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Summary

For an autonomous system to be helpful to humans and to pose no unwarranted
risks, it needs to align its values with those of the humans in its environment in such
a way that its actions contribute to the maximization of value for the humans. I
propose to investigate a formal definition of this approach as cooperative inverse
reinforcement learning, to develop algorithms for solving such problems, and to
investigate their behavior in a variety of settings.

Problem statement

One way to subdivide the problem of designing autonomous intelligent systems is
first to build a generic decision-making capability and then to supply the necessary
elements of the decision problem the system should address: the transition and
sensor models and the reward or utility function.

Whereas the transition and sensor models are in a sense task-independent and can
often be constructed from the basic physics of the problem or learned from
abundant empirical data, the reward or utility functions constitute the task - they
are the agent’s only source of information about what it is supposed to do.

There are many examples of simple tasks - such as video games - where defining an
appropriate reward or utility function is easy. For more complex tasks in
unstructured environments, particularly those involving humans, defining rewards
(and hence defining optimal behavior) is much more difficult. For example, an
autonomous vehicle that drives on ordinary streets must understand the tradeoffs
involved among many aspects of its environment, including travel time, fuel
efficiency, legality, predictability by other drivers, passenger comfort, passenger
safety, safety of other drivers, pedestrians, pets, wild animals (large and small),
inanimate objects (large or small, soft or hard, valuable or worthless), etc. Similar
considerations apply in military contexts, where the stakes are arguably even
higher.

As several authors have pointed out (Omohundro, 2008; Yudkowsky, 2011;
Bostrom, 2014), a mismatch between the defined reward function of an intelligent
system and broadly shared human values can result in extreme violation of those
values. Mathematically speaking, this is a typical consequence of optimizing when
the stated objective function depends on only a subset of the available variables: the
other variables will often be set to extremal points. Without a solution to this
problem, building advanced intelligent agents may expose humanity to catastrophic
risk.



Solution approaches

[ have previously proposed inverse reinforcement learning or IRL (Russell, 1998; Ng
& Russell, 2000) as the problem of acquiring a reward function from observation of
another agent: assuming that agent is behaving optimally, what reward function
best explains its behavior? The approach has been applied to many domains with
some success, and there is a steady stream of theoretical results and novel
formulations, but it is not quite the right answer to the general problem. The reason
is that we do not necessarily want a robot! to adopt the same reward system as the
humans! in its environment. For example, if a human appears to be trying to make a
cup of coffee, it is reasonable to assume the human wants coffee; but we don’t want
the robot to want coffee.

The difficulty seems to be that IRL envisages a single agent (initially the expert
human) in the environment, and the robot is training to be that agent. (Work on
multiagent [RL by Natarajan et al. (2010) does not avoid this problem.) Instead, the
robot should be learning about the human’s reward function in order to maximally
helpful for the human. One might call this the cooperative inverse reinforcement
learning or CIRL problem. The following sections describe two possible directions
for solving it.

Single-agent formulation

One obvious solution is simply to solve the IRL problem as before, but to use the
learned reward function indexically - i.e., the robot is rewarded when the state is
rewarding to the human. For example, when the human finally drinks a cup of coffee,
perhaps with the robot’s assistance, the robot obtains an equivalent reward. The
robot’s model of the environment includes both the human and itself. One could add
to the robot’s reward function some elements reflecting self-preservation, but in
principle those elements are unnecessary because they are already reflected in the
value the human places on the robot’s existence.

This approach is similar to the formulation of the decision-theoretic assistance
problem studied by Fern et al. (2014). In that work, the human is assumed to have a
discrete goal (e.g., a destination) rather than a reward or utility function, and the
problem is formulated as a hidden-goal MDP or HGMDP, a class of POMDPs in which
only the human goal variable is unobserved. Surprisingly, no connection is made to
the literature on IRL. It should be possible to construct a formal mapping between
HGMDPs and CIRL problems, allowing the more flexible formulations of IRL and the
more scalable techniques of machine learning to be applied to assistance problems.?

1 We use “robot” henceforth to stand for any agent that is learning to help some
other agent or agents, which we term the “human”.

2 This work might be carried out jointly with Fern and Tadepalli, with whom I have
collaborated in the past.



Game theoretic formulation

Fern et al’s work on decision-theoretic assistance is a significant step forward but
its formulation as a single-agent decision problem means that the human must be
modeled as a stochastic process rather than an agent operating in a multiagent
context. This leads to some awkward issues including turn-taking and the
assumption that “the [human] is obliged to accept the helper action if it is helpful for
its goal and receives a reward bonus (or cost reduction) by doing so.”

In order to accommodate the fact that both robot and human will be acting in a
multiagent setting, | propose to investigate a cooperative game-theoretic
formulation of the CIRL problem, in which the robot must learn a policy - possibly
mediated by the acquisition of a reward function and an understanding of the
reward function of the human - such that some or all of the Nash equilibria of the
cooperative game maximize the human'’s payoff. (Presumably the traditional
ambiguity caused by the presence of multiple equilibria can be reduced or
eliminated if the human can reliably assume the robot is acting in the human’s
interest.) [ am particularly interested in extending the Bayesian IRL formulation
(Ramachandran & Amir, 2007), which provides a natural basis for formulating
optimal exploratory policies whereby the robot actively attempts to discover the
human’s preferences.

Research activities

In addition to constructing the necessary formal frameworks and analyzing their
relationships to each other and to the decision-theoretic assistance model, I will
pursue versions of the standard kinds of theoretical results for IRL: algorithms that
provably converge to optimal behavior in the limit and PAC-style regret bounds
relative to a robot that already knows the human reward function. The algorithms
and theorems should also be robust to imperfect human behavior.

[ will also investigate the qualitative nature of the rational learning process,
particularly in the Bayesian setting with very broad priors over the human reward
function and a high degree of risk aversion built in. In such a setting, the rational
behavior for the robot should be to find out as much as possible about human
preferences while minimizing intervention (in order to avoid inadvertently causing
a highly negative outcome for the human). As the robot becomes more confident in
its assessment of human preferences, it can start to take actions that it is sure are
helpful. These qualitative properties can be investigated initially in simple, artificial
experiments. Such experiments can also help in formulating new theoretical results,
such as bounding the probability of any outcome that deviates significantly in value
from the human’s actual preferred outcome.



Another advantage of the Bayesian setting is that, thanks to hierarchical priors and
the availability of communication networks, it should be possible to accommodate
simultaneous learning by multiple robots interacting with multiple humans in many
different scenarios and locations. Humans can be assumed to share a good deal of
the core content of their reward functions, even if they differ in many details.
Moreover, one may expect a “cleanup effect” (cf. Sammut et al., 1992) whereby
persistent deviations from rationality in one individual - which can lead to learning
an erroneous reward function - can be outweighed by experience gleaned from
many other humans.

The long-term goal of this research is to derive theoretically well-founded
mechanisms that allow the intelligence of Al systems to be increased, perhaps
beyond human levels, with no risk to humanity. The value alignment problem
urgently requires solutions, however, even for Al systems that are considerably less
intelligent than humans, if such systems are to participate safely in unstructured
human environments. Thus, there are substantial economic incentives for solving
the CIRL problem. I hope to develop an understanding of how robust the solutions
for “subintelligent” systems are when applied to systems that are approaching
“superintelligence.”
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