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Abstract. Standard temporal models assume that observation times
are correct, whereas in many real-world settings (particularly those in-
volving human data entry) noisy time stamps are quite common. Serious
problems arise when these time stamps are taken literally. This paper in-
troduces a modeling framework for handling uncertainty in observation
times and describes inference algorithms that, under certain reasonable
assumptions about the nature of time-stamp errors, have linear time
complexity.

1 Introduction

Real-world stochastic processes are often characterized by discrete-time state-
space models such as hidden Markov models, Kalman filters, and dynamic Bayesian
networks. In all of these models, there is a hidden (latent) underlying Markov
chain and a sequence of observable outputs, where (typically) the observation
variables depend on the corresponding state variables. Crucially, the time of
an observation variable is not considered uncertain, so that the observation is
always attached to the right state variables.

In practice, however, the situation is not always so simple—particularly when
human data entry is involved. For example, a patient in an intensive care unit
(ICU) is monitored by several sensors that record physiological variables (e.g.,
heart rate, breathing rate, blood pressure); for these sensors, the time stamps
are reliable. In addition, the ICU nurse records annotated observations of patient
state (“agitated,” “coughing,” etc.) and events (“suctioned,” “drew blood,” “ad-
ministered phenylephrine,” etc.). Each such annotation includes an accurate data
entry time (generated by the data recording software) and a manually reported
event time that purports to measure the actual event time. For example, at 11.00
the nurse may include in an hourly report the assertion that phenylephrine was
administered at 10.15, whereas in fact the event took place at 10.05.

Such errors matter when their magnitude is non-negligible compared to the
time-scale of the underlying process. For example, phenylephrine is a fast-acting
vasopressor that increases blood pressure in one or two minutes. In the situation
described above, a monitoring system that takes the reported event time of
10.15 literally would need to infer another explanation for the rapid rise in blood
pressure at 10.06 (perhaps leading to a false diagnosis) and might also infer that
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the drug injected at 10.15 was not in fact phenylephrine, since it had no observed
effect on blood pressure in the ensuing minutes. Such errors in observation times
would also cause serious problems for a learning system trying to learn a model
for the dynamical system in question; moreover, reversals in the apparent order
of events can confuse attempts to learn causal relations or expert policy rules.
It would be undesirable, for example, to learn the rule that ICU nurses inject
phenylephrine in response to an unexplained rise in blood pressure.

Similar examples of potentially noisy time stamps are found in manual data
entry in biological labs, industrial plants, attendance logs, intelligence opera-
tions, and active warfare. These examples share a common trait—a sequence of
manually entered observations complements continually recorded observations
(spectrometer readings, CCTV footage, surveillance tapes, etc) that are tem-
porally accurate. The process of reconstructing historical timelines suffers from
“time-stamp” errors in all observation sequences—carbon dating, co-located ar-
tifacts, and contemporary sources may give incorrect or inexact (“near the end
of the reign of ...”) dates for events.

In this work, we present an extension of the hidden Markov model that
allows for time-stamp errors in some or all observations. As one might expect,
we include random variables for the data entry time, the manually reported
event time, and the actual event time, and these connect the observation variable
itself to the appropriate state variables via multiplexing. Of particular interest
are the assumptions made about the errors—for example, the assumption that
event ordering among manually reported events in a given reporting stream is
not jumbled. We show that, under certain reasonable assumptions, inference in
these models is tractable—the complexity of inference is O(M S?T), where M is
the window size of the time stamp uncertainty, S is the state space size of the
HMM and T is the length of the observation sequence.

There has been a lot of work on state space models with multiple output
sequences. Some authors have modeled observation sequences as non-uniform
subsamples of single latent trajectory ([6,4]) and thereby combined information
sources. Others, namely [1,2] (asynchronous HMMs (AHMMs)) and [5] (pair
HMMs), have proposed alignment strategies for the different sequences using a
common latent trajectory. AHMMSs ([1]) are closely related to our work. How-
ever, the assumptions they make for the generative model of the less frequent
observation sequence are different from ours and are not suited to the appli-
cations we have described. Also, in our case, the annotations come with noisy
time stamps, which help us localize our search for the true time stamp. We also
handle missing reports and false reports, which cannot be modeled in AHMMs.

The paper begins (Section 2) with the basic modeling framework for un-
certainty in observation times. Section 3 presents a modified forward—backward
algorithm for the basic model. Section 4 extends the model to accommodate
unreported events and false reports of events, and Section 5 describes an exact
inference algorithm for this extended model. The complexity of the exact algo-
rithm is analyzed in Section 6 and some simplifications and approximations are
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proposed. Section 7 presents some experiments to highlight the performance of
the different algorithms.

2 Extending HMMs

A hidden Markov model (HMM) is a special case of the state space model where
the latent variable is discrete. As shown in Figure 1(a), X = {Xy, Xo,..., X1} is
a Markov process of order one and X; is the hidden (latent) variable at time step
t. There are two different observation sequences. Y is the variable observed at
every time step (and is assumed to have the correct time stamp). Y; corresponds
to the observation at time t. Y3, ., refers to the sequence of Y; from ¢ = ¢; to
t =ty (t1 < t3). In the ICU, Y could be the various sensors hooked up to the
patient. The other sequence of observations is less frequent and can be thought of
as analogous to annotations or manual entries of events. In a sequence of T' time-
steps, there are K annotations (K < T) which mark K events. my, represents
the (potentially erroneous) time stamp of the report corresponding to the k*
event. aj represents the actual time of occurrence of the k" event. dj, is the
time at which the time stamp data for the k** (i.e. my) event was entered. In
the ICU example from Section 1, my is 10:15, ax is 10:05 and dj is 11:00. dj
can be a parameter for the error model of the time stamp (i.e. p(mg|mg—_1,ax)).
For instance, the noisy time stamp my can be no greater than dy, if we exclude
anticipatory data entry. M is the window of uncertainty of the k** event and
denotes the possible values of aj, (around my). So, if we assume that the nurse
can err by at most 15 minutes, M}, is from 10:00 to 10:30.

Fig.1. (a) The extended hidden Markov model with actual and measured times of
events. All X’s are potential parents of each ar and the connections depend on the
values of X;. Certain dependencies are denoted by solid lines, while value-dependent
ones are dotted. (b) The generalized noisy time stamp hidden Markov model with
actual and measured times of events. X and Y have been omitted for simplicity (they
are identical to Figure 1(a)). Dependencies are only shown completely for ¢; and m;.
Color coding indicates definite dependencies (black) and value-dependent ones (gray).
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A key assumption is that the time stamps of events are chronologically or-
dered. This restriction is analogous to the monotonicity of the mapping in time
imposed on sequence matching in dynamic time warping [9]. Thus, my is strictly
greater than my_1. This assumption holds vacuously if the events are identical
and non-distinguishable. It also holds in several real-life scenarios.

The next important point is that there is a deterministic relationship between
ar’s and X. For clarity of presentation, let us consider the case where X; is
a binary random variable. X; = 1 is the state corresponding to an event or
annotation and X; = 0 is the state representing a non-event. The generalization
to the case where the state space is of size S is straight-forward and is presented
in the supplementary material. aj, is the smallest ¢ such that 2}21 X; =k. The
complete likelihood model is as follows:

p(X1.r, Yir, a1, M1k ) =
T K
p(X)p(Mi1X0) | [p(Xe| X 1)p(Vel Xo)p(ar.i| Xaer) [ [ pOmnlme—1, ax)
k=1

t=2

For notational convenience, assume mg = 0. Since the ay’s are deterministi-
cally determined by the sequence X, p(a1.x|X1.7) is zero for all aq.x instantia-
tions except the one which corresponds to the given Xi.7 chain. Also, only those
Xj.7 instantiations which have exactly K events will have non-zero probability
support from the evidence my.x. In a later model, we will relax these constraints.

For now, we assume that every annotation corresponds to an event and every
event has been recorded/annotated. Thus, it is justified to only consider latent
variable trajectories with exactly K events. The inference task is to compute the
posterior distributions of X; and a; conditioned on all the evidence available
(namely Y and m1.x). In the next section we describe an efficient algorithm for
this task.

3 The modified forward-backward algorithm

The notation used in this section will be very similar to the standard notation
used in the o — 8 forward backward algorithm as presented in [3]. a(ar =) =
plag = t,Y1.t, o) and will be simply written as a(ax) when the context is
clear. Thus, a(ay) denotes the joint probability of all given data upto time ag
and the value of ay itself. S(ar) = p(Ya,+1.7s Mk+1:K|ak, my) represents the
conditional probability of all future data given the value of a; and my. Let
L(ag,ars1) = p(art1, Yay+1:an4. |ax). This likelihood term can be simplified by

L(ag,ars1) = p(ary1, Yap+1:an,: |0k)

= Z p(ak+la Xak+1:ak+1 , Yak+1:ak+1 |ak)

Xap+lagy

=TI rvexopxdxey).

t=ar+1l:ap41



Uncertain observation times 5

where X4, 41:a,, = {0,0,...,0,1} since p(ags1|ar, Xay+1:a,,,) = 0 for every
other X, 41:.4,,, sequence. The o update step is

Oé(ak) = p(ak, H:ak P mO:k:)

= Z Z p(akvak—17X1:ak75/1:ak7m0:k)

k-1 Xi:ay,

= p(mg|my—_1, ax) Z alak—1)L(ak—1,a).

ak—1
The backward (smoothing) step is as follows:
Blar) = p(Yay+1:15 Miy1:x |ak, mk)

= > plari1, Yay 110, My 1. |ak, my)

Ak41

=3 Blans1)p(mria [mi, ag1) L(ar, aper).

Ak41

Given these definitions, the standard rule for computing the posterior still

holds. v(ax) = plar|Yi.r, mo.x) < alax)B(ar).

3.1 Computing v(X;) from ~y(ag)

The final step of the algorithm would be to compute the conditional distributions
of the hidden state variables X; from 7(ay). This computation is straight-forward
since X; can only be 1 if in a chain, there exists a k such that ay = . It should also
be noted that aj = ¢ denotes that X; is the k** 1 in the sequence. Therefore, the
X sequences contributing to y(ay = i) and y(ap = i) are disjoint when k # k’.
So the probability of an event at time i is just equal to the probability of any of
the K events occurring at time i. The posterior distribution of X; is given by

K
Y(Xi) = p(Xi = 1Yir,mox) = Y v(ax = i)
k=1

3.2 Tractable error models for my

In our analysis, we have conditioned the error model of my on the time stamp
of the previous report my;_; and the actual time of the k" event aj;. The time
of data entry di can also be a parameter in this conditional distribution and
we could additionally condition on ax—;. We cannot include any previous events
or reports since that would destroy the first-order Markovian dynamics that we
need for our analysis. However, with the allowed parameters, very flexible error
models can be created. my_; as a parent can be used to model an expected
gap between two reports. ag, ar_1 and my_1 together could be used to specify a
(stochastic) relationship between the relative timings of events and their reports.
Two sample error models are shown in Figure 2.
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Fig. 2. Sample probability distributions for p(mg|mr—1,axr). The possible values of
my are bounded by mg—1 (to satisfy the monotonicity constraint) and di (to exclude
anticipatory entries), with some bias for ay.

3.3 Complexity of the algorithm

Our analysis has assumed that there are K events in T time steps. Let us also
assume (for simplicity) that all uncertainty windows are of the same size, i.e.
Vk,|My| = M. Let the maximum possible interval between t; € M} and ty €
M1 be Ij. Then the computation of (L(t1,t2) for all values of {t1,t2 : t1 €
My, ty € Myy1,t; < ta} is an O(M? + I,) operation.

Once the relevant L(t1,t2) and a(ay) values have been computed, the compu-
tation of a(ag 1) is an O(M?) operation. Thus the total complexity of the modi-
fied forward step is O(KM?+3", Ij). If we assume that only a constant number
of uncertainty windows can overlap, then ), I, = O(T') and MK < O(T). Thus,
the total complexity expression simplifies to O(MT'). The modified backward (or
B) step has a similar complexity. Computing y(ax) and v(X;) are both O(MK)
operations. Thus, the overall complexity is O(MT).

If we consider an HMM with S + 1 states, where state S corresponds to the
annotation state, then the computation of £(¢y,t2) becomes an (M?2S%+ M S?1},)
operation. The other steps have the same complexity as in the previous analysis,
so the overall complexity becomes O(M S?T). Thus, we see an M-fold increase
in the inference complexity over a regular HMM.

The space complexity is O(K M?) for storing the relevant £(t1,t5) values and
O(K M) for storing the «, 5 and v values. Thus, it is independent of the state
space size. The algorithm can be trivially extended to handle cases with more
than one type of event.

4 Unreported events and false reports

The model in section 2 assumes that every event is reported (with a possibly
erroneous time stamp). However, in real life, events often go unreported. An
example of this in the ICU setting would be a nurse forgetting to make an entry
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of a drug administration because the recording was done in a batch fashion.
Many events in history might go unreported by a historian if she does not come
across sufficient evidence which warrants a report. Thus, negligence and igno-
rance would be primary causes for unreported events. Precisely speaking, an
unreported event is an event (some X; = 1) which does not generate an my.

Previously, we also assumed that every report corresponds to an actual event.
This is also often violated in reality. False reports can occur when one event is
entered twice (making one of them a false report) or more. Misinterpretation of
observations could also lead to false reporting as in the case of historians often
drawing contentious conclusions. In the model, a false report would correspond
to an mj which was not generated by any event.

We wish to extend our model to handle both of these artifacts. To this end, we
introduce some new variables in the original model. Let us still assume that there
are K reports of events. In addition, let us hypothesize I actual events. I can be
chosen using prior knowledge about the problem (the rate of false reports and
missed reports). For each hypothesized event a;, we introduce a binary variable
0;. 0; = 0 indicates that the event a; is unreported, while 8; = 1 indicates that a;
has been reported and thus generates some my. @ = {61, ..., 01} denotes the set
of all ;. Now, for each report my, we introduce a new variable ¢ whose range
is {0,1,...,I}. If the report my, is generated by the event a; then ¢y = i. In
other words, ¢y is the index of the (reported) event corresponding to the report
my. As is obvious, p(¢r = i|6; = 0) = 0. ¢, = 0 means my, is a false report. ®
is the set of all ¢;. The generalized model is shown in Figure 1(b).

The deterministic relationship between X and a remains unaffected. The
prior on 6; can be problem-specific. For our analysis, we assume it is a constant.
Let p(#; = 0) = §;. The conditional probability table for ¢; is as follows:

€k, if ¢k =0
P(Selén—1,br:r) = {1— e g =00, =105 4 1=0

The prior probability of a false report (modeled currently with a constant
€r) can also be modeled in more detail to suit a specific problem. However, if
my is not a false report (currently an event with probability 1 — €), then ¢
is deterministically determined by ¢r_; and @. When ¢ = 0, my, is no longer
parameterized by ag,. The new distribution is represented as p(mg|mi—_1).

5 Exact inference algorithm for the generalized model

We shall briefly explore the effect of a particular choice of I in Section 7. For
inference in this generalized model, there is an added layer of complexity. We
now have to enumerate all possible instances of ® and ®. A meaningful decom-
position of the posterior distribution (in the lines of the the standard forward-
backward algorithm) and using dynamic programming could be a potential solu-
tion. All elements of ® are independent and hence enumerating all possibilities
is infeasible. ® is a better proposition because there are dependencies that can
be exploited - either the report is false (i.e. ¢y is 0) or it corresponds to an
event after the previous reported actual event (i.e. ¢y > ¢r—1). We will use this



8 Shaunak Chatterjee, Stuart Russell

key fact to divide all possible instantiations of ® into some meaningful sets.
Our main objective is to compute the posterior distribution p(a;|Y1.7,m1.K),
from which we can compute the posterior distribution of each X; as described
in Section 3.1. The posterior distribution for a; is

v(ai) = p(a;|Yi.7, mo. k)
o p(as, Y17, mo: )

= Zp(a'i7 ¢7YI:T7mO:K)-
3]

Now we will describe a way to partition the possible instantiations of ® which
will then be used to formulate the forward and backward steps.

5.1 Partitioning the ® sequences

Theorem 1. For any i, such that 0 < i < I, consider the following sets of ¢
sequences: Sog = {¢p1 > i}; S = {1 < i and ¢2 > i}; So = {p2 < i and
¢3>i};... SK:{¢K§Z}

The sets So, S1, .. .,Sk are disjoint and exhaustively cover all valid instanti-
ations of ®.

Proof. Intuitively, the set Sy corresponds to all the cases where the first i events
generate the first k£ reports and the k + 1th report is a true report.

Clearly, any sequence in Sy cannot belong to any other set. Any sequence
¢ belonging to S; will have ¢o > i and hence cannot belong to Sp. Also, any
sequence belonging to Sy will have ¢ < i, which would imply ¢ < 7. Thus ¢
cannot be in any Sy, for £ > 2. Similar arguments can be presented to show that
Vky, ks, Sk, N Sk, = 0. One important point to note is that all sequences in S;
have ¢ # 0, which means that ¢ is not a false report in those cases.

Let ¢ be a valid instantiation of ®. Now we have to show that every ¢ lies
in some Sj. The sequence ¢ = {0,0,...,0} lies in Sk. In every other sequence,
there is at least some ¢; > 0. If ¢; > 4, then that sequence belongs to S;_.
Thus, we have proved that the proposed partition of all valid instances of ®
is both disjoint and exhaustive. Note that this partition is not unique, and the
pivot (currently set to 4) can be any value between 1 and I. a

5.2 Defining forward-backward steps

Now we can use the partitions Sy to define an efficient dynamic program to
compute the posterior distribution of a;. As we saw earlier,
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a;) o< > plai, ®, Yir, mix)
L]

K
— Z Z plai, &, Y10, m1.K)

k=0 ¢€Si
K

Z p(ai, ¢, Y17, mix) + Z Z p(ai, ¢, Y17, m1:K)

»eSoH k=1 ¢Sy

Let us denote Z¢€Sk p(ai, ¢, Y1.7,m1.x) by Px. We can compute Py by fur-
ther decomposing it.

Pe=>" " plai, ok, $ri1, Yir, mik)

Gk <i Pr1>1

= Z p(aiv(bkaylzaiaml:k) Z p(Yai+1:T7mk+1:Ka¢k+1|aiamk)

¢r<i Pr1>10

= ala;, mg)B(ai, my)

Due to lack of space, we skip the detailed derivation of the update equations
for the o and 8 expressions. Intuitively a(a;,my) is the probability of the tra-
jectories where the first k£ reports are associated with the first ¢ events, whereas
B(a;, my) is the probability of the trajectories where the last K — k reports
are associated with the last I — i events. The initialization steps for o and S
are straightforward. The order in which the o and 8 variables are computed is
identical to other well-known dynamic programs of a similar structure ([7,10]).

5.3 Computing v(a;) and v(X¢)

Once a(a;,my) and B(a;, my) are computed for Vi, k s.t. i € {1,2,...,I} and
k€ {0,1,..., K}, we can compute v(a;) and v(X;) by the following
K I
V) = 3 s m)Blanmi); A% =3 (e =

k=0

5.4 Multiple report sequences

Consider a scenario where there are R historians and each of them have their own
set of annotations of historical events replete with time stamp conflicts. Since
all historians do not concur on which events took place, there are instances of
missed reports as well as false reports (assuming there is a set of actual events
that took place). A simplifying assumption we make is that the historians reach
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their conclusions independently based solely upon the latent state sequence (X)
and do not consult one another.

In this case, the addition to the generalized model from Section 4 is that the
single report sequence my.x is now replaced by R report sequences m(") = mY}(,
where r € {1,2,..., R}. The key feature of the model which makes inference
tractable (and very similar to the single report sequence case) is that given the
hidden state sequence X, m"™) is independent of m ™).

The posterior distribution of a; is computed as follows:

'y(al> = Z p((li,(I)(l):(R),m(l):(R),Yi:T)
&H(1):(R)

R
= plai, Yir) [ D p(@%,mTa;, Yiur)
r=1 & (r)

R
o plag, Vi) H Z p(@%),m") a;, Yi.r)
r=15®

R
= p(ai, Yir) " [ 2(a")

r=1

The fy(aET)) will be computed as before. p(a;, Y1.1) is proportional to p(a;|Y1.7)
which can be computed using a standard forward-backward algorithm. v(X;) is
computed as before.

6 Complexity and simplifications

The algorithm presented in the previous section, while exact, is computation-
ally very expensive. We now analyze the computational complexity of the exact
algorithm and present some simplifications and possible approximation schemes.

6.1 Complexity Analysis

In the model where a; corresponded to m;, an uncertainty window resulted
from the error model p(m;|m;_1, a;). If the error model suggested that m; could
only be within M/2 time units of a; on either side, then this resulted in an
uncertainty window of size M for a; centered at m;. However, when events can
go unreported and reports can be false, the uncertainty window of a; becomes
much larger since we no longer know which (if any) my it corresponds to. The
safe bet is to assume that 0 < a; < T as long as it satisfies the monotonicity
constraint (i.e. a;—1 < a; < a;4+1). Thus, the uncertainty window in the worst
case is O(T).

If there are I hypothesized events and K reports (in the single report sequence
case), then the complexity of the o computation step is O(IKT?). This is of
course prohibitively expensive. However, there is a simplifying case.
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6.2 Shifts in data entry

In the ICU setting, the nurse often enters data once an hour. A safe assumption
is that all report(s) generated during the period between consecutive data entries
correspond to the events in that same period. Let there be I hypothesized events
and K reports in the time span T between two data entries. Then we can run
the exact inference algorithm locally within the time span. The computational
complexity will be O(IKT?) for one time span. Over the entire time period T
there will be T'/T such time spans. Thus, the total computational complexity

reduces to O(IKTT) which is much more tractable. If the time span T is a
constant, then the inference complexity is linear in T.

6.3 Approximate inference

Another possible way to reduce the inference complexity is to not consider all
possible trajectories of ®. If the probability of a missed report (d;) and false
report (ex) are small, then «(a;,mg) and B(a;,mg) have significant non-zero
values only when ¢ and k are close to one another. We could potentially zero
out all & and f values corresponding to |i — k| > ¢ where c is some threshold.
This would naturally reduce the uncertainty window of event a; which can now
only be associated with some my where i — ¢ < k < i+ ¢. This means it suffices
if I = K + c. If the reduced window size is O(M,.) then the computational
complexity of the algorithm becomes O((K + ¢)K M2 + T).

7 Experiments

For our experiments, we have primarily focused on simulations. The main reason
for this choice is that we do not know the ground truth (correct time stamp of
events) in the ICU data that we have been working on. Conversely we know the
ground truth for our simulations and hence can evaluate our posterior inference
results.

7.1 Simple model simulations

We set up an HMM with two states whose emission distributions were Gaussian
with means pp = —1 and p; = —3 and standard deviation 0.5. The error model
was p(mg|mg—1,ar) ~ N(ar,o) with the window-size M = 15. The Gaussian
was truncated at my_q1 and dg. A standard HMM treats the time stamps as
accurate (equivalent to a noise model with o = 0). With this model, we generated
data for T' = 1000 for different values of o (increasing steps of 0.5 from 0 to 5.
We repeated this exercise 20 times to generate more simulations and remove
random effects. All results are averaged over the 20 simulations and the bars
indicate one standard deviation.
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Fig. 3. (a) Average log likelihood of the simulated data using the two models. (b)
Average log likelihood for models with various window sizes M. (c¢) % of high confidence
correct time stamp inferences for varying window sizes. (d) Almost all time stamps
are predicted with at least 60% accuracy. (e) Average time taken by the inference
algorithms for different M. (f) Heat map of Q.

Increase in Likelihood. One objective of using the HMM with the noisy time
stamp error model extension is to provide a better explanation for the data. This
can be measured in terms of the likelihood. The average log likelihood of the
data computed by a standard HMM and the noisy time stamp model are shown
in Figure 3(a). The inference algorithms were run with the same transition and
observation parameters used to generate the data.

The difference in the two likelihoods increases as the variance of the time
stamp noise increases, since this makes noisy time stamps more likely. The trend
was similar for other values of {1, pt1} and the two plots came closer as the two
means became similar. Also, noteworthy is the fact that the likelihood of the
data under the noisy model changes very little even as the noise increases - thus
indicating robustness.

Next, we ran the inference algorithm with different window sizes (M = 17,
19 and 21). The likelihood of the data did not change significantly as shown
in Figure 3(b). The time taken by the inference algorithm is also linear in the
window size M as shown in Figure 3(e).

Accuracy of posterior inference. Another objective of the model is to accu-
rately infer the correct time stamps of events. This will lead to better learning
of the event characteristics. After computing the posterior distribution v(X), we
looked at y(X;) corresponding to all ¢ which were correct time stamps of events
(i.e. a;). Figure 3(c) shows the percentage of events where the v(X;) value ex-
ceeds .95. The percentage varies between 85% and 100% with the performance
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degrading as the noise in the time stamp increases. We can also see that the
accuracy is not sensitive to the window size used in the inference.

Figure 3(d) shows that there are almost no correct time stamps ¢ where the
~v(X;) value goes below .6. Thus, we do not miss any event completely. However,
there are also some rare false positives. These result because the observation at
the event’s correct time stamp is not peaked enough to warrant a time stamp
movement hypothesis in terms of likelihood.

8

g

8
% of data points
8

% of data points
% of data points

8

> 89 718 57 <5 59 89 78 51 <5 >89 80 78 57 <5
Posterior probability of correctness Posterior probability of correctness Posterior probability of correctness

(a) (b) (c)

Fig. 4. (a) Higher number of hypothesized events I has a high recall of correct time
stamps. (b) Prediction accuracy of the diagonal approximation scheme. § = .05 (c) ¢
=.3

7.2 Model with Missing and false reports

We generated simulation data using the generalized model for 7" = 100 and
various values of § and e. For all settings, higher values of I had a high recall as
seen in Figure 4(a). Although it would seem like a safe bet to set I high, this also
leads to a lot of false positives, since a lot of events have to be hypothesized and
accounted for. One possible approach to find a good I could be the likelihood
measure. We consistently found that the data likelihood peaked at the value of
I which corresponded to the correct number of events.

Another observation we made for small values of § and e was that most
of the o and [ values were concentrated along the diagonal. e take a look at
the following matrix @ where Q(i,k) = >, ,.rala; = t,my)B(a; = t,my) in
Figure 3(f).

« and S entries were only considered along the (skewed) diagonal and ¢
diagonals around that - the scheme described in Section 6.3. As we increase ¢
from 0 (only the skewed diagonal) to larger values (more diagonals), our time
stamp prediction accuracy increases as shown in Figure 4(b) and (c). However,
the accuracy in the presence of these approximations is more when § is smaller.

8 Conclusion

In this paper, we have proposed two model extensions of the HMM to deal with
noisy time stamps of events. These models have inference algorithms quite similar
in structure to the forward-backward algorithm used for inference in HMMs. It
is easy to see how this model can be used in an EM setup to learn the error
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model p(my|mg—_1,ay) or the transition model for X or the emission model for
Y. The algorithm is linear in 7" with one-to-one correspondence between events
and reports. In other cases, certain reasonable assumptions can get it back to
linear time. Noisy time stamps are pervasive in data - especially data recorded by
humans (machines can also occasionally have logging errors). Algorithms which
try to learn about human expertise will always have to deal with such data.
Looking ahead, it will be interesting to consult with doctors and run ex-
periments on real data from the ICU. Another interesting direction is to model
events which have a finite duration (and hence potential overlap). Such events
could also be modeled with continuous time Bayesian networks (CTBNs) [8].

Acknowledgements We would like to acknowledge NSF (IIS-0904672 RI: Hi-
erarchical Decision Making for Physical Agents) and DARPA (DSO contract
FA8650-11-1-7153: Open-Universe Theory for Bayesian Information and Deci-
sion Systems) for their support and the anonymous reviewers for their comments
and suggestions.

References

1. Samy Bengio. An asynchronous hidden markov model for audio-visual speech
recognition. In Advances in Neural Information Processing Systems, NIPS 15.
MIT Press, 2003.

2. Samy Bengio and Yoshua Bengio. An em algorithm for asynchronous input/output

hidden markov models, 1996.

C.M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

4. A. Coates, P. Abbeel, and A.Y. Ng. Learning for control from multiple demon-
strations. Proceedings of 25th international conference on Machine learning, 2008.

5. Richard Durbin, Sean Eddy, Anders Krogh, and Graeme Mitchison. Biological
sequence analysis: probabilistic models of proteins and nucleic acids. cambridge
univ, 1998.

6. J. Listgarten, R.M. Neal, S.T. Roweis, and A. Emili. Multiple alignment of con-
tinuous time series. In Advances in Neural Information Processing Systems, pages
817-824. MIT Press, 2005.

7. S.B. Needleman and C.D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of molecular
biology, 1970.

8. U. Nodelman, C.R. Shelton, and D. Koller. Continuous time bayesian networks. In
Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence
(UAI), pages 378-387, 2002.

9. H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken
word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing,
26(1):43-49, 1978.

10. T.F. Smith and M.S. Waterman. Identification of common molecular subsequences.

Journal of molecular biology, 1981.

@



