
13

Extending Bayesian Networks to the
Open-Universe Case

Brian Milch and Stuart Russell

1 Introduction

One of Judea Pearl’s now-classic examples of a Bayesian network involves a home

alarm system that may be set off by a burglary or an earthquake, and two neighbors

who may call the homeowner if they hear the alarm. Like most scenarios modeled

with BNs, this example involves a known set of objects (one house, one alarm,

and two neighbors) with known relations between them (the alarm is triggered by

events that affect this house; the neighbors can hear this alarm). These objects and

relations determine the relevant random variables and their dependencies, which

are then represented by nodes and edges in the BN.

In many real-world scenarios, however, the relevant objects and relations are ini-

tially unknown. For instance, suppose we have a set of ASCII strings containing

irregularly formatted and possibly erroneous academic citations extracted from on-

line documents, and we wish to make a list of the distinct publications that are

referred to, with correct author names and titles. In this case, the publications,

authors, venues, and so on are not known in advance, nor is the mapping between

publications and citations. The same challenge of making inferences about unknown

objects is called coreference resolution in natural language processing, data associ-

ation in multitarget tracking, and record linkage in database systems. The issue is

actually much more widespread than this short list suggests; it arises in any data

interpretation problem in which objects or events come without unique identifiers.

In this chapter, we show how the Bayesian network (BN) formalism that Judea

Pearl pioneered has been extended to handle such scenarios. The key contribution

on which we build is the use of acyclic directed graphs of local conditional distri-

butions to generate well-defined, global probability distributions. We begin with a

review of relational probability models (RPMs), which specify how to construct a BN

for a given set of objects and relations. We then describe open-universe probability

models, or OUPMs, which represent uncertainty about what objects exist. OUPMs

may not boil down to finite, acyclic BNs; we present results from Milch [2006]

showing how to extend the factorization and conditional independence semantics

of BNs to models that are only context-specifically finite and acyclic. Finally, we

discuss how Markov chain Monte Carlo (MCMC) methods can be used to perform

approximate inference on OUPMs and briefly describe some applications.



Brian Milch and Stuart Russell

Title(Pub2)Title(Pub1)

CitTitle(C1) CitTitle(C2) CitTitle(C3)

Figure 1. A BN for a bibliography scenario where we know that citations Cit1 and

Cit3 refer to Pub1, while citation Cit2 refers to Pub2.

Title(p) ∼ TitlePrior()

CitTitle(c) ∼ TitleEditCPD(Title(PubCited(c)))

Figure 2. Dependency statements for a bibliography scenario, where p ranges over

publications and c ranges over citations. This model assumes that the PubCited

function and the sets of publications and citations are known.

2 Relational probability models

Suppose we are interested in inferring the true titles of publications given some

observed citations, and we know the set of publications and the mapping from

citations to publications. Assuming we have a prior distribution for true title strings

(perhaps a word n-gram model) and a conditional probability distribution (CPD)

for citation titles given true titles, we can construct a BN for this scenario, as shown

in Figure 1.

2.1 The RPM formalism

A relational probability model represents such a BN compactly using dependency

statements (see Figure 2), which specify the CPDs and parent sets for whole classes

of variables at once. In this chapter, we will not specify any particular syntax for

dependency statements, although we use a syntax based loosely on Blog [Milch

et al. 2005]. The important point is that dependencies are specified via relations

among objects. For example, the dependency statement for CitTitle in Figure 2

specifies that each CitTitle(c) variable depends (according to the conditional distri-

bution TitleEditCPD that describes how titles may be erroneously transcribed) on

Title(PubCited(c))—that is, on the true title of the publication that c cites. The

PubCited relation is nonrandom, and thus forms part of the known relational skele-

ton of the RPM. In this case, the skeleton also includes the sets of citations and

publications.

Formally, it is convenient to think of an RPM M as defining a probability distri-

bution over a set of model structures of a typed first-order logical language. These

structures are called the possible worlds of M and denoted ΩM . The function sym-



Open-Universe Probability Models

bols of the logical language (including constant and predicate symbols) are divided

into a set of nonrandom function symbols whose interpretations are specified by

the relational skeleton, and a set of random function symbols whose interpretations

vary between possible worlds. An RPM includes one dependency statement for each

random function symbol.

Each RPM M defines a set of basic random variables VM , one for each application

of a random function to a tuple of arguments. We will write X(ω) for the value

of a random variable X in world ω. If X represents the value of the random

function f on some arguments, then the dependency statement for f defines a

parent set and CPD for X . The parent set for X , denoted Pa(X), is the set of basic

variables that are needed to evaluate the expressions in the dependency statement

in any possible world. For instance, if we know that PubCited(Cit1) = Pub1, then

the dependency statement in Figure 2 yields the single parent Title(Pub1) for the

variable CitTitle(Cit1). The CPD for a basic variable X is a function ϕX (x, pa)

that defines a conditional probability distribution over values x of X given each

instantiation pa of Pa(X). We obtain this CPD by evaluating the expressions in

the dependency statement (such as Title(PubCited(Cit1))) and passing them to an

elementary distribution function such as TitleEditCPD.

Thus, an RPM defines a BN over its basic random variables. If this BN is

acyclic, it defines a joint distribution for the basic RVs. Since there is a one-to-

one correspondence between full instantiations of VM and worlds in ΩM , this BN

also gives us a probability measure over ΩM . We define this to be the probability

measure represented by the RPM.

2.2 Relational uncertainty

This formalism also allows us to model cases of relational uncertainty, such as a

scenario where the mapping from citations to publications is unknown. We can

handle this by making PubCited a random function and giving it a dependency

statement such as:

PubCited(c) ∼ Uniform({Pub p}) .

This statement says that each citation refers to a publication chosen uniformly at

random from the set of all publications p. The dependency statement for CitTitle

in Figure 2 now represents a context-specific dependency: for a given citation Ci,

the Title(p) variable that CitTitle(Ci) depends on varies from world to world.

In the BN defined by this model, shown in Figure 3, the parents of each CitTitle(c)

variable include all variables that might be needed to evaluate the dependency

statement for CitTitle(c) in any possible world. This includes PubCited(c) and all

the Title(p) variables. The CPD in the BN is a multiplexer that conditions on the

appropriate Title(p) variable for each value of PubCited(c). If the BN constructed

this way is still finite and acyclic, the usual BN semantics hold.



Brian Milch and Stuart Russell

Title(Pub2)Title(Pub1)

CitTitle(C1) CitTitle(C2)

Title(Pub3)

PubCited(C1) PubCited(C2)

Figure 3. A BN arising from an RPM with relational uncertainty.

2.3 Names, objects, and identity uncertainty

We said earlier that the function symbols of an RPM include the constants and pred-

icate symbols. For predicates, this simply means that a predicate can be thought

of as a Boolean function that returns true or false for each tuple of arguments. The

constants, on the other hand, are 0-ary functions that refer to objects. In most RPM

languages, all constants are nonrandom and assumed to refer to distinct objects—

the unique names assumption for constants. With this assumption, there is no need

to distinguish between constant symbols and the objects they refer to, which is why

we are able to name the basic random variables Title(Pub1), Title(Pub2) and so

on, even though, strictly speaking, the arguments should be objects in the domain

rather than constant symbols.

If the RPM language allows constants to be random functions, then the equivalent

BN will include a node for each such constant. For example, suppose that Milch

asks Russell to “fix the typo in the Pfeffer citation.” Russell’s mental software may

already have formed nonrandom constant symbols C1, C2, and so on for all the

citations at the end of the chapter, and these are in one-to-one correspondence with

all the objects in this particular universe. It may then form a new constant symbol

ThePfefferCitation, which co-refers with one of these. Because there is more than

one citation to a work by Pfeffer, there is identity uncertainty concerning which

citation object the new symbol refers to. Identity uncertainty is a degenerate form

of relational uncertainty, but often has a quite distinct flavor.

3 Open-universe probability models

For all RPMs, even those with relational and identity uncertainty, the objects are

known and are the same across all possible worlds. If the set of objects is unknown,

however—e.g., if we don’t know the set of publications that exist and might be

cited—then RPMs as we have described them do not suffice. Whereas an RPM

can be seen as defining a generative process that chooses a value for each random

function on each tuple of arguments, an open-universe probability model (OUPM)

includes generative steps that add objects to the world. These steps set the values

of number variables.



Open-Universe Probability Models

Title((Pub,2))Title((Pub,1))

CitTitle(C1) CitTitle(C2)

Title((Pub,3))

PubCited(C1) PubCited(C2)

#Pub

Figure 4. A BN that defines a probability distribution over worlds with unbounded

numbers of publications.

3.1 Number variables

For the bibliography example, we introduce just one number variable, defining the

total number of publications. There is no reason to place any a priori upper bound

on the number of publications; we might be interested in asking how many publi-

cations there are for which we have found no citations (this question becomes more

well-defined and pressing if we ask, say, how many aircraft are in an area but have

not generated a blip on our radar screens). Thus, this number variable may have a

distribution that assigns positive probability to all natural numbers.

We can specify the conditional probability distribution for a number variable

using a dependency statement. In our bibliography example, we might use a very

simple statement:

#Pub ∼ NumPubsPrior() .

Number variables can also depend on other variables; we will consider an example

of this below.

In the RPM where we had a fixed set of publications, the relational skeleton

specified a constant symbol such as Pub1 for each publication. In an OUPM where

the set of publications is unknown, it does not make sense for the language to include

such constant symbols. The possible worlds contain publication objects—which will

assume are pairs 〈Pub, 1 〉, 〈Pub, 2 〉, etc.—but now they are not necessarily in one-

to-one correspondence with any constant symbols.

The set of basic variables now includes the number variable #Pub itself, and

variables for the application of each random function to all arguments that exist in

any possible world. Figure 4 shows the BN over these variables. Note that we have

an infinite sequence of Title variables: if we had a finite number, our BN would

not define probabilities for worlds with more than that number of publications. We

stipulate that if a basic variable has an object o as an argument, then in worlds

where o does not exist, the variable takes on the special value null. Thus, #Pub

is a parent of each Title(p) variable, determining whether that variable takes the

value null or not. The set of publications available for selection in the dependency



Brian Milch and Stuart Russell

#Researcher ∼ NumResearchersPrior()

Position(r) ∼ [0.7 : GradStudent, 0.2 : PostDoc, 0.1 : Prof]

#Pub(FirstAuthor = r) ∼ NumPubsCPD(Position(r))

Figure 5. Dependency statements that augment our bibliography model to represent

a set of researchers, the position of each researcher, and the set of first-authored

publications by each researcher.

statement for PubCited(c) also depends on the number variable.

Objects of a given type may be generated by more than one event in the generative

process. For instance, if we include objects of type Researcher in our model and

add a function FirstAuthor(p) that maps publications to researchers, we may wish

to say that each researcher independently generates a crop of papers on which

he or she is the first author. The number of papers generated may depend on

the researcher’s position (graduate student, professor, etc.). We now get a family

of number variables #Pub(FirstAuthor = r), where r ranges over researchers. The

number of researchers may itself be governed by a number variable. Figure 5 shows

the dependency statements for these aspects of the scenario.

In this model, FirstAuthor(p) is an origin function: in the generative model un-

derlying the OUPM, it is set when p is created, not in a separate generative step.

The values of origin functions on an object tell us which number variable gov-

erns that object’s existence; for example, if FirstAuthor(p) is 〈Researcher , 5 〉, then

#Pub(FirstAuthor = 〈Researcher , 5 〉) governs the existence of p. Origin functions

can also be used in dependency statements, just like any other function: for in-

stance, we might change the dependency statement for PubCited(c) so that more

significant publications are more likely to be cited, with the significance of a publi-

cation p being influenced by Position(FirstAuthor(p)).

In the scenario we have considered so far, each possible world contains finitely

many Researcher and Pub objects. OUPMs can also accommodate infinite numbers

of objects. For instance, we could define a model for academia where each researcher

r generates a random number of new researchers r′ such that Advisor(r′) = r. Some

possible worlds in this model may contain infinitely many researchers.

3.2 Possible worlds and basic random variables

In defining the semantics of RPMs, we said that a model M defines a BN over its

basic random variables VM , and then we exploited the one-to-one correspondence

between full instantiations of those variables and possible worlds. In an OUPM,

however, there may be instantiations of the basic random variables that do not

correspond to any possible world. An example in our bibliography scenario is an



Open-Universe Probability Models

instantiation where #Pub = 100, but Title(p) takes on a non-null value for 200

publications.

To facilitate using the basic variables to define a probability measure over the

possible worlds, we would like to have a one-to-one mapping between ΩM and a

set of achievable instantiations of VM . This is straightforward in cases like our

first OUPM, where there is only one number variable for each type of object. Then

our semantics specifies that the non-guaranteed objects of each type—that is, the

objects that exist in some possible worlds and not others, like the publications in our

example—are pairs 〈Pub, 1 〉, 〈Pub, 2 〉, . . .. In each world, the set of non-guaranteed

objects of each type that exist is required to be a prefix of this numbered sequence.

Thus, if we know that #Pub = 4 in a world ω, we know that the publications in ω

are 〈Pub, 1 〉 through 〈Pub, 4 〉, not some other set of non-guaranteed objects.

Things are more complicated when we have multiple number variables for a type,

as in our example with researchers generating publications. Given values for all the

number variables of the form #Pub(FirstAuthor = r), we do not want there to be

any uncertainty about which non-guaranteed objects have each FirstAuthor value.

We can achieve this by letting the non-guaranteed objects be nested tuples that

encode their generation history. For the publications with 〈Researcher , 5 〉 as their

first author, we use tuples

〈Pub, 〈FirstAuthor, 〈Researcher, 5〉〉, 1 〉

〈Pub, 〈FirstAuthor, 〈Researcher, 5〉〉, 2 〉

and so on. As before, in each possible world, the set of tuples in each sequence must

form a prefix of the sequence. This construction yields the following lemma.

LEMMA 1. In any OUPM M , each complete instantiation of VM is consistent

with at most one possible world in ΩM .

Section 4.3 of Milch [2006] gives a more rigorous formulation and proof of this

result. Given this lemma, the probability measure defined by an OUPM M on ΩM

is well-defined if the OUPM specifies a joint probability distribution for VM that

is concentrated on the set of achievable instantiations. Since the OUPM’s CPDs

implicitly force a variable to take the value null when any of its arguments do not

exist, any distribution consistent with the CPDs will indeed put probability one on

achievable instantiations.

Informally, the probability distribution for the basic random variables can be de-

fined by a generative process that builds up an instantiation step-by-step, sampling

a value for each variable according to its dependency statement. In the next section,

we show how this intuitive semantics can be formalized using an extended version

of Bayesian networks.

4 Extending BN semantics

There are two equivalent ways of defining the probability distribution represented

by a BN B. The first is based on conditional independence statements; specifically,



Brian Milch and Stuart Russell

#Pub ∼ NumPubsPrior()

Title(p) ∼ TitlePrior()

Date(c) ∼ DatePrior()

SourceCopied(c) ∼ [0.9 : null,

0.1 : Uniform({Citation c2 :

(PubCited(c2)=PubCited(c))

∧ (Date(c2) < Date(c))})]

CitTitle(c) ∼ if SourceCopied(c)= null

then TitleEditCPD(Title(PubCited(c)))

else TitleEditCPD(CitTitle(SourceCopied(c)))

Figure 6. Dependency statements for a model where each citation was written on

some date, and a citation may copy the title from an earlier citation of the same

publication rather than copying the publication title directly.

the directed local Markov property: each variable is conditionally independent of

its non-descendants given its parents. The second is based on a product expression

for the joint distribution; if σ is any instantiation of the full set of variables VB in

the BN, then

P (σ) =
∏

X∈VB

ϕX (σ[X ], σ [Pa(X)]) .

The remarkable property of BNs is that if the graph is finite and acyclic, then there

is guaranteed to be exactly one joint distribution that satisfies these conditions.

4.1 Infinite sets of variables

Note that in the BN in Figure 4, the CitTitle(c) variables have infinitely many par-

ents. The fact that the BN has infinitely many nodes means that we can no longer

use the standard product-expression semantics for the BN, because the product of

the CPDs for all variables is an infinite product, and will typically be zero for all

values of the variables. We would like to specify probabilities for certain partial, fi-

nite instantiations of the variables that are sufficient to define the joint distribution.

As noted by Kersting and DeRaedt [2001], if it is possible to number the nodes of

the BN in topological order, then it suffices to specify the product expression for

each finite prefix of this numbering. However, if a variable has infinitely many par-

ents, then the BN has no topological numbering—if we try numbering the nodes in

topological order, we will spend forever on X ’s parents and never reach X .



Open-Universe Probability Models

Source(C2)Source(C1)

CitTitle(C1) CitTitle(C2)

Date(C1)

Date(C2)

Figure 7. Part of the BN defined by the OUPM in Figure 6, for two citations.

4.2 Cyclic sets of potential dependencies

In OUPMs and even RPMs with relational uncertainty, it is fairly easy to write

dependency statements that define a cyclic BN. For instance, suppose that some

citations are composed by copying another citation, and we do not know who copied

whom. We can specify a model where each citation was written at some unknown

date, and with probability 0.1, a citation copies an earlier citation to the same

publication if one exists. Figure 6 shows the dependency statements for this model.

(Note that Date here is the date the citation was written, i.e., the date of the citing

paper, not the date of the paper being cited.)

The BN defined by this OUPM is cyclic, as shown in Figure 7. In general, a

cyclic BN may fail to define a distribution; there may be no joint distribution with

the specified CPDs. However, in this case, it is intuitively clear that that cannot

happen. Since a citation can only copy another citation with a strictly earlier date,

the dependencies that are active in any positive-probability world must be acyclic.

There are actually elements of the possible world set ΩM where the dependencies

are cyclic: these are worlds where, for some citation c, SourceCopied(c) does not

have an earlier date than c. But the CPD for SourceCopied forces these worlds to

have probability zero.

The difficult aspect of semantics for this class of cyclic BNs is the directed local

Markov property. It is no longer sufficient to assert that X is independent of its non-

descendants in the full BN given its parents, because its set of non-descendants in

the full BN may be too small. In this model, all the CitTitle nodes are descendants of

each other, so the standard directed local Markov property would yield no assertions

of conditional independence between them.



Brian Milch and Stuart Russell

4.3 Partition-based semantics for OUPMs

We can solve these difficulties by exploiting the context-specific nature of dependen-

cies in an OUPM, as revealed by dependency statements.1 For each basic random

variable X , an OUPM defines a partition ΛX of ΩM . Two worlds are in the same

block of this partition if evaluating the dependency statement for X in these two

worlds yields the same conditional distribution for X . For instance, in our OUPM

for the bibliography domain, the partition blocks for CitTitle(Cit1) are sets of worlds

that agree on the value of Title(PubCited(Cit1)). For each block λ ∈ ΛX , the OUPM

defines a probability distribution ϕX (x, λ) over values of X .

One defining property of the probability measure PM specified by an OUPM M

is that for each basic random variable X ∈ VM and each partition block λ ∈ ΛX ,

PM (X = x |λ) = ϕX (x, λ) (1)

To fully define PM , however, we need to make an assertion analogous to a BN’s

factorization property or directed local Markov property. We will say that a partial

instantiation σ supports a random variable X if there is some block λ ∈ ΛX such

that σ ⊆ λ. An instantiation that supports X in an OUPM is an analogous to

an instantiation that assigns values to all the parents of X in a BN. We define an

instantiation σ to be self-supporting if for each variable X ∈ vars(σ), the restriction

of σ to vars(σ) \ {X} (denoted σ−X) supports X . We can now state a factorization

property for OUPMs.

PROPERTY 2 (Factorization property for an OUPM M). For each finite, self-

supporting instantiation σ on VM ,

PM (σ) =
∏

X∈vars(σ)

ϕX (σ[X ], λX(σ−X))

where λX(σ−X) is the partition block in ΛX that has σ−X as a subset.

We can also define an analogue of the directed local Markov property for OUPMs.

Recall that in the BN case, the directed local Markov property asserts that X is

conditionally independent of every subset of its non-descendants given Pa(X). In

fact, it turns out to be sufficient to make this assertion for only a special class of

non-descendant subsets, namely those that are ancestral (closed under the parent

relation). Any ancestral set of variables that does not contain X contains only

non-descendants of X . So in the BN case, we can reformulate the directed local

Markov property to assert that given Pa(X), X is conditionally independent of any

ancestral set of variables that does not contain X .

In OUPMs, the equivalent of a variable set that is closed under the parent relation

is a self-supporting instantiation. We can formulate the directed local Markov

property for an OUPM M as follows:

1We will assume all random variables are discrete in this treatment, but the ideas can be

extended to the continuous case.



Open-Universe Probability Models

PROPERTY 3 (Directed local Markov property for an OUPM M). For each basic

random variable X ∈ VM , each block λ ∈ ΛX , and each self-supporting instanti-

ation σ on VM such that X /∈ vars(σ), X is conditionally independent of σ given

λ.

Under what conditions is there a unique probability measure PM on ΩM that

satisfies Properties 2 and 3? In the BN case, it suffices for the graph to admit a

topological numbering. We can define a similar notion that is specific to individual

worlds: a supportive numbering for a world ω ∈ ΩM is a numbering X0, X1, . . . of

VM such that for each natural number n, the instantiation (X0(ω), . . . , Xn−1(ω))

supports Xn.

THEOREM 4. Let M be an OUPM such that for every world ω ∈ ΩM , either:

• ω has a supportive numbering, or

• for some basic random variable X ∈ VM , ϕX (X(ω), λX(ω)) = 0.

Then there is exactly one probability measure on ΩM satisfying the factorization

property (Property 2), and it is also the unique probability measure that satisfies

both Equation 1 and the directed local Markov property (Property 3).

This theorem follows from Lemma 1 and results proved in Section 3.4 of Milch

[2006]. Note that the theorem does not require supportive numberings for worlds

that are directly disallowed—that is, those that are forced to have probability zero

by the CPD for some variable.

In our basic bibliography scenario with unknown publications, we can construct a

supportive numbering for each possible world ω by taking first the number variable

#Pub, then the PubCited(c) variables, then the Title(p) variables for the publications

that serve as values of PubCited(c) variables in ω, then the CitTitle(c) variables,

and finally the infinitely many Title(p) variables for publications that are uncited

or do not exist in ω. For the scenario where citation titles can be copied from

earlier citations, we have to add the Date(c) variables and then the SourceCopied(c)

variables before the CitTitle(c) variables. We order the CitTitle(c) variables in a way

that is consistent with Date(c). This procedure yields a supportive numbering in

all worlds except those where ∃c Date(SourceCopied(c)) ≥ Date(c), but such worlds

are directly disallowed by the CPD for SourceCopied(c).

4.4 Representing OUPMs as contingent Bayesian networks

The semantics we have given for OUPMs so far does not make reference to any

graph. But we can also view an OUPM as defining a contingent Bayesian network

(CBN) [Milch et al. 2005], which is a BN where each edge is labeled with an event.

The event indicates when the edge is active, in a sense we will soon make precise.

Figures 8 and 9 show CBNs corresponding to the infinite BN in Figure 4 and the

cyclic BN in Figure 7, respectively.



Brian Milch and Stuart Russell

Title((Pub,2))Title((Pub,1)) Title((Pub,3))

CitTitle(C1) CitTitle(C2)

PubCited(C1) PubCited(C2)

#Pub

P
u
b
C
ite
d
(C
1
)=
(P
u
b
,1
)

P
u
b
C
ite
d
(C
2
)=
(P
u
b
,2
)

PubCited(C2)=(Pub,1)

P
u
b
C
it
e
d
(C
1
)=
(P
u
b
,2
)

P
u
b
C
it
e
d
(C
2
)=
(P
u
b
,3
)

Pu
bC
ite
d(C
1)=
(P
ub
,3
)

Figure 8. A contingent BN for the bibliography scenario with unknown objects.

Source(C2)Source(C1)

CitTitle(C1) CitTitle(C2)

Date(C1)

Date(C2)

Source(C2)=C1

Source(C1)=C2

Figure 9. Part of a contingent BN for the OUPM in Figure 6.

A CBN can be viewed as a partition-based model where the partition ΛX for each

random variable X is defined by a decision tree. The internal nodes in this decision

tree are labeled with random variables; the edges are labeled with variable values;

and the leaves specify conditional probability distributions for X . The blocks in

ΛX correspond to the leaves in this tree (we assume the tree has no infinite paths,

so the leaves cover all possible worlds). The restriction to decision trees allows us

to define a notion of a parent being active in a particular world: if we walk along

X ’s tree from the root, following edges consistent with a given world ω, then the

random variables on the nodes we visit are the active parents of X in ω. The label

on an edge W → X in a CBN is the event consisting of those worlds where W is an

active parent of X . (In diagrams, we omit the trivial label A = ΩM , which indicates

that the dependency is always active.)



Open-Universe Probability Models

The abstract notions of a self-supporting instantiation and a supportive number-

ing have simple graphical analogues in a CBN. We will use Bσ to denote the BN

obtained from a CBN B by keeping only those edges whose conditions are entailed

by σ. An instantiation σ supports a variable X if and only if all the parents of X

in Bσ are in vars(σ), and it is self-supporting if and only if vars(σ) is an ancestral

set in Bσ. A supportive numbering for a world ω is a topological numbering of

the BN Bω obtained by keeping only those edges whose conditions are satisfied by

ω. Thus, the well-definedness condition in Theorem 4 can be stated for CBNs as

follows: for each world ω ∈ ΩM that is not directly disallowed, Bω must have a

topological numbering.

Not all partitions can be represented exactly as the leaves of a decision tree, so

there are sets of context-specific independence properties that can be captured by

OUPMs and not CBNs. However, when we perform inference on an OUPM, we

typically use a function that evaluates the dependency statement for each variable,

looking up the values of other random variables in a given world (or partial instan-

tiation) as needed. For example, a function evaluating the dependency statement

for CitTitle(Cit1) will always access PubCited(Cit1), and then it will access a partic-

ular Title variable depending on the value of the PubCited variable. This evaluation

process implicitly defines a decision tree; the order of splits in the tree depends on

the evaluation order used. When we discuss inference for OUPMs, we will assume

that we are operating on the CBN implicitly defined by some evaluation function.

5 Inference

Given an OUPM, we would like to be able to compute the probability of a query

event Q given an evidence event E. For example, Q could be the event that

PubCited(Cit1) = PubCited(Cit2) and E could be the event that CitTitle(Cit1) =

“Learning Probabilistic Relational Models” and CitTitle(Cit2) = “Learning Prob-

abilitsic Relation Models”. The ideas we present can be extended to other tasks

such as computing the posterior distribution of a random variable, or finding the

maximum a posteriori (MAP) assignment of values to a set of random variables.

5.1 MCMC over partial worlds

Sampling-based or Monte Carlo inference algorithms are well-suited for OUPMs

because each sample specifies what objects exist and what relations hold among

them. We focus on Markov chain Monte Carlo (MCMC), where we simulate a

Markov chain over possible worlds consistent with the evidence E, such that the

stationary distribution of the chain is the posterior distribution over worlds given E.

Such a chain can be constructed using the Metropolis–Hastings method, where we

use an arbitrary proposal distribution q(ω′|ωt), but accept or reject each proposal

based on the relative probabilities of ω′ and ωt.

Specifically, at each step t in our Markov chain, we sample ω′ from q(ω′|ωt) and



Brian Milch and Stuart Russell

then compute the acceptance probability:

α = min

(

1,
PM (ω′)q(ωt|ω

′)

PM (ωt)q(ω′|ωt)

)

.

With probability α, we accept the proposal and let ωt+1 = ω′; otherwise we reject

the proposal and let ωt+1 = ωt.

The difficulty in OUPMs is that each world may be very large. For instance, if we

have a world where #Pub = 1000, but only 100 publications are referred to by our

observed citations, then the world must also specify the titles of the 900 unobserved

publications. Sampling values for these 900 Title variables and computing their

probabilities will slow down our algorithm unnecessarily. In scenarios where some

possible worlds have infinitely many objects, specifying a possible world completely

may be impossible.

Thus, we would like to run MCMC over partial descriptions that specify values

only for certain random variables. The set of instantiated variables may vary from

world to world. Since a partial instantiation σ defines an event (the set of worlds

that are consistent with it), a Markov chain over partial instantiations can be viewed

as a chain over events. Thus, we use the acceptance probability:

α = min

(

1,
PM (σ′)q(σt|σ

′)

PM (σt)q(σ′|σt)

)

where PM (σ) is the probability of the event σ. As long as the set Σ of partial

instantiations that can be returned by q forms a partition of E, and each partial

instantiation is specific enough to determine whether Q is true, we can estimate

P (Q|E) using a Markov chain on Σ with stationary distribution proportional to

PM (σ) [Milch and Russell 2006].

In general, computing the probability PM (σ) involves summing over all the vari-

ables not instantiated in σ—which is precisely what we want to avoid by using

a Monte Carlo inference algorithm. Fortunately, if each instantiation in Σ is self-

supporting, we can compute its probability using the product expression from Prop-

erty 2. Thus, our partial worlds are self-supporting instantiations that include the

query and evidence variables. We also make sure to use minimal instantiations sat-

isfying this condition—that is, instantiations that would cease to be self-supporting

if we removed any non-query, non-evidence variable. It can be shown that in a

CBN, such minimal self-supporting instantiations are mutually exclusive . So if our

set of partial worlds Σ covers all of E, we are guaranteed to have a partition of E,

as required. An example of a partial world in our bibliography scenario is:

#Pub = 50, CitTitle(Cit1) = “Calculus”, CitTitle(Cit2) = “Intro to Calculus”,

PubCited(Cit1) = 〈Pub, 17 〉, PubCited(Cit2) = 〈Pub, 31 〉,

Title(〈Pub, 17 〉) = “Calculus”, Title(〈Pub, 31 〉) = “Intro to Calculus”



Open-Universe Probability Models

5.2 Abstract partial worlds

In the partial instantiation above, we specify the tuple representation of each publi-

cation, as in PubCited(Cit1) = 〈Pub, 17 〉. If partial worlds are represented this way,

then the code that implements the proposal distribution has to choose numbers for

any new objects it adds, keep track of the probability of its choices, and compute

the probability of the reverse proposal. Some kinds of moves are impossible unless

the proposer renumbers the objects: for instance, the total number of publications

cannot be decreased from 1000 to 900 when publication 941 is in use.

To simplify the proposal distribution, we can use partial worlds that abstract

away the identities of objects using existential quantifiers:

∃ distinct x, y

#Pub = 50, CitTitle(Cit1) = “Calculus”, CitTitle(Cit2) = “Intro to Calculus”,

PubCited(Cit1) = x, PubCited(Cit2) = y,

Title(x) = “Calculus”, Title(y) = “Intro to Calculus”

The probability of the event corresponding to an abstract partial world depends on

the number of ways the logical variables can be mapped to distinct objects. For

simplicity, we will assume that there is only one number variable for each type.

If an abstract partial world σ uses logical variables for a type τ , we require it to

instantiate the number variable for that type. We also require that for each logical

variable x, there is a distinct ground term tx such that σ implies tx = x; this ensures

that each mapping from logical variables to tuple representations yields a distinct

possible world. Let T be the set of types of logical variables in σ, and for each type

τ ∈ T , let nτ be the value of #τ in σ and ℓτ be the number of logical variables of

type τ in σ. Then we have:

P (σ) = Pc(σ)
∏

τ∈T

nτ !

(nτ − ℓτ )!

where Pc(σ) is the probability of any one of the “concrete” instantiations obtained

by substituting distinct tuple representations for the logical variables in σ.

5.3 Locality of computation

Given a current instantiation σt and a proposed instantiation σ′, computing the

acceptance probability involves computing the ratio:

PM (σ′)q(σt|σ
′)

PM (σt)q(σ′|σt)
=

q(σt|σ
′)

∏

X∈vars(σ′) ϕX (σ′[X ], σ′ [Paσ′(X)])

q(σ′|σt)
∏

X∈vars(σt)
ϕX (σt[X ], σt [Paσt

(X)])

where Paσ(X) is the set of parents of X whose edge conditions are entailed by

σ. This expression is daunting, because even though the instantiations σt and

σ′ are only partial descriptions of possible worlds, they may still assign values to

large sets of random variables — and the number of instantiated variables grows at

least linearly with the number of observations we have. Since we may want to run



Brian Milch and Stuart Russell

millions of MCMC steps, having each step take time proportional to the number of

observations would make inference prohibitively expensive.

Fortunately, with most proposal distributions used in practice, each step changes

the values of only a small set of random variables. Furthermore, if the edges that

are active in any given possible world are fairly sparse, then σ [Paσ′(X)] will also

be the same as σt [Paσt
(X)] for many variables X . Thus, many factors will cancel

out in the ratio above.

We need to compute the “new” and “old” probability factors for a variable X

only if either σ′[X ] 6= σt[X ], or there is some active parent W ∈ Paσt
(X) such that

σ′[W ] 6= σt[W ]. (We take these inequalities to include the case where σ′ assigns a

value to the variable and σt does not, or vice versa.) Note that it is not possible

for Paσ′(X) to be different from Paσt
(X) unless one of the “old” active parents in

Paσt
(X) has changed: given that σt is a self-supporting instantiation, the values

of X ’s instantiated parents in σt determine the truth values of the conditions on

all the edges into X , so the set of active edges into X cannot change unless one of

these parent variables changes.

This fact is exploited in the Blog system [Milch and Russell 2006] to efficiently

detect which probability factors need to be computed for a given proposal. The

system maintains a graph of the edges that are active in the current instantiation σt.

The proposer provides a list of the variables that are changed in σ′, and the system

follows the active edges in the graph to identify the children of these variables,

whose probability factors also need to be computed. Thus, the graphical locality

that is central to many other BN inference algorithms also plays a role in MCMC

over relational structures.

6 Related work

The connection between probability and first-order languages was first studied by

Carnap [1950]. Gaifman [1964] and Scott and Krauss [1966] defined a formal se-

mantics whereby probabilities could be associated with first-order sentences and for

which models were probability measures on possible worlds. Within AI, this idea

was developed for propositional logic by Nilsson [1986] and for first-order logic by

Halpern [1990]. The basic idea is that each sentence constrains the distribution over

possible worlds; one sentence entails another if it expresses a stronger constraint.

For example, the sentence ∀xP (Hungry(x)) > 0.2 rules out distributions in which

any object is hungry with probability less than 0.2; thus, it entails the sentence

∀xP (Hungry(x)) > 0.1. Bacchus [1990] investigated knowledge representation is-

sues in such languages. It turns out that writing a consistent set of sentences in

these languages is quite difficult and constructing a unique probability model nearly

impossible unless one adopts the representational approach of Bayesian networks

by writing suitable sentences about conditional probabilities.

The impetus for the next phase of work came from researchers working with

BNs directly. Rather than laboriously constructing large BNs by hand, they built



Open-Universe Probability Models

them by composing and instantiating “templates” with logical variables that de-

scribed local causal models associated with objects [Breese 1992; Wellman et al.

1992]. The most important such language was Bugs (Bayesian inference Using

Gibbs Sampling) [Gilks et al. 1994], which combined Bayesian networks with the

indexed-random-variable notation common in statistics. These languages inherited

the key property of Bayesian networks: every well-formed knowledge base defines a

unique, consistent probability model. Languages with well-defined semantics based

on unique names and domain closure drew on the representational capabilities of

logic programming [Poole 1993; Sato and Kameya 1997; Kersting and De Raedt

2001] and semantic networks [Koller and Pfeffer 1998; Pfeffer 2000]. Initially, in-

ference in these models was performed on the equivalent Bayesian network. Lifted

inference techniques borrow from first-order logic the idea of performing an inference

once to cover an entire equivalence class of objects [Poole 2003; de Salvo Braz et al.

2007; Kisynski and Poole 2009]. MCMC over relational structures was introduced

by Pasula and Russell [2001]. Getoor and Taskar [2007] collect many important

papers on first-order probability models and their use in machine learning.

Probabilistic reasoning about identity uncertainty has two distinct origins. In

statistics, the problem of record linkage arises when data records do not contain

standard unique identifiers—for example, in financial, medical, census, and other

data [Dunn 1946; Fellegi and Sunter 1969]. In control theory, the problem of data

association arises in multitarget tracking when each detected signal does not identify

the object that generated it [Sittler 1964]. For most of its history, work in symbolic

AI assumed erroneously that sensors could supply sentences with unique identifiers

for objects. The issue was studied in the context of language understanding by

Charniak and Goldman [1993] and in the context of surveillance by Huang and

Russell [1998] and Pasula et al. [1999]. Pasula et al. [2003] developed a complex

generative model for authors, papers, and citation strings, involving both relational

and identity uncertainty, and demonstrated high accuracy for citation information

extraction. The first formally defined language for open-universe probability models

was Blog [Milch et al. 2005], from which the material in the current chapter was

developed. Laskey [2008] describes another open-universe modeling language called

multi-entity Bayesian networks.

Another important thread goes under the name of probabilistic programming

languages, which include Ibal [Pfeffer 2007] and Church [Goodman et al. 2008].

These languages represent first-order probability models using a programming lan-

guage extended with a randomization primitive; any given “run” of a program can

be seen as constructing a possible world, and the probability of that world is the

probability of all runs that construct it.

The OUPMs we have described here bear some resemblance to probabilistic pro-

grams, since each dependency statement can be viewed as a program fragment for

sampling a value for a child variable. However, expressions in dependency state-

ments have different semantics from those in a probabilistic functional language



Brian Milch and Stuart Russell

such as Ibal: if an expression such as Title(Pub5) is evaluated in several depen-

dency statements in a given possible world, it returns the same value every time,

whereas the value of an expression in Ibal is sampled independently each time it ap-

pears. The Church language incorporates aspects of both approaches: it includes

a stochastic memoization construct that lets the programmer designate certain ex-

pressions as having values that are sampled once and then reused. McAllester et al.

[2008] define a probabilistic programming language that makes sources of random

bits explicit and has a possible-worlds semantics similar to OUPMs.

This chapter has described generative, directed models. The combination of

relational and first-order notations with (undirected) Markov networks is also inter-

esting [Taskar et al. 2002; Richardson and Domingos 2006]. Undirected formalisms

are convenient because there is no need to avoid cycles. On the other hand, an es-

sential assumption underlying relational probability models is that one set of CPD

parameters is appropriate for a wide range of relational structures. For instance, in

our RPMs, the prior for a publication’s title does not depend on how many citations

refer to it. But in an undirected model, adding more citations to a publication (and

thus more potentials linking Title(p) to CitTitle(c) variables) will usually change

the marginal on Title(p), even when none of the CitTitle(c) values are observed.

This suggests that all the potentials must be learned jointly on a training set with

roughly the same distribution of relational structures as the test set; in the directed

case, we are free to learn different CPDs from different data sources.

7 Discussion

This chapter has stressed the importance of unifying probability theory with first-

order logic—particularly for cases with unknown objects—and has presented one

possible approach based on open-universe probability models, or OUPMs. OUPMs

draw on the key idea introduced into AI by Judea Pearl: generative probability

models based on local conditional distributions. Whereas BNs generate worlds by

assigning values to variables one at a time, relational models can assign values to a

whole class of variables through a single dependency assertion, while OUPMs add

object creation as one of the generative steps.

OUPMs appear to enable the straightforward representation of a wide range

of situations. In addition to the citation model mentioned in this chapter (see

Milch [2006] for full details), models have been written for multitarget tracking,

plan recognition, sibyl attacks (a security threat in which a reputation system is

compromised by individuals who create many fake identities), and detection of

nuclear explosions using networks of seismic sensors [Russell and Vaidya 2009]. In

each case, the model is essentially a transliteration of the obvious English description

of the generative process.

Inference, however, is another matter. The generic Metropolis–Hastings inference

engine written for Blog in 2006 is far too slow to support any of the applications

described in the preceding paragraph. For the citation problem, Milch [2006] de-



Open-Universe Probability Models

scribes an application-specific proposal distribution for the generic M–H sampler

that achieves speeds comparable to a completely hand-coded, application-specific

inference engine. This approach is feasible in general but requires a significant cod-

ing effort by the user. Current efforts in the Blog project are aimed instead at

improving the generic engine: implementing a generalized Gibbs sampler for struc-

turally varying models; enabling the user to specify blocks of variables that are to be

sampled jointly to avoid problems with slow mixing; borrowing compiler techniques

from the logic programming field to reduce the constant factors; and building in

parametric learning. With these changes, we expect Blog to be usable over a wide

range of applications with only minimal user intervention.

References

Bacchus, F. (1990). Representing and Reasoning with Probabilistic Knowledge.

MIT Press.

Breese, J. S. (1992). Construction of belief and decision networks. Computational

Intelligence 8 (4), 624–647.

Carnap, R. (1950). Logical Foundations of Probability. Univ. of Chicago Press.

Charniak, E. and R. P. Goldman (1993). A Bayesian model of plan recognition.

Artificial Intelligence 64 (1), 53–79.

de Salvo Braz, R., E. Amir, and D. Roth (2007). Lifted first-order probabilis-

tic inference. In L. Getoor and B. Taskar (Eds.), Introduction to Statistical

Relational Learning. MIT Press.

Dunn, H. L. (1946). Record linkage. Am. J. Public Health 36 (12), 1412–1416.

Fellegi, I. and A. Sunter (1969). A theory for record linkage. J. Amer. Stat. As-

soc. 64, 1183–1210.

Gaifman, H. (1964). Concerning measures in first order calculi. Israel J. Math. 2,

1–18.

Getoor, L. and B. Taskar (Eds.) (2007). Introduction to Statistical Relational

Learning. MIT Press.

Gilks, W. R., A. Thomas, and D. J. Spiegelhalter (1994). A language and program

for complex Bayesian modelling. The Statistician 43 (1), 169–177.

Goodman, N. D., V. K. Mansinghka, D. Roy, K. Bonawitz, and J. B. Tenenbaum

(2008). Church: A language for generative models. In Proc. 24th Conf. on

Uncertainty in AI.

Halpern, J. Y. (1990). An analysis of first-order logics of probability. Artificial

Intelligence 46, 311–350.

Huang, T. and S. J. Russell (1998). Object identification: A Bayesian analysis

with application to traffic surveillance. Artificial Intelligence 103, 1–17.



Brian Milch and Stuart Russell

Kersting, K. and L. De Raedt (2001). Adaptive Bayesian logic programs. In

Proc. 11th International Conf. on Inductive Logic Programming, pp. 104–117.

Kisynski, J. and D. Poole (2009). Lifted aggregation in directed first-order prob-

abilistic models. In Proc. 21st International Joint Conf. on Artificial Intelli-

gence, pp. 1922–1929.

Koller, D. and A. Pfeffer (1998). Probabilistic frame-based systems. In Proc. 15th

AAAI National Conf. on Artificial Intelligence, pp. 580–587.

Laskey, K. B. (2008). MEBN: A language for first-order Bayesian knowledge

bases. Artificial Intelligence 172, 140–178.

McAllester, D., B. Milch, and N. D. Goodman (2008). Random-world semantics

and syntactic independence for expressive languages. Technical Report MIT-

CSAIL-TR-2008-025, Massachusetts Institute of Technology.

Milch, B., B. Marthi, S. Russell, D. Sontag, D. L. Ong, and A. Kolobov (2005).

BLOG: Probabilistic models with unknown objects. In Proc. 19th Interna-

tional Joint Conf. on Artificial Intelligence, pp. 1352–1359.

Milch, B., B. Marthi, D. Sontag, S. Russell, D. L. Ong, and A. Kolobov (2005).

Approximate inference for infinite contingent Bayesian networks. In Proc. 10th

International Workshop on Artificial Intelligence and Statistics.

Milch, B. and S. Russell (2006). General-purpose MCMC inference over relational

structures. In Proc. 22nd Conf. on Uncertainty in Artificial Intelligence, pp.

349–358.

Milch, B. C. (2006). Probabilistic Models with Unknown Objects. Ph.D. thesis,

Univ. of California, Berkeley.

Nilsson, N. J. (1986). Probabilistic logic. Artificial Intelligence 28 (1), 71–87.

Pasula, H., B. Marthi, B. Milch, S. Russell, and I. Shpitser (2003). Identity uncer-

tainty and citation matching. In Advances in Neural Information Processing

Systems 15. MIT Press.

Pasula, H. and S. Russell (2001). Approximate inference for first-order proba-

bilistic languages. In Proc. 17th International Joint Conf. on Artificial Intel-

ligence, pp. 741–748.

Pasula, H., S. J. Russell, M. Ostland, and Y. Ritov (1999). Tracking many ob-

jects with many sensors. In Proc. 16th International Joint Conf. on Artificial

Intelligence, pp. 1160–1171.

Pfeffer, A. (2000). Probabilistic Reasoning for Complex Systems. Ph.D. thesis,

Stanford Univ.

Pfeffer, A. (2007). The design and implementation of IBAL: A general-purpose

probabilistic language. In L. Getoor and B. Taskar (Eds.), Introduction to

Statistical Relational Learning. MIT Press.



Open-Universe Probability Models

Poole, D. (1993). Probabilistic Horn abduction and Bayesian networks. Artificial

Intelligence 64 (1), 81–129.

Poole, D. (2003). First-order probabilistic inference. In Proc. 18th International

Joint Conf. on Artificial Intelligence, pp. 985–991.

Richardson, M. and P. Domingos (2006). Markov logic networks. Machine Learn-

ing 62, 107–136.

Russell, S. and S. Vaidya (2009). Machine learning and data mining for Com-

prehensive Test Ban Treaty monitoring. Technical Report LLNL-TR-416780,

Lawrence Livermore National Laboratory.

Sato, T. and Y. Kameya (1997). PRISM: A symbolic–statistical modeling lan-

guage. In Proc. 15th International Joint Conf. on Artificial Intelligence, pp.

1330–1335.

Scott, D. and P. Krauss (1966). Assigning probabilities to logical formulas. In

J. Hintikka and P. Suppes (Eds.), Aspects of Inductive Logic. North-Holland.

Sittler, R. W. (1964). An optimal data association problem in surveillance theory.

IEEE Trans. Military Electronics MIL-8, 125–139.

Taskar, B., P. Abbeel, and D. Koller (2002). Discriminative probabilistic models

for relational data. In Proc. 18th Conf. on Uncertainty in Artificial Intelli-

gence, pp. 485–492.

Wellman, M. P., J. S. Breese, and R. P. Goldman (1992). From knowledge bases

to decision models. Knowledge Engineering Review 7, 35–53.


