that projects results back into the space of simple valuations. Applying this algorithm repeatedly
will allow us to compute optimistic and pessimistic simple valuations for entire high-level sequences.

The algorithm is a simple extension of that given in (MRW ’07), which progresses each (conjunctive
clause, conditional effect) pair separately and then disjoins the results. This progression proceeds by (1) con-
joining effect preconditions onto the clause (and skipping this clause if a contradiction is created), (2) making
all added (resp. deleted) literals true (resp. false), and finally (3) removing literals from the clause if false
(resp. true) and possibly-added (resp. possibly-deleted). With our extended NCSTRIPS descriptions, each
(clause, effect) pair also produces a cost bound. When progressing optimistic (resp. pessimistic) valuations,
we simply take the min (resp. max) of all these bounds plus the initial bound to get the cost bound for the final
valuation.’ Hierarchical HLA and refinement preconditions (described in more detail below) are enforced by
simply conjoining them onto the preconditions of each effect of an HLA.

As a concrete example, consider progressing the valuation X(0) A =X(1) A Y(0) A =Y(1) : 1 through the
optimistic and pessimistic descriptions of Go(0, 0, 0, 1). The optimistic description has only a single possible
effect, yielding an optimistic result of X(0) A =X(1) A =Y(0) A Y(1) : 3. The pessimistic description has two

4. More interesting tractable classes of valuations are possible; for instance, rather than using a single numeric bound, we could allow
linear combinations of indicator functions on state variables.

5. A more accurate algorithm for pessimistic progression sorts the clauses by increasing pessimistic cost, computes the minimal prefix
of this list whose disjunction covers all of the remaining clauses, and then restricts the max over cost bounds to clauses in this prefix.
We did not implement this version, since it requires many potentially expensive subsumption checks.



possible effects; after conjoining the preconditions and applying the effects, these give the output clauses and
rewards X(0) A =X(I) A=Y(O0) AY(1) AH : 5 and X(0) A =X(1) A=Y(0) A Y(1) A =H : 3. Combining these
and projecting back to a simple valuation gives the final result (X(0) A =X(1) A =Y(0) A Y(1) AH) V (X(0) A
-X(1) A =Y(0) A Y(1) A =H) : 5, which could be simplified to X(0) A =X(1) A =Y(0) A Y(1) : 5.

Our above definitions need some minor modifications to allow for approximate progression algorithms.
For simplicity, we will absorb any additional approximation into our notation for the descriptions themselves:

Definition 11. An approximate progression algorithm corresponds to, for each extended optimistic and pes-
simistic description O, and P,, (further) approximated descriptions O, and P,. Call the algorithm correct if,
for all actions @ and valuations v, O,(v) < O,(v) and P,(v) < P,(v).

Intuitively, a progression algorithm is correct as long as the errors it introduces only further weaken the
descriptions.

Theorem 3. Theorem 2 still holds if we use any correct approximate progression algorithm, replacing each
O, and P, with their further approximated counterparts O, and P,,.

The proof is similar to that of Theorem 2.

4. Offline Search Algorithms

This section describes algorithms for the offline planning setting, in which the objective is to quickly find a
low-cost sequence of actions leading all the way from s to z.

Because we have models for our HLAs, our planning algorithms will resemble existing algorithms that
search over primitive action sequences. Such algorithms typically operate by building a lookahead tree
(see Figure 2(a)). The initial tree consists of a single node labeled with the initial state and cost 0, and
computations consist of leaf node expansions: for each primitive action a, we add an outgoing edge labeled
with that action and its cost g(s, @), whose child is labeled with the state s" = T'(s, a) and total cost to s’. We
also include at leaf nodes a heuristic estimate A(s") of the remaining cost to the goal. Paths from the root to a
leaf are potential plans; for each such plan a, we estimate the total cost of its best continuation by f(sg,a) =
g(sg,a) + h(T (s, a)), the sum of its cost and heuristic value. If the heuristic /& never overestimates, we call it
admissible, and this f-cost will also never overestimate. If / also obeys the triangle inequality A(s) < g(s,a) +
T (s, a)), we call it consistent, and expanding a node will always produce extensions with greater or equal
f-cost. These properties are required for A* and its graph version (respectively) to efficiently find optimal
plans. In this framework, some sort of repeated-state checking is often essential for good performance. For
instance, in grid-world environments, A* graph search is exponentially faster than A* tree search (Russell &
Norvig, 2003).

In hierarchical planning, we will consider algorithms that build abstract lookahead trees (ALTs). In
an ALT, edges are labeled with (possibly high-level) actions and nodes are labeled with optimistic and
pessimistic valuations for corresponding partial plans. For example, in the ALT in Figure 2(b), by doing
(Nav(0,0), F, Go(0, 1)), state sq;, is definitely reachable with cost 5, sg;, may be reachable with cost at least 5,
and no other states are possibly reachable. Since our planning algorithms will try to find low-cost solutions,
we will be most concerned with finding optimistic (and pessimistic) bounds on the cost of the best primitive
refinement of each high-level plan that reaches 7. These bounds can be extracted from the final ALT node of
each plan; for instance, the optimistic and pessimistic costs to ¢ of plan (Nav(0, 0), F, Go(0, 1), Z) are 5.

In a generalization of the ordinary notion of consistency, we will sometimes desire consistent HLA de-
scriptions, under which we never lose information by refining.® As in the flat case, when descriptions are
consistent, the optimistic cost to 7 (i.e., f-cost) of a plan will never decrease with further refinement. Simi-
larly, its best pessimistic cost will never increase.

6. Specifically, a set of optimistic descriptions (plus approximate progression algorithm, if applicable) is consistent iff, when we
refine any high-level plan, its optimistic valuation dominates the optimistic valuations of its refinements. A set of pessimistic
descriptions (plus progression algorithm) is consistent iff the state-wise minimum of a set of refinements’ pessimistic valuations
always dominates the pessimistic valuation of the parent plan.
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Figure 2: (a) A standard lookahead tree for our example. Nodes are labeled with states (Written Sy/v))
and costs-so-far, edges are labeled with actions and associated costs, and leaves have a heuristic
estimate of the remaining distance-to-goal. (b) An abstract lookahead tree (ALT) for our example.

Nodes are labeled with optimistic and pessimistic simple valuations and edges are labeled with
(possibly high-level) actions and associated optimistic and pessimistic costs.

We first describe our ALT data structures and how they address some of the issues that arise in our
hierarchical planning framework in novel ways. We then present our optimal planning algorithm, AHA*, and
briefly describe an alternative “satisficing” algorithm, AHSS.

4.1 Abstract Lookahead Trees

Our ALT data structures support our search algorithms by efficiently managing a set of candidate high-level
plans and associated valuations. The issues involved differ from the primitive setting because nodes store
valuations rather than single states and exact costs, and because (unlike node expansion) plan refinement is
“top-down” and may not correspond to simple extensions of existing plans.

Algorithm 1 shows pseudocode for some basic ALT operations. Our search algorithms work by first
creating an ALT containing some initial set of /ive plans using MAKEINITIALALT, and then repeatedly refining
live plans using REFINEPLANEDGE. A plan is considered live if it has not been pruned, and it has not yet been
refined (at any HLA). When an HLA is refined, its preconditions and the preconditions of the refinement
taken are added to the first action in the refinement, ensuring that lower-level sequences respect the higher-
level conditions on their generation.” New plans are added to the ALT by the AbpPLaN operation, which starts
at the existing node corresponding to the longest prefix shared with any existing plan, and creates nodes for
the remaining plan suffix by progressing its valuations through the corresponding action descriptions. In the
process, partial plans that cannot possibly reach the goal and those that are prunable by other plans (according
to Definitions 12 and 14 below) are recognized and skipped over.

7. The preconditions are considered to be part of the identity of an action, and are taken into account during progression as described
above. If a plan cannot respect the preconditions, progression will produce an empty optimistic reachable set and the plan will be
automatically skipped in AppPraN. To ensure that preconditions are not forgotten, our implementation transparently adds a “noop”
action to empty refinements.



Algorithm 1 : Abstract lookahead tree (ALT) operations
function AppPLaN(n, (ay, ..., ay))
for i from 1 to k do
if node n[a;] does not exist then
create n[a;] from n and the descriptions of g;
for node n’ where a;y1, ..., a is an existing extension from n’ do
if P(n") < O(n[a;]) then return /¥ strict pruning ¥/
if P(n’) = O(n[a;]) and
Prerix(n’) +(aj41, ..., ax) not an ancestor of (ay, ..., a;) then
make (ay, ..., a;) a parent of PREFix(n’) +(aj+1, ..., ax)
return /* weak pruning ¥/

n « nla;]
If O(n)(t) < oo then mark n as a live plan

function MAKeINTTIALALT (s, plans)
root < a new node with O(root) = P(root) = vy
for each plan € plans do AbpPLAN(root, plan)
return root

function RerINEPLANEDGE(root, (ay, ..., ai), i)

mark node root[a;]...[a;] as not live

pi < preconditions of g;

parentPlan « (ay, ..., a;)

for (b;...b;)€l(a;) w/ refinement precondition p, do
plan < (ay, ..., ai_1, ADDPRECONDITIONS(b1, pj, A py), b2, ..., bj, Gists ..., ag)
make parentPlan a parent of plan
ApDPLAN(r00t, plan)

A key requirement of the ALT operations is that they should be optimality-preserving. This corresponds
to the invariant that, after executing any sequence of refinements and legal pruning operations,

Ea(wo)(®) = ¢ = min  Ey(vo)(®) (D
acLive-PLans(roor) aclNITIAL-PLANS

Clearly, as long as each individual operation preserves at least one best-cost live plan, the invariant will
remain satisfied. Without pruning, this invariant is preserved by refinement, since by definition pure refine-
ment only splits a plan’s set of primitive refinements. But, as mentioned above, some form of repeated-state
detection or pruning is often essential for good performance. In particular, at minimum we would like our
optimal search algorithm AHA* to reduce to ordinary A* graph search, when passed a “flat hierarchy” as
described above. The pruning rules implemented in Algorithm 1 accomplish this goal; the rest of this section

is devoted to describing them, and proving that they preserve invariant (1).

Lemma 1. A live plan a can be pruned (i.e., marked non-live) while preserving invariant (1), as long as a
different live plan b exists such that Ep(vo)(®) < Ea(vo)(®).

This lemma provides a simple necessary and sufficient condition for pruning, but is by itself of little
practical value since it assumes access to exact descriptions (that our algorithms lack). The next several
definitions provide complementary, sufficient (but not necessary) conditions under which the existence of a
suitable b can be efficiently proven, which we use in our actual implementation.

Definition 12. A live plan a passing through node # can be strictly pruned by another plan b passing through
node n’ when P(n’) < O(n) and Surrix(b, n") = SurrFix(a, n).



Theorem 4. Strict pruning preserves the invariant (1).

Proof. First, show that Ep(vo)(#) < Ea(vo)(). Split b into b; = Prerx(n’) and b, = Surrix(b,n’), and
similarly divide a into a; and a,. Now, the pruning condition ensures that for every primitive refinement of
a; that reaches some state s, there exists a strictly better primitive refinement of b that reaches s. Moreover,
the continuation condition (that b, = a,) ensures that any primitive refinement of a, that can be done from
s after a primitive refinement of a; can also be done from s after a refinement of b;. Together, these facts
demonstrate the above strict inequality. (Note that while b may have even better primitive refinements that
use states reachable by b; but not aj, this fact is not needed for the proof.)

Now, since the invariant holds before pruning, there must exist a live, hierarchically optimal plan c s.t.
E.(vo)(®) = ¢*. But, ¢* < Ep(vo)(t) < Ea(vo)(). Thus, ¢ is strictly better than a, which entails that ¢ # a and
a can be pruned by Lemma 1. O

Remark. The continuation requirement (that the plans have identical plan suffixes) is needed since the hier-
archy might allow better continuations from node » than n’.

For example, the plan (L, R, Nav(0, 1), Z) in Figure 2(b) is prunable since its optimistic valuation is strictly
dominated by the pessimistic valuation above it, and the empty continuation is allowed from that node.

Unfortunately, by itself this condition misses out on many opportunities for pruning. In particular, it can-
not exploit weak (non-strict) domination, which results in all plans of possibly-equal cost being considered,
leading to potentially exponential slowdown. For instance, in the nav-switch domain, a Nav action that trav-
els h horizontal steps and v vertical steps has (ZT:?’ optimal primitive refinements. Thus, we also consider
another pruning condition that allows some pruning based on weak domination, by maintaining an explicit
graph recording plan provenance and pruning relationships.

In what follows, to simplify the presentation we assume that no plan will be generated more than once.
Many useful hierarchies (including the two we consider in this work) have this property. For hierarchies that
do not, a simple extension to the algorithms described is needed.

Definition 13. In the context of a particular abstract lookahead tree, let plan a be a parent of b, if b is an
immediate refinement of a, or if a was weakly pruned by b.

Definition 14. A live plan a passing through node n can be weakly pruned by another plan b passing through
node n’ when P(n’) £ O(n), Surrix(b, n’) = Surrix(a, n), and b is not an ancestor of a.

For some intuition behind this rule, first consider how weak pruning could go wrong if the ancestor
condition was not included. As a simplest example, a solitary live plan a might claim that it could achieve
the goal with cost ¢*. Upon refining a, its sole refinement b could then be pruned on a, thus sacrificing
hierarchical optimality (and perhaps even completeness). The ancestor condition prevents this pathological
case, as well as more subtle cases that can arise with several applications of weak pruning. In particular, by
ensuring that the “ancestor graph” remains cycle-free, it guarantees the existence of at least one sink node
corresponding to a hierarchically optimal, live plan.®

Theorem 5. Weak pruning (alone, or in combination with strict pruning) preserves invariant (1).

Proof. In fact, weak and strict pruning satisfy a stronger invariant, which entails (1). In order to define this
invariant, we must add a small bookkeeping step to strict pruning: suppose that whenever a plan a is strictly
pruned on b, a becomes a strict parent of b. Say that plan a is a general ancestor of b if b can be reached from
a by following any combination of ordinary and strict edges, and reserve the term ancestor for relationships
that exist without considering strict edges.

Now, the invariant is: at every point, from every previously considered plan a (live or not) with at least
one primitive refinement that reaches the goal, there exists a general path to a live, general descendant b with

8. A simpler condition for weak pruning (implied by the above) is that b is also a live plan. Theoretically and empirically, this performs
substantially worse, however; for instance, given a flat hierarchy, it cannot prune many plans that A* graph search would avoid.
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non-increasing exact costs-to-goal along the path. Formally, Ep(vo)(f) < ... < E,(vo)(t) where the ellipses
represent the exact costs of nodes on the path from a to b.

This invariant is trivially preserved by refinement without pruning. Thus, it suffices to show that the
invariant is preserved by a single pruning operation following some arbitrary sequence of previous refinement
and strict/weak pruning operations that preserved the invariant.

In particular, suppose that one of the pruning conditions allows pruning of plan a by b. Define c*(a) =
E.(vo)(?). By the pruning conditions, we must have c*(b) < c*(a), with strict inequality if pruning was strict.
Moreover, before pruning, the invariant assures the existence of a general path with non-increasing exact cost
from b to ¢, a live, general descendant of b.

Now, there are several cases. Since c*(¢) < ¢*(b) < c¢*(a), if either c*(¢) < ¢*(b) or ¢*(b) < ¢*(a), we have
c*(¢) < c*(a) by transitivity, so a # ¢. Otherwise, c*(¢) = c¢*(b) = c¢*(a), and so we must be pruning a weakly
on b. By the weak pruning condition, b cannot be an ancestor of a (but it may be a general ancestor). In other
words, every path from b to a must include at least one strict edge. Now, when following a strict edge, exact
costs strictly decrease; since c*(b) = ¢*(a), every path from b to a must include a strict cost increase as well.
But, by assumption, there exists a path from b to ¢ that does not include any cost increases, so again a # c.

Finally, since a # ¢, after pruning a, ¢ will remain a live plan. Moreover, ¢ will become a (possibly
general) descendant of a (and its ancestors), via the (possibly strict) edge added from a to b after pruning,
thus maintaining the invariant at a and its ancestors. m}

We note that while these conditions are sufficient for pruning, they are not necessary, in that there exist
situations where a (correctly) prunable plan will not be pruned using these rules alone. For instance, the suffix
condition can be relaxed, and some pruning will be missed in the presence of zero-cost actions. Nevertheless,
together these conditions are sufficient to reproduce A* graph search in certain conditions:

Theorem 6. So long as all primitive actions have strictly positive cost, when applied to a “flat hierarchy”,
strict and weak pruning can prune any plan that would be skipped by A* graph search when executed on the
corresponding primitive search problem.

Proof. Although it is usually described differently, A* graph search can be understood as simply A* tree
search plus the following pruning rule: a (primitive) plan a that reaches state s with cost ¢ can be pruned, if
another live or refined (i.e., not pruned) plan b reaches state s with cost < c.

In the “flat hierarchy” setting, plans are the same, except that they are suffixed by Act, whose optimistic
description embodies the heuristic function and whose pessimistic description is vacuous. Thus, a and b
will always have the same plan suffix: (Act). Moreover, primitive action descriptions are exact, so weak
domination corresponds to reaching the same state with equal cost, and strict domination means reaching the
same state with strictly better cost. So, if b has strictly lower cost than a, the strict pruning rule will prune a.
If the cost is equal, and b is live, it cannot have any descendants and thus the weak pruning rule can prune a.
Finally, if b has been refined, its immediate descendants must have strictly greater g-cost (by the positive-cost
assumption). Moreover, when one plan weakly prunes another, the two plans must have equal g-costs. Thus,
every descendant of b has strictly greater g-cost. This implies that a cannot be a descendant of b, and can
again be pruned by the weak pruning rule. O

Since detecting all subsumption relationships can be very expensive, our implementation uses hashing to
consider pruning only for pairs of nodes with identical plan suffixes and reachable set representations. Testing
of ancestor relationships is implemented with a naive algorithm; we note that efficient incremental algorithms
exist for this problem (e.g., (Haeupler et al., 2008)). We have also developed stronger but more complex rules
that can do more pruning, as well as weaker but more efficiently checkable rules. These issues are beyond
the scope of this paper, and will be expanded on in future work.

4.2 Angelic Hierarchical A*

Our first offline algorithm is Angelic Hierarchical A* (AHA*), a hierarchically optimal planning algorithm
that takes advantage of the semantic guarantees provided by optimistic and pessimistic descriptions. AHA*
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Algorithm 2 : Angelic Hierarchical A*
function FINDOPTIMALPLAN(S, £)
root < MAKEINITIALALT (59, {(Act)})
while 7 a live plan do
a < a live plan with min optimistic cost to ¢ (tiebreak by pessimistic cost, then depth)
if a is primitive then return a
RErRINEPLANEDGE(700t, a, index of any HLA in a)

return failure

(see Algorithm 2) is essentially A* in refinement space, where the initial node is the plan (Act), possible
“actions” are refinements of a plan at some HLA, and the goal set consists of the primitive plans that reach ¢
from sp. The algorithm repeatedly expands a node with smallest optimistic cost bound, until a goal node is
chosen for expansion, which is returned as an optimal solution.

More concretely, at each step AHA* selects a high-level plan a with minimal optimistic cost to ¢ (e.g.,
the bottom plan in Figure 2(b)). Then it refines a, selecting some HLA a and adding to the ALT all plans
obtained from a by replacing a with one of its immediate refinements.

We will make the technical assumption that for every c, there are only finitely many high-level plans with
optimistic cost less than c. This is essentially a positive-cost-cycle condition on the optimistic costs, and is
not hard to ensure in practice. Under this assumption, we have the following theorem.

Theorem 7. AHA* eventually terminates, and returns a hierarchically optimal plan.

Proof. We will show that at the beginning of each iteration of the loop, the lookahead tree contains a plan b
which can be refined to an hierarchically optimal primitive plan. This is certainly true at the first iteration.
By induction, suppose it is true at the k™ iteration. Now, if there exists such a plan that is not chosen for
refinement, then it will continue to be in the tree on the next iteration. So we only need to worry about the
case when there is a unique such plan, and it is chosen for refinement. By definition, no matter which action
in the plan is refined, at least one refinement will continue to be refinable to an optimal plan. By Theorems 4
and 5, the first such refinement added to the tree will not be pruned.

In particular, the invariant above holds when the loop terminates. At this point, the returned plan has
optimistic cost lower than all other plans in the tree. Since its own optimistic cost is exact (as it is primitive),
it in fact has minimal cost among all refinements of plans currently in the tree, and is therefore hierarchically
optimal.

Finally, by assumption on the optimistic costs, all plans whose cost is at most the optimal cost will
eventually be considered, including the hierarchically optimal one, which is primitive. Thus the algorithm
eventually terminates. O

We now make concrete the connection between AHA* and standard A* search. AHA* clearly differs
from A* over the state space, since the set of candidate plans and expansion operations differ. However, it is
closely related to A* or greedy best-first search in the space of abstract plans. This search space consists of
all sequences of high-level or primitive actions together with a dummy terminal state 7. The initial state is the
plan Act. Given a rule for choosing which HLA of a given plan to refine next, the successors of a nonprimitive
plan are obtained by substituting the refinements of that HLA into the original plan, and the associated cost is
0. A primitive plan’s only successor is the terminal state, and this move’s cost equals the cost of the primitive
plan. The heuristic value of a plan is its optimistic cost.

Theorem 8. If the optimistic descriptions are consistent, then the sequence of plans refined by AHA* is a
subsequence of the sequence of plans expanded by A* over the corresponding plan space, for some sequence
of tiebreaking choices.

Proof. Let ay,...,a; be the sequence of plans refined by AHA*, and S, its set of live plans at step 7. We
show inductively the stronger statement that we can construct tiebreaking choices for A* such thatif by,..., b,
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denotes its sequence of expanded plans and S; denotes its open list at step 7, there exist times 1 = #; < ... <
ty = [ such thata; = b, and §; C S ; The statement is clearly true for #;. Consider step i of AHA*, which
corresponds to step #; of A*. Following this step, the live plans in the ALT are S ;.. At this point, the plan a;,
is tied for the lowest cost in S;,1. §7 | contains this plan, and possibly other ones with lower cost. However,
none of those can be in S;;;. We can therefore, by making appropriate tiebreaking choices in A*, ensure
that, if £, is the next time at which A* expands a plan in S;;;, b;,, = a;;1, and furthermore, S;;; C § ;M,

completing the induction. m}

While AHA* might thus seem like an obvious generalization of A* to the hierarchical setting, we believe
that it is an important contribution for several reasons. First, its effectiveness hinges on our ability to generate
nontrivial cost bounds for high-level sequences, which did not exist previously. Second, it derives additional
power from our ALT data structures, which provide caching, pruning, and other novel improvements specific
to the hierarchical setting.

The only free parameter in AHA* is the choice of which HLA to refine in a given plan; our implementation
chooses the first HLA with nonzero gap between its optimistic and pessimistic costs (defined below).

Finally, we note that with consistent descriptions, as soon as AHA* finds an optimal high-level plan with
equal optimistic and pessimistic costs, it will find an optimal primitive refinement very efficiently. Consis-
tency ensures that after each subsequent refinement, at least one of the resulting plans will also be optimal
with equal optimistic and pessimistic costs; moreover, all but the first such plan will be pruned. Further
refinement of this first plan will continue until an optimal primitive refinement is found without backtracking.

4.3 Angelic Hierarchical Satisficing Search

This section presents an alternative algorithm, Angelic Hierarchical Satisficing Search (AHSS), which at-
tempts to find a plan that reaches the goal with at most some pre-specified cost @. AHSS can be much more
efficient than AHA*, since it can commit to a plan without first proving its optimality.

At each step, AHSS (see Algorithm 3) begins by checking if any primitive plans succeed with cost < «.
If so, the best such plan is returned. Next, if any (high-level) plans succeed with pessimistic cost < «, the
best such plan is committed to by discarding other potential plans. Finally, a plan with maximum priority
is refined at one of its HLAs. Priorities can be assigned arbitrarily; our implementation uses the negative
average of optimistic and pessimistic costs,” to encourage a more depth-first search and favor plans with
smaller pessimistic cost.

Theorem 9. If there exist primitive plans consistent with the hierarchy, with cost < a, AHSS eventually
returns one of them. Otherwise, when « is finite, it eventually returns failure.

Proof. The algorithm eventually terminates since there are only finitely many plans with optimistic cost < a.
Since optimistic costs are exact for primitive plans, it will never falsely report success. Suppose there do exist
primitive plans with cost < a. It suffices to show that at the beginning of each iteration, the tree contains a
plan one of whose primitive refinements has cost < «. The invariant holds by assumption at the first iteration.
Suppose it is true at the beginning of the k™ iteration. It will continue to hold after the if-statement, by
definition of pessimistic costs. We only need to consider the case when there is a single such plan in the tree
after the if-statement, and it is selected for refinement. Regardless of which action in the plan is refined, one
of the refinements will also have a primitive refinement with cost < . At least one such refinement will not
be pruned. Thus the invariant holds at the next iteration. O

5. Online Search Algorithms

In the online setting, an agent must begin executing actions without first searching all the way to the goal.
The agent begins in the initial state sg, performs a fixed amount of computation, then selects an action alo

9. Except for Act, which contributes 3 times its optimistic cost to the total. For the purpose of computing priorities, infinite pessimistic
costs are replaced with twice the corresponding optimistic costs.
10. More interesting ways to balance real-world and computational cost are possible, but this suffices for now.
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Algorithm 3 : Angelic Hierarchical Satisficing Search
function FINDSATISFICINGPLAN( s, 1, @)
root < MAKEINITIALALT (59, {(Act)})
while 3 a live plan with optimistic cost < a to ¢ do
if any live plan has pessimistic cost < a to ¢ then
if any such plans are primitive then return a best one
else delete all plans other than one with min pessimistic cost

a « alive plan with optimistic cost < a to ¢ with max priority
RerINEPLANEDGE(700t, a, index of any HLA in a)

return failure

It then does this action in the environment, moving to state 7(sg, @) and paying cost g(so, @). This continues
until the goal state ¢ is reached. Performance is measured by the total cost of the actions executed. We assume
that the state space is safely explorable, so that the goal is reachable from any state (with finite cost), and also
assume positive action costs and consistent heuristics/descriptions from this point forward.

This section presents our next contribution, one of the first hierarchical lookahead algorithms. Since it
will build upon a variant of Korf’s (1990) Learning Real-Time A* (LRTA*) algorithm, we begin by briefly
reviewing LRTA*!!

At each environment step, LRTA* uses its computation time to build a lookahead tree consisting of all
plans a whose cost g(sp, a) just exceeds a given threshold. Then, it selects one such plan a,,;, with minimal
f-cost and does its first action in the world. Intuitively, looking farther ahead should increase the likelihood
that a,,;, is actually good, by decreasing reliance on the (error-prone) heuristic. The choice of candidate plans
is designed to compensate for the fact that the heuristic % is typically biased (i.e., admissible) whereas g is
exact, and thus the f-cost of a plan with higher /4 and lower g may not be directly comparable to one with
higher g and lower A.

This core algorithm is then improved by a learning rule. Whenever a partial plan a leading to a previously-
visited state s is encountered during search, further extensions of a are not considered; instead, the remaining
cost-to-goal from s is taken to be the value computed by the most recent search at s. This augmented algorithm
has several nice properties:

Theorem 10. (Korf, 1990) If g-costs are positive, h-costs are finite, and the state space is finite and safely
explorable, then LRTA* will eventually reach the goal.

Theorem 11. (Korf, 1990) If, in addition, h is admissible and ties are broken randomly, then given enough
runs, LRTA* will eventually learn the true cost of every state on an optimal path, and act optimally thereafter.

However, as described thus far, LRTA* has several drawbacks. First, it wastes time considering obviously
bad plans. (Korf prevented this with “alpha pruning”). Second, a cost threshold must be set in advance, and
picking this threshold so that the algorithm uses a desired amount of computation time may be difficult. Both
drawbacks can solved using the following adaptive LRTA* algorithm, a relative of Korf’s “time-limited A*”":
(1) Start with the empty plan. (2) At each step, select an unexpanded plan with lowest f-cost. If this plan has
greater g-cost than any previously expanded plan, “lock it in” as the current return value. Expand this plan.
(3) When computation time runs out, return the current “locked-in” plan.

Theorem 12. At any point during the operation of this algorithm, let a be the current locked-in plan, ¢, be its
corresponding “record-setting” g-cost, and cy be the previous record g-cost (¢| < c¢3). Given any threshold
in [c1, ¢2), LRTA* would choose a for execution (up to tiebreaking).

Proof. First, note that given any threshold ¢ € [cy, c2), LRTA* would definitely have constructed and ex-
panded all of the ancestors of a. Consider any ancestor of a. By consistency and positive action costs, it must

11. To be precise, Korf focused on the case of unit action costs; we present a natural generalization to positive real-valued costs.
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have < g-cost and f-cost than a. Because a was “record-setting”, the g-cost must actually be strictly <. Now,
suppose that this ancestor was not expanded. Then, its g-cost must be > c¢. But, ¢; < ¢ was the previous
record-setting cost, so we have a contradiction. Thus, LRTA* would have generated but not expanded a.
Now, suppose that LRTA* with threshold ¢ chooses some other plan over a for execution. This plan must
have cost > ¢ to be present and unexpanded, and f-cost < that of a to be selected. But, if this was the case,
this plan would have been selected for expansion by the adaptive algorithm before a, and would have been
the previous record-setting plan. But, its cost is > ¢ > c¢j, the cost of the previous record-setting plan, a
contradiction. O

Thus, this modified algorithm can be used as an efficient, anytime version of LRTA*. Since its behavior
reduces to the original version for a particular (adaptive) choice of cost thresholds, all of the properties of
LRTA* hold for it as well.

5.1 Angelic Hierarchical Learning Real-Time A*

This section describes Angelic Hierarchical Learning Real-Time A* (AHLRTA*, see Algorithm 4), which
bears (roughly) the same relation to adaptive LRTA* as AHA* does to A*. Because a single HLA can
correspond to many primitive actions, for a given amount of computation time we hope that AHLRTA* will
have a greater effective lookahead depth than LRTA*, and thus make better action choices. However, a
number of issues arise in the generalization to the hierarchical setting that must be addressed to make this
basic idea work in both theory and practice.

First, while AHLRTA* searches over the space of high-level plans, when computation time runs out it
must choose a primitive action to execute. Thus, if the algorithm initializes its ALT with the single plan (Act),
it will have to consider its refinements carefully to ensure that in its final ALT, at least one of the (hopefully
better) high-level plans begins with an executable primitive. To avoid this issue (and to ensure convergence
of costs, as described below), we instead choose to initialize the ALT with the set of all plans consisting of
a primitive action followed by Act.!> With this set of plans, the choice of which HLA to refine in a plan is
open; our implementation uses the policy described above for AHA*.

Second, as we saw earlier, an analogue of f-cost can be extracted from our optimistic valuations. How-
ever, there is no obvious breakdown of f into g and 4 components, since a high-level plan can consist of
actions at various levels, each of whose descriptions may make different types and degrees of characteristic
errors. For now, we assume that a set of higher-level HLAs (e.g., Act and Go) has been identified, let & be
the sum of the optimistic costs of these actions, and let g = f — & be the cost of the primitives and remaining
HLAs.

Finally, whereas the outcome of a primitive plan is a particular concrete state whose stored cost can be
simply looked up in a hash table, the optimistic valuations of a high-level plan instead provide a sequence
of reachable sets of states. In general, for each such set we could look up and combine the stored costs of
its elements; instead, however, for efficiency our implementation only checks for stored costs of singleton
optimistic sets (e.g., those corresponding to a primitive prefix of a given high-level plan). If the state in a
constructed singleton set has a stored cost, progression is stopped and this value is used as the cost of the
remainder of the plan. This functionality is added by modifying REFINEPLANEDGE and AppPLAN accordingly
(not shown).

Given all of these choices, we have the following:

Theorem 13. AHLRTA* reduces to adaptive LRTA*, given a “flat hierarchy” (in which Act refines to the
empty sequence, or any primitive action followed by Act).

Proof. Trivial; simply note that refining a plan in the “flat” hierarchy is the same as expanding a plan in the
primitive LRTA* setting. O

12. Note that with this choice, the plans considered by the agent may not be valid hierarchical plans (i.e., refinements of Act). However,
since the agent can change its mind on each world step, the actual sequence of actions executed in the world is not in general
consistent with the hierarchy anyway.
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Algorithm 4 : Angelic Hierarchical Learning Real-Time A*
function HIERARCHICALLOOKAHEADAGENT( S, 1)
memory < an empty hash table
while sy #  do
root < MAKEINITIALALT (5o, {(a, Act) | a € L))
(g,a, f) « (-=1,nil, 0)
while 3 live plans from root and time remains do
a « alive plan w/ min f-cost
if a is primitive or reaches a known state, or the g-cost of a > g then
(g.a.f) < (g-cost of a,ay, f-cost of a)
if a is primitive or reaches a known state then break

RerINEPLANEDGE(r00t, a, some index, memory)
do a in the world
memory[sy] <« f
so < T(so,a)

(In fact, this is how we have implemented LRTA* for our experiments.) Moreover, the desirable prop-
erties of LRTA* also hold for AHLRTA¥* in general hierarchies. This follows because AHLRTA* behaves
identically to LRTA* in neighborhoods in which every state has been visited at least once.

Theorem 14. If primitive g-costs are positive, f-costs are finite, and the state space is finite and safely
explorable, then AHLRTA* will eventually reach the goal.

Proof. Note that AHLRTA* is very similar to single-step-lookahead LRTA*, where the heuristic is computed
by a limited hierarchical search from each next state reachable by some primitive action. In fact, the only
difference is that AHLRTA* may choose paths based on the fact that they reach low-cost previously visited
states (or the goal) that are more than 1 step away. However, this situation can only occur when none of the
earlier states on the path have been visited before. Thus, at each step AHLRTA* either behaves identically
to LRTA*, or moves to a previously unvisited state (while preserving the admissibility of all stored costs).
Since there are only finitely many states, AHLRTA* can only behave differently than LRTA* finitely many
times, and must thus eventually reach the goal. m}

Theorem 15. If, in addition, f-costs are admissible, ties are broken randomly, and the hierarchy is optimality-
preserving, then over repeated trials AHLRTA * will eventually learn the true cost of every state on an optimal
path and act optimally thereafter.

Proof. Same as previous theorem. O

If f-costs are inadmissible or the hierarchy is not optimality-preserving, the theorem still holds if s is
sampled from a distribution with support on S in each trial.

6. Experiments

This section describes results for the above algorithms on two domains: our “nav-switch” running example,
and the warehouse world (MRW *07).13

The warehouse world is an elaboration of the well-known blocks world, with discrete spatial constraints
added. In this domain, a forklift-like gripper hanging from the ceiling can move around and manipulate blocks
stacked on a 1-d table. The gripper and blocks occupy single (x,y) grid cells, where x represents position
on the table and y represents height. The gripper can move to free squares in the four cardinal directions,

13. Empirical results differ from Marthi, Russell, & Wolfe (2008b,a) due to a programming error, which reduced the efficiency of all
algorithms, but especially A* graph search.
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""""" HLA Goal

1 1 1 Act Achieve goal by MoveTo? Move*
Move(b, c, ...) | Get block b and stack on ¢ by
(Nav to top, Turn)? Nav to one side of b,
Pickup, MoveTo(c, ...)
MoveTo(c, ...) | Stack block held on ¢ by (Nav to top,
Turn)? Nav to one side of ¢, Putdown
Nav(x, y) Go to (x,y)

Figure 3: Left: A 4x4 warehouse world problem with goal on(c, ;) A oN(a, c¢). Right: HLAs for warehouse
world domain.

turn (to face the other way) when in the top row, and pick up and put down blocks from either side. Each
primitive action has unit cost. Because of the limited maneuvering space, warehouse world problems can be
rather difficult. For instance, Figure 3 shows a problem that cannot be solved in fewer than 50 primitive steps.
The figure also shows our (optimality-preserving) hierarchy for the domain.'* We consider 21 instances of
varying difficulty.

For the nav-switch domain, we consider square grids of varying size where 20 randomly chosen squares
can access the switch, and the goal is always to navigate from one corner to the other. We use the hierarchy
and descriptions described above.

We first present results for our offline algorithms on these domains (see Figure 4). On the warehouse world
instances, AHA* finds optimal solutions while evaluating between a half and full order of magnitude fewer
plans than A*, in most cases. (Suboptimal) AHSS performs only slightly better. Results for runtimes are
qualitatively similar, but with a 2x-3x smaller gap between A* graph search and the hierarchical algorithms.
This gap is due to overhead introduced by progressing optimistic and pessimistic valuations, and multiple
progressions required per new plan in the hierarchical setting.

On the nav-switch instances, differences between the algorithms are much greater. Runtime for A* graph
search grows quadratically with the size of the board (proportional to the number of squares), while the
hierarchical algorithms’ scaling is closer to linear. The reason is that in this domain, the descriptions for Nav
are exact, and thus AHA* can very quickly find a provably optimal high-level plan and refine it down to the
primitive level without backtracking, as described earlier. AHSS is even faster, since it can omit the first step
and immediately commit to a plan that simply navigates directly to the goal location.

We also collected results for an improved version of the Hierarchical Forward Search (HFS) algorithm
(MRW °07) , which does not consider plan cost. Because it lacks the heuristic guidance provided by HLA
cost estimates, HFS not only produces (sometimes very) suboptimal plans, it is also much slower than the
heuristic algorithms we consider here: it could only solve the first 5 warehouse world problems, and nav-
switch problems up to size 20, before exceeding the 512 MB memory limit. On the most difficult problems
solved by HFS, runtime and plan counts (not shown in Figure 4) are several orders of magnitude higher than
any of the other algorithms tested.

The obvious next step would be to compare AHA* with other optimal hierarchical planners, such as
SHOP?2 on its “optimal” setting. However, this is far from straightforward, for several reasons. First, useful
hierarchies are often not optimality-preserving, and it is not at all obvious how we should compare different
“optimal” planners that use different standards for optimality. Second, as described in the related work section
below, the type and amount of problem-specific information provided to our algorithms can be very different

14. Descriptions are as follows. Only Nav has a non-vacuous pessimistic description; it states that the target location can definitely
be reached when it and the top row is free of blocks, with cost corresponding to going up to the top row, then over and down to
the destination (if the destination is in the current column, cost is just the vertical distance). Nav’s optimistic cost is Manhattan
distance, Move and MoveTo optimistically succeed (with the gripper on either side of the destination) with a lower cost bound
based on Manhattan distance, and Act optimistically reaches the goal with cost lower-bounded by an adjusted bipartite matching
heuristic.
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Figure 4: Number of plans evaluated to find an (optimal) solution, on some warehouse world and nav-switch
problem instances. The algorithms are (flat) A* graph search, AHA*, and (suboptimal) AHSS
with threshold a@=co. Warehouse world problems are ordered by difficulty for A* graph search.
Nav-switch data points are medians of three random domains of each size. Note log scale.
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environment step, averaged (using geometric mean) over seven medium-difficulty warehouse world
instances (top), ten 100x100 nav-switch instances (middle), and ten 500x500 nav-switch instances

Online Warehouse World

1000

100

LRTA* ——
AHLRTA* — % —

ks SELET R

560

2000 3000 4000

Allowed refinements per env step

100x100 Online Nav Switch

540

520

500

480

460

440

*%(x-x)f— Xxe = - - %

LRTA* ——
AHLRTA* — % —

R

420

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Allowed refinements per env step

500x500 Online Nav Switch

-
L
i
T
Ly
%

K== X K=K = =K = = K= = = = — — *
! ! ! ! ! ! ! ! !

LRTA* ——
AHLRTA* — % — B

200 400 600 800 1000 1200 1400 1600 1800 2000

Allowed refinements per env step

(bottom). (Warehouse world costs shown in log-scale.)

19



than for HTN planners such as SHOP2. We have yet to find a way to perform meaningful experimental
comparisons under these circumstances.

For the online setting, we compared flat LRTA* and AHLRTA*. The performance of an online algorithm
on a given instance depends on the number of allowed refinements per step. Our graphs therefore plot total
cost against refinements per step for LRTA* and AHLRTA*. Time per refinement is very similar for LRTA*
and AHLRTA* in both domains, with hierarchical refinements at most 60% slower, usually much less.

The top graph of Figure 5 is averaged across seven medium-difficulty warehouse world instances from
Figure 4.1> This domain is fairly challenging for online lookahead, as the combinatorial structure of the
problem makes the Act heuristic somewhat unreliable. AHLRTA* was able to perform reasonably given
very few refinements per step, and quickly converged to near-optimal solutions. In contrast, flat lookahead
required significantly more refinements to reach near-optimal behavior, and rarely achieved optimal behavior
within the range of allowed refinements considered (note that the y-axis is on a log scale).

The bottom two graphs show online performance in the nav-switch domain, averaged over ten random
100x100 and ten random 500x500 instances (each with 20 switch locations). This domain is relatively easy
as an online lookahead problem, because the heuristic for Act always points in roughly the right direction. In
all cases, the hierarchical agent behaved optimally given very few refinements per step. With this number of
refinements, the flat agent usually followed a reasonable, though suboptimal plan. As the number of allowed
refinements was increased to intermediate numbers, performance actually decreased in most cases; it seems
that flat LRTA* consistently suffers from lookahead pathologies on this class of problems. Finally, even
given a large number of refinements, the flat agent did not converge to optimal behavior. In this domain, the
hierarchical agent’s ability to quickly find a good high-level sequence of switch flips and start heading for the
first allows it to greatly outperform the flat agent’s local lookahead strategy.

7. Related Work

We briefly describe work related to our specific contributions, deferring to (MRW ’07) for discussion of
relationships between this general line of work and previous approaches.

Most previous work in hierarchical planning (Tate, 1977; Yang, 1990; Russell & Norvig, 2003) has viewed
HLA descriptions (when used at all) as constraints on the planning process (e.g., “only consider refinements
that achieve p”), rather than as making true assertions about the effects of HLAs. Such HTN planning
systems, e.g., SHOP2 (Nau et al., 2003), have achieved impressive results in previous planning competitions
and real-world domains—despite the fact that they cannot assure the correctness or bound the cost of abstract
plans. Instead, they encode a good deal of domain-specific advice on which refinements to try in which
circumstances, often expressed as arbitrary program code. For fairly simple domains described in tens of
lines of PDDL, SHOP2 hierarchies can include hundreds or thousands of lines of Lisp code. In contrast,
our algorithms only require a (typically simple) hierarchical structure, along with descriptions that logically
follow from (and are potentially automatically derivable from) this structure.

The closest work to ours is by Doan and Haddawy (1995). Their DRIPS planning system uses action
abstraction along with an analogue of our optimistic descriptions to find optimal plans in the probabilistic
setting. However, without pessimistic descriptions, they can only prove that a given high-level plan satisfies
some property when the property holds for all of its refinements, which severely limits the amount of pruning
possible compared to our approach. Helwig and Haddawy (1996) extended DRIPS to the online setting. Their
algorithm did not cache backed-up values, and hence cannot guarantee eventual goal achievement, but it was
probably the first principled online hierarchical lookahead agent.

Several other works have pursued similar goals to ours, but using state abstraction rather than HLAs.
Holte et al. (1996) developed Hierarchical A*, which uses an automatically constructed hierarchy of state
abstractions in which the results of optimal search at each level define an admissible heuristic for search at

15. Medium-difficulty instances are defined as those where some algorithm consistently solved them optimally given 5000 refinements
per step, but neither algorithm consistently solved them optimally given fewer than 1000 refinements per step.
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the next-lower level. Similarly, Bulitko et al. (2007) proposed the PR LRTS algorithm, a real-time algorithm
in which a plan discovered at each level constrains the planning process at the next-lower level.

Finally, other works have considered adding pessimistic bounds to the A* (Berliner, 1979) and LRTA*
(Ishida & Shimbo, 1996) algorithms, to help guide search and exploration as well as monitor convergence.
These techniques may also be useful for our corresponding hierarchical algorithms.

8. Discussion

We have presented several new algorithms for hierarchical planning with promising theoretical and empirical
properties. There are many interesting directions for future work, such as developing better representations
for descriptions and valuations, automatically synthesizing descriptions from the hierarchy, and generalizing
domain-independent techniques for automatic derivation of planning heuristics to the hierarchical setting.
One might also consider extensions to partially ordered, probabilistic, and partially observable settings, and
better online algorithms that, e.g., maintain more state across environment steps.
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