
MetareasoningStuart J. RussellComputer Science DivisionUniversity of California, BerkeleyNovember 21, 1997Metareasoning is \reasoning about reasoning"|in its broadest sense, any computationalprocess that is concerned with the operation of some other computational process withinthe same entity (see also METACOGNITION). The term relies on a conceptual distinctionbetween object-level deliberation about external entities|for example, considering the meritsof various opening moves one might make in a game of chess|and metalevel deliberationabout internal entities (computations, beliefs, and so on)|for example, deciding that it isnot worth spending much time deliberating about which opening move to make. Geneserethand Nilsson (1987, Ch. ??) provide formal de�nitions along these lines. Smith (1986) makes afurther distinction between introspection about purely internal entities and re
ection relatinginternal and external entities. In this view, a proposition such as, \If I open the window Iwill know if the birds are singing" is re
ective, since it relates a physical action to a futurestate of knowledge (see also MODAL LOGIC).The capacity for metareasoning serves several purposes in an intelligent agent. First, itallows the agent to control its object-level deliberations|to decide which ones to under-take and when to stop deliberating and act. This is essential given the pervasive problem1



of COMPUTATIONAL COMPLEXITY in decision making and the consequent need forBOUNDED RATIONALITY. In GAME-PLAYING SYSTEMS, for example, the alpha-betaalgorithm makes a simple metalevel decision to eschew certain lines of deliberation aboutfuture moves, taking advantage of a metalevel theorem to the e�ect that these lines cannot af-fect the ultimate object-level decision. Second, it allows the agent to generate computationaland physical behaviors, such as planning to obtain information, that require introspectiveor re
ective reasoning. Third, it allows the agent to recover from errors or impasses in itsobject-level deliberations.Most early work on metareasoning focused on designing an INTELLIGENT AGENT AR-CHITECTURE (see also COGNITIVE ARCHITECTURE) that could support introspectionand re
ection. The idea of metareasoning to control deduction seems to have been proposed�rst by Hayes (1973), although the �rst implementation was in theTeiresias system (Davis,1980) which used metarules to control deliberation within a rule-based EXPERT SYSTEM.The MRS system (Genesereth & Smith, 1981) used LOGIC PROGRAMMING for bothobject and metalevel inference and provided a very 
exible interface between the two. Be-cause MRS allowed reasoning about which procedure to use for each object-level inference,and about which representation to use for each object-level fact, it enabled many di�erentrepresentations and reasoning methods to operate together seamlessly. By far the most am-bitious metalevel architecture is Soar (Laird, Newell, & Rosenbloom, 1987), which is basedon PROBLEM SOLVING as its fundamental mode of computation. Whenever Soar doesnot have an unambiguous rule telling it which problem-solving step to take next, it invokesuniversal subgoaling to set up a metalevel problem space that will resolve the issue. Asmight be imagined from these examples, designers of such systems must take care to avoidan in�nite regress of metameta: : :reasoning.Does metareasoning di�er from \ordinary" reasoning? In all metalevel architectures, themetalevel is given direct access to object-level data structures. Thus, metareasoning (at2



least in computers) can assume a completely and perfectly observable object-level state|seldom the case with ordinary reasoning about the external world. Furthermore, it is possibleto represent fully and exactly the nature of the available object-level computations. Thus,it is possible for the metalevel to simulate completely the object-level computations underconsideration (as is done in Soar). However, as a way of selecting among object-levelcomputations this would seem counterproductive, since simulating a computation (and henceknowing its outcome) is just a very slow way of doing the computation itself|knowledgeof the outcome of a computation is the outcome! For this reason, Soar always compilesthe results of subgoaling into a new rule, thereby avoiding deliberation in similar cases infuture. Compilation of metareasoning into more e�cient forms is perhaps the principal wayin which an agent's computational performance can improve over time.The research outlined in the preceding paragraphs established the basic mechanics of metar-easoning. In most cases, however, the metareasoning consisted of the application of simple\IF{THEN" rules encoding the system designer's computational expertise; no standard ofrationality for metareasoning was provided. The concept of rational metareasoning (Horvitz,1989; Russell & Wefald, 1989) had its roots in early work by I. J. Good (1971) on \TypeII rationality" and in information value theory (Howard, 1966). The latter theory places avalue on acquiring a piece of information based on the expected improvement in decisionquality that results from its acquisition. A computation can be viewed as the process ofmaking explicit some information that was previously implicit, and therefore value can beplaced on computations in the same way. That is, a computation can be viewed as an ac-tion whose bene�t is that it may result in better external decisions, and whose cost is thedelay it incurs. Thus, given a model of the e�ects of computations and information aboutobject-level utility, the metalevel can infer the value of computations. It can decide whichcomputations to do and when computation should give way to action.The simplest applications of rational metareasoning arise in the context of anytime algo-3



rithms (Horvitz, 1987; Dean & Boddy, 1988), that is, algorithms that can be interrupted atany time and whose output quality improves continuously with time. Each such algorithmhas an associated performance pro�le describing its output quality as a function of time.The availability of the pro�le makes the metalevel decision problem|of which algorithm torun and when to terminate|fairly trivial. The use of anytime algorithms has resulted in awidely applicable methodology for building complex, real-time decision-making systems (Zil-berstein & Russell, 1996), and anytime algorithms have been devised for a wide variety ofcomputational tasks.A more �ne-grained approach to metareasoning can be obtained by evaluating individualcomputation steps within an algorithm. Consider the decision-making situation shown inFigure 1a. An agent has two possible actions, A and B. Based on a quick assessment, theoutcome of A appears to be worth 10 with a standard deviation of 1, whereas the outcome ofB seems to be worth 8 with a standard deviation of 4. The agent can choose A immediately,or it can re�ne its estimates by looking further into the future. For example (Figure 1b),it can consider the actions B1 and B2, with the outcomes shown. At this point, action B(followed by B1) seems to lead to a state with value 12; thus, the lookahead computationhas changed the agent's decision, with an apparent bene�t of 2. Obviously, this is a post hocanalysis, but, as shown by Russell and Wefald (1991), an expected value of computation canbe computed e�ciently|prior to performing the lookahead. In Figure 1a, this value is 0.3 forlookahead from A and 0.82 for lookahead from B [[check]]. If the initial estimated outcomeof A were 12, however, these values would drop to 0.002 and 0.06 respectively|hence, asone would expect, the value of computation depends strongly on whether a clear choice ofaction has already emerged. If, however, the initial estimates for A and B were both 10,with standard deviations of 0.1, then the value of computation becomes 0.03|computationis worthless when it doesn't matter which action one eventually chooses.Rational metareasoning can be applied to control deliberations in a wide variety of object-4
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