Conver gence of reinforcement lear ning with gener al function approximators

Vassilis A. Papavassiliou and Stuart Russell
Computer Science Division, U. of California, Berkeley, CA 94720-1776
{vassilisrussell } @cs.berkeley.edu

Abstract

A key open prablem in reinforcement learning is
to assure convergence when using a compact hy-
pothesis class to approximate the value function.
Althoughthe standard temporal -differencelearning
algorithm has been shown to converge when the hy-
pothesis class is a linear combination of fixed ba-
sis functions, it may diverge with a general (non-
linear) hypothesis class. This paper describes the
Bridge a gorithm, a new method for reinforcement
learning, and showsthat it converges to an approxi-
mate global optimum for any agnostically learnable
hypothesis class. Convergence is demonstrated on
a smple example for which temporal-difference
learning fails. Weak conditions are identified un-
der which the Bridge agorithm converges for any
hypothesisclass. Finaly, connections are made be-
tween the complexity of reinforcement learning and
the PAC-learnability of the hypothesis class.

1 Introduction

Reinforcement learning (RL) is a widely used method for
learning to make decisions in complex, uncertain environ-
ments. Typically, an RL agent perceives and acts in an en-
vironment, receiving rewards that provide some indication of
the quality of its actions. The agent’s goal is to maximize
the sum of rewards received. RL agorithms work by learn-
ing avalue functionthat describesthelong-termexpected sum
of rewards from each state; aternatively, they can learn a
Q-function describing the value of each action in each state.
These functions can then be used to make decisions.
Temporal-difference (TD) learning [Sutton, 1988] isacom-
monly used family of reinforcement learning methods. TD al-
gorithms operate by adjusting the value function to be locally
consistent. When used with function approximators, such as
neural networks, that provide acompact parameterized repre-
sentation of the value function, TD methods can solve real-
world problemswith very large state spaces. Because of this,
onewould liketo know if such algorithms can be guaranteed
to work—i.e., to converge and to return optimal solutions.
The theoretical study of RL algorithms usually dividesthe
problem into two aspects: exploration policiesthat can guar-
antee compl ete coverage of the environment, and val ue deter-
minationto find the value functionthat correspondsto agiven
policy. This paper concentrates on the second aspect. Prior
work [Jaakkola et al., 1995] has established convergence of

TD-learningwith probability 1 when theva uefunctionisrep-
resented as a table where each state has its own entry. For
large state spaces, however, compact parametric representa
tionsare required; for such representations, we are interested
in whether an algorithm will converge to the function that is
closest, by some metric, to the true value function (aform of
agnosticlearning). Gordon [1995] proved that TD converges
in this sense for representations called “averagers’ on which
the TD updateisamax-norm contraction (see Section 2). Tsit-
siklisand van Roy [1996] proved convergence and established
error boundsfor TD(A) with linear combinations of fixed ba-
sisfunctions.

With nonlinear representations, such as neural networks,
TD has been observed to give suboptimal solutions [Bert-
sekas and Tsitsiklis, 1996] or even to diverge. Thisisase
rious problem since most real problems require nonlinearity.
Baird [1995] introduced residual algorithms, for which con-
vergence can be proved when combined with a gradient de-
scent learning method (such as used with neura networks).
Unfortunately the error in the resulting approximation can be
arbitrarily large and furthermore the method requires two i n-
dependent visits to each sampled state.

This paper describes the Bridge agorithm, a new RL
method for which we establish convergence and error bounds
with any agnostically learnable representation.

Section 2 provides the necessary definitions and notation.
Section 3 explains the problem of nonconvergence and pro-
videsexamples of thiswith TD. Section 4 outlinesthe Bridge
algorithm, sketches the proof of convergence, and shows how
it solves the examples for which TD fails. Section 5 briefly
covers additional results on convergence to local optima for
any representation and on the use of PAC-learning theory.
Section 6 mentions some alternative techniques one might
consider. The paper is necessarily technically dense given the
space restrictions. The results, however, should be of broad
interest to the Al and machine learning communities.

2 Definitions

21 MDP

A Markov decision processM = (S, A, p,r,v) isaset of
states S, aset of actions A, transition probability distributions
p(-|z, a) that definethe next state distribution given acurrent
state » and action «a, reward distributionsr(-|«, a) that define
the distribution of real-valued reward received upon execut-
ing a in «, and adiscount factor v € (0, 1). Sincewe arein-
terested in the problem of val ue determination, we assume we

are given afixed policy (choice of action at each state). When
executing only thisfixed policy, the MDP actually becomes a
Markov chain, and we may therefore al so write the transition
probabilitiesas p(-|x) and the reward distributionsas r(-|z).
We assume that we are able to define the stationary distribu-
tion 7 of the resulting Markov chain and al so that the rewards
lieintherange [— Rinaz, Rimac)-

Let (X1, X2, X3, ...) bearandomtraceintheMarkov chain
startingfrom z, i.e. X, = z, X, hasdistributionp(-|.X;) and
X} has distribution p(-| X5 _1). Let (R1, R2, Rs, ...) be the
observed random rewards, i.e. Ry has distribution r(-| X}).
Define the true value function V* at a state = to be the ex-
pected, discounted reward to go from state x:

V*(z) = E[Ry +vRo + ¥*Rs + ..]

The problem of value determinationisto determinethetrue
valuefunction or agood approximationtoit. Classica TD so-
[utions have made use of the backup operator T, which takes
an approximation V' and produces a better approximation

= E[Ri]+7) plsfe) V()
ro€S

An operator A issaid to be acontractionwith factor ¢ < 1
under somenorm || - || if

YV, W [[AV — AW|| < (V- W]

If { = 1, A issaid to be a nonexpansion. If we define the
max-normtobe||V||,q: = maxzes V() andther-normto
be |[V(z = [Y,es V(z)?m(z)]}/?, then T isa contraction
with factor v and fixed point V* under both max-norm and
m-norm [Tsitsiklis and Van Roy, 1996]. Therefore repested
application of T (i.e. theiterative process V.41 = TV,)
convergesto V*. Wewill use T/ to represent the operator T
applied j times.

If the transition probabilities p and reward distributions r
are known, then it is possible to compute TV directly from
its definition. However, if p and r are not known, then it is
not possibleto compute the expectation in the definition of T'.
In thiscase, by observing a sequence of states and rewardsin
the Markov chain, we can form an unbiased estimate of TV,
Specifically, if we observe state » and reward » followed by
state x-, then the observed backed-up value, r + vV (z2), is
an unbiased estimate of TV (z). Formally we define PY. (-|z)
to be the conditional probability density of observed backed-
up valuesfrom state x:

Pr (ylr) = PrlRi + 7V (X2) = yl7]
where R, and X, are, as defined above, random variables
with distributions r(-|«) and p(-|x) respectively. Thus if
a random variable Y has associated density PY (-|z) then
E[Y] = TV(z). Similaly, we define P}, (-|z) to be the
conditional probability density of j-step backed-up vaues ob-
served from state .

2.2 Function Approximation

As state spaces becomes large or even infinite, it becomesin-
feasible to tabulate the value function for each state z, and
wemust resort to function approximation. Our approximation
scheme consistsof ahypothesisclass# of representablefunc-
tionsand alearning operator I1;; which maps arbitrary value
functionsto functionsin .

Thestandard T based approaches that use function approx-
imation essentially compute or approximately computetheit-

erative process V.1 = [14#TV,. In practice, the [1y4 T
mapping usualy cannot be performed exactly because, even
if we have access to the necessary expectation to compute
TV (z) exactly, itisinfeasibleto do so for all states x. Thus
we perform an approximate mapping using samples. We will
take the state sample distribution to be the stationary distri-
bution 7. In general when we cannot compute TV (z) ex-
actly, we approximate IT TV by generating samples (z, y)
with sample distribution

Pr (x,y) = n(x)Py (y]z)
and passing them to a learning agorithm for #. The joint
probability density PY. (from which we generate the sampl es)
simply combines 7 (from which we sample the state) with
the conditional probability density PX (-|z) (from which we
generate an estimate y for TV (z)).

Inthispaper wefocuson agnosticlearning. Inthiscase, the
learning operator 114, seeksthe hypothesish that best matches
the target function V', even though typically the target func-
tionisnot in the hypothesis class. If we measure distance us-
ing the m-norm, then we can define the learning operator for
agnostic learning to be:

My V = agmingey||h — V||»

As aready mentioned, in the typical case we do not have
access to theexact function 'V to be learned, but rather we can
draw samples (z, y) fromasampledistribution? such that the
expected value of theconditional distributionP(-|z) isV(z).
If, in addition, P samples the states according to = (or what-
ever distributionwas used to measure distancein the previous
definition) then an equiva ent definition for agnostic learning
isbased on minimizing risk:

My V = agmingeyr(h, P)
where we define the risk of a hypothesis 4 with respect to a
distribution P to be:

r(h,P):/(S%

(h(z) — y)*dP(x,y)

In practice, 113 isapproximately performed by generating
enough samples (z, y) from the sample distribution P so as
to be able to estimate risk well, and thusto be able to output
the hypothesisin 4 that has minimal risk with respect to this
distribution. In the algorithmwe present, we assume the abil-
ity to compute I15, exactly for the given hypothesis class #.
Thisis certainly not a trivia assumption. In a later section,
we briefly discuss an extension to our algorithm for the case

where Hif isa PAC-agnostic learning step rather than an ex-
act agnostic learning step.
Finally, let us define our goal. V7, is defined to be the best
approximationto V* possibleusing A:
V3, =1y V' = argmingey||h — V||«
We seek techniquesthat return a value function V' that mini-
mizes arelative or absolute error bound:

V-V
v O V=V

3 Nonconvergenceof TD

In this section, we examine the non-convergence problem of
TD when used with non-linear function approximators. We
present simple examples which we will reconsider with the
Bridge algorithm in the next section.

As mentioned above, standard TD with function approxi-
mationisbased ontheiterativeprocess V,, 1 = 1y TV, If

T4 isanon-expansion under the same norm that makes T a
contraction, thenthe composite operator 14, T isacontraction
and thisprocess will converge to some error bound relativeto
V. For example, Tsitsiklis and Van Roy [1996] consider a
linear hypothesisclass, for which Il is simply a projection.
If oneusesanonlinear hypothesisclass# for which 1 isnot
a nonexpansion then this iterative process can either diverge
or get stuck in alocal minimum arbitrarily far from V3,.

We now give simple examples demonstrating ways in
which TD can fail when it isused with anonlinear hypothesis
class. Consider an MDP with two states where the probabil-
ity of going from one state to the other is 1, and the rewards
are also deterministic. The stationary distribution 7 is0.5 for
each state, the discount factor is.8 and the hypothesisclass #
isthe subset of the value function space R? given by the v, -
axis, thewv,-axisand thetwo diagonalsv; = vo andvy; = —ws.
Formally, # = {(v1,v2) € R? : vy = 00rwvy = 0 0r vy | =
|va|}. The learning operator 13 projects a function onto the
nearest of the 4 axes of #. For example, 114 (6,4) = (5,5),
Iy (6,—4) = (5, —5) and Iy (—7,—1) = (=7,0)

We first consider the case where the rewards of the two
states are (r1,r2) = (10,—8). The true value function
V* turns out to be (10, 0). Note that in this case, the true
value function is actualy in the hypothesis class . Start-
ing from Vi = (0,0) the result of repeated applications of
[Ty T isshown in Figure 1(a). For example, the first step is
My TV = My (r +7V(2), 7 £V (1)) = Tl(10, —8) =
(9,-9). This process convergesto V. = (5, —5) which
is a fixed point because I, T(5,—5) = IIy(6,—4) =
(5, —5). Remember that V* € 7, so therelative error bound

M isinfinite. Thus T can converge arbitrarily far (in
% -

terms of relative error bound) from the best representation in
‘H of the true value function.

V*=(10,0)

Figure 1: (a) Suboptimal Fixed Point and (b) Oscillation

If we modify the rewards dightly to be (ri,r3) =
(10, —7.8) then the true value function V* = (10%,2) is
no longer in H. The best representation of V* is V3, =
% V* = (10%,0). If we start from (0, 0) as above, we will
again reach a suboptimal fixed point around (5, —5). How-
ever, starting from Vi, = (30,0) (or even V, = (15,0))
the result of repeated applications of 113 T as shown in Fig-
ure 1(b) displays a different type of failure — oscillation be-
tween pointsapproaching (7.5, 7.5) and (16, 0). Asinthepre-
vious example, ||V}, — V*||; is small, so the reletive error
boundislarge.

4 TheBridge Algorithm

We begin with a high level description of the agorithm (de-
tails are in the Appendix). This is followed by the conver-

gence results and another look at the examples from the pre-
Vious section.

The main agorithm BridgeValueDet, determines the
value function within some error bound by making repeated
calsto BridgeStep. Wewill now describe thefirst invoca
tion of BridgeStep.

Metaphoricaly it consists of throwing a bridge across the
treacherous terrain that is the hypothesis class #, towards a
point on the far side of the optima solution. If the bridge
lands somewhere close to where we aimed it, we will be able
towalk along it in a productive direction (achieve a contrac-
tion). If thebridgelandsfar from our target, then weknow that
thereisn’t any #-expressible valuefunction near our target on
which the bridge could have landed (hence an error bound).
Thisis made precise by Lemma 2 in the next section.

We are given an old approximation V from which we try
to create abetter approximation'V,,.,,. Webasically havetwo
toolstowork with: T and 114 . Ascan beseeninFigure2 (and
in the example in the previous section), if we combine these
two operatorsin the standard way, V..., = 14 TV, wecan
get stuck in alocal minimum. We will instead use them more
creatively to guarantee progress or establish an error bound.

Figure 2: Stuck inaloca minimum

We begin by using not T but rather T/ where j is deter-
mined by the main agorithm BridgeValueDet before it
cals BridgeStep. We can then ask the question, given we
know where V and T/ 'V are, what does that tell us about the
location of V*? It turnsout that V* isrestricted to liein some
hypersphere whose position can be defined interms of the po-
sitionsof V and T/ V. Thisis made precise by Lemma 1 in
the next section. The hypersphereisdepicted in Figure 3 and
asrequired, V* liesinsideit.

By

Figure 3: The bridgeisaimed

We now define anew operator B based on T? and theiden-
tity operator I.

B=1I (T -1
(=D
B simply amplifies the Bellman residual by a factor of 1_17] .

As can be seen in Figure 3, BV is the point on the far side

of the hypersphere from V. This operator iswhat we use to
throw abridge. We aim the bridge for BV, which isbeyond
anywherewhere our goal might be, i.ethetrue valuefunction
lies somewhere between V and BV. The motivation for us-
ing B isin asenseto jump over al local minima between V
and V*.

Ideally we would be able to represent BV (just asin the
standard approach we would want to represent TV') but this
functionis most likely not in our class of representable func-
tions. Therefore we must apply the operator 14 tomap itinto
H. Theresult, W = 11, BV € #, isshowninFigure4. The
bridge is supported by V and W and is shown as a line be-
tween them. In summary we throw the bridgeaimingfor BV,
but T4, determines the point W on which it actually lands.

\/

Figure 4: The bridgeis established

In practice weperform themapping 13 by generating sam-
ples from an appropriate distribution and passing them to a
learning algorithm for 7. In particular to compute [13 BV,
we generate samples (z, y) according to the distribution:

Pplx,y) = w(x)Py(yle)
= w(@)Prs((y = V(@)1 =) + V(z)]z)
Thekey feature of thisdistributionisthat if arandom variable
Y has associated density P, (-|z) then E[Y] = BV (z).
Thefinal step isto wak aong the bridge. The bridgeisa

linebetween'V and W and our new approximation'V,, ., will
be some point on thisline (see Figure 5). This point is deter-
mined by projectingapoint < 1 of theway fromV to T?'V
onto the line, where n is a function of the input parameters.
(We could just project TV, but using 1 is a refinement that
yields abetter guaranteed effective contraction factor.)

Figure5: The new approximation

Thus the new approximation V,, ..., which is not necessar-
ilyin, isaweighted average of the old approximation V and
W € H. Calculatingtheweights(p and 1 — p) inthisaverage
requiresthe ability to measure distance and risk. In particular
we need to measure the distance between V and W and the
risk of V and W with respect to the distribution P}/j. These

three lengths (and 7) determine the relative position of V¢,
with respect to V and W (See Figure 5). In practice we es-
timate the true risk with the empirical risk [Haussler, 1992],
which we cal cul ate using samples drawn from the distribution

PY,.

RNe have just described a single invocation of BridgeStep
that represents the first iteration of the main algorithm. Each
iteration builds a new bridge based on the previous one, so a
genericiteration would begin witha'V that wasthe V., of
the previous iteration (see Figure 6). In particular, the input
V of agenericiterationisnotin A, butisrather alinear com-
bination of the initial approximation Vi, and al previous W
functions. Thus thefina result is atall weighted tree whose
leavesarein 7. If weinsist on afina result that isin 7, then
we can apply afina I13 mapping at the very end.

Just as the standard TD agorithm was summarized as
Vi1 = Iy TV, the Bridge algorithm can be essentially
summarized as

= (1=) T (1 T=5(T D)V,
“/|_3an\

Figure 6: Generic iteration of BridgeStep

4.1 Convergence of the Bridge algorithm

Wewill state the main convergence theorem for the Bridgeal -
gorithm, but space limitations allow us to state only the two
most important Lemmas used in the proof. We begin with a
very useful observation about the geometric relationship be-
tween V, TV and V*.

Lemmal Let A be a contraction with contraction factor ¢

under some norm. Let V* be the fixed point of A. For any
point Vet O = V + 1= (AV — V). Then,
¢

V' -0| <
IV -0l < =5

In words, given the positions of V and AV, let ¢ =
[|AV — V. Then we know that the position of V* hasto be

on or insidethe hypersphere of radius 1f22 centered a O (see
Figure7). Thishypersphereissimply the set of pointsthat are
a least afactor of ¢ closer to AV thanto V. Notethat thedis-

tance from 'V to the furthest point on the hypersphereis = c

We apply Lemma 1 using T/ for A and 4/ for ¢. Thisde-
fines a hypersphere inside of which the true value function
must lie. Lemma 1 isused mainly to prove Lemma 2, which
characterizesthebehavior of BridgeStep and providesmost
of the meat of the convergence proof.

AV — V]|

Lemma?2 Given anapproximation'V and parametersa > 0
andj > 1, BridgeStep(V, «, j) returns a new approxima-

Figure 7: Hypersphere containing V*

tion V.., that satisfiesat least one of the foll owing two con-
ditions, where the error bound « = errBound(«, 7, j) is
defined in the Appendix

||Vnew - V*H?T < a||V - V*H?T (Contraction)
IV, .o = ViIlr <&[|V3 —V*|| (Error Bound)

Intuitively, if the bridge lands close to where we aimed it,
we will achieve a contraction towards the goal. If the bridge
lands far away, we will prove a relative error bound for the
result. The key quantity that determines which of these two
events happens, isthe angle ¢ formed between the bridge and
thelinefrom Vto BV. If W = IIzBV iscloseto BV,
then @ will be small, the bridge will lie close to the hyper-
sphere, and we will be able towalk aong the bridge and make
progress. If instead W isfar from BV, then @ will be large
and walking along the bridge will not take us closer to the
goal, but we will be able to prove that we are already close
enough.

Figure 8 shows the case wherethe angle ¢ issmall. Asde-
scribed previoudly, the small hypersphere represents the set
of pointsthat are at least a factor of 4/ closer to TV than
they are to V. This follows from applying Lemma 1 to the
operator T7. Now think of BridgeStep as an operator that
takes V and returns 'V, ,, and ask the question, what set of
points are at least a factor of o (which is an input parame-
ter to BridgeStep) closer to V., than to V? Applying
Lemma 1 to this question defines another, much larger hy-
persphere which is depicted in Figure 8 with center at O for
the case = arcsin o — arcsin+7. Notethat thislarger hy-
persphere compl etely containsthe smaller hyperspherewhich
contains V*. Thus V* also liesinsidethe larger hypersphere
and S0 V., isat least afactor of « closer to V* than V is.
Thisholdsfor 6 = arcsin & — arcsin+?. If § issmaller than
this, the achieved contraction is even better.

Figure 8: Contractionis achieved when 6 is small

Figure9 showsthecase wheretheangled islarge. @ islarge
when it isnot possibleto find a hypothesisin H closeto BV.
In fact we choose W = 114 BV to be the closest such hy-
pothesis, so the rest of # must lie further away. In particular
‘H must lie completely outside the big hypersphere depicted

in Figure9 with center at BV, for otherwise W would not be
the closest hypothesisto BV . Furthermore we know that V*
must lieon or inside the small hyperspherein Figure 9. Thus
there is a separation between V* and H and this separation
allows usto prove, for any possible position of V*, an upper

bound on therelative error M“l
Vi =-V*l«

Figure 9: Relative error bound is established when 6 islarge

It should be noted that in general we do not know and we
cannot measure ¢ to determine which of the two conditions
of Lemma2 V., satisfies. We only know that it satisfies at
least one of them.

By Lemma 2, if V dready satisfies therelative error bound
then so will V,,..,, because if V,,.,, achieves a contraction
over V, itserror decreases. Thus each successive approxima:
tionis better than the one before, until we achieve therdative
error bound from which point every subsequent approxima
tion will also achieve that bound.

We now give the main result, which is guaranteed conver-
gence to a relative or absolute error bound. Moreover, the
maximum number of invocations of BridgeStep, and thus
the maximum number of hypotheses in the linear combina-
tion, can be specified.

Theorem 1 Let v > 1 and ¢, > 0 be the desired relative
and absolute error bounds respectively. Let N be an upper
boundonthedesired number of iterations. Thenthealgorithm

BridgeValueDet(v, ¢;, N') produces an approximation 'V,
consistingof alinear combinationof at most N+ 1 hypotheses
from 7, that satisfies at least one of either the relative error
bound v or the absolute error bound ¢:
V=V .
e <y or V-V, <e
Vi Vel = V=Vl <o
The proof of the theorem follows directly from Lemma 2;
rewards are bounded, so thetrueval uefunctionisbounded, so
theabsol uteerror of theinitia approximation can be bounded.
If all N iterationsachieve a contraction, then the absolute er-
ror will be smaller than requested. If at least one of theitera
tionsfailedto achieve acontraction, thenit achieved arelative
error bound and al subsequent iterations, including the last
one, will achieve the requested relative error bound. Again,
sincewe do not know which of thetwo conditionsof Lemma 2

each iteration satisfies, we do not know whether the final an-
swer V satisfies the relative or the absolute error bound. We
know only that it satisfies at |east one of them.

Corollary 1 Let v, ¢y and N be as defined in Theorem 1.
Let V = BridgeValueDet(v, ¢y, N), alinear combination
of hypotheses from#. Then V3, = I3V, the result of map-
ping V backinto 7, satisfiesat |east one of either therelative
error bound 2v + 1 or absoluteerror bound ey (2 + 1).

4.2 The Examples Revisited

We now reconsider the examples from Section 3. The main
algorithm BridgeValueDet takes parameters v, ¢, and IV,
from which it computes the number of lookahead steps j to
use to achieve the requested error bounds. Also for each it-
eration, it chooses a parameter «,, which determines the con-
traction factor achieved or relative error bound established for
that iteration. These two parameters, j and «,,, are passed
to BridgeStep at each iteration. In this section, we exam-
inethe effect of repeated applicationsof BridgeStep, using
Jj =3 and « = .99 for every iteration.

For thefirst example, with initial Vi, = (0, 0), theresults
of repeated applications of BridgeStep are shown in Fig-
ure 10(a). Because for thisexample || V3, — V*|| = 0 (i.e.
thetruevalue functionisin #), therelative error boundis al-
waysinfinite. Therefore, by Lemma 2, every step achieves at
least acontraction o and so thea gorithm convergesto thetrue
value function.

‘ V*=(10,0)

V5
Vo BN ARV
U2 V4 l

Figure 10: Examples revisited with Bridge

N v

o ~
Va vz V1
TN

~

o
V*=(10.44,.56) Vo

For the second example, with Vi, = (30, 0), the results
of repeated applications of BridgeStep are shown in Fig-
ure 10(b). Looking at the first step more closaly, TV, =
(10.2,10.6), BV, = (—10.7,21.7) and W = Tl BV, =
(—16.2,16.2). The dotted line between Vi, and W, is the
bridge. V1, being aweighted average of Vi, and Wy, lieson
thisbridge. Similarly, V, lieson the bridge between V; and
W;.

V7=(15.3,4.0)

relative effective
error contraction
bound factor
VO 35.2 —_—
V5 135 .87
V10 7.4 .89
V15 4.1 89
V20 2.3 .89
V25 1.3 .90
V30 0.8 91
V35 0.5 93
V40 0.4 .97 /
vas 0.4 99 VO0=(30,0) W0=(-16.2,16.2)

Figure 11: (8) Lemma 2 applied to second example
(b) Linear combination

Figure 11(a) demonstrates Lemma 2 on every fifth appli-
cation of BridgeStep. In particular, note that the effective

contraction factor only exceeds « after thedesired relative er-
ror bound errBound(«, v, j) = 4.3 has been achieved. In
fact on this example, the algorithm performs far better than
the theory guarantees. Figure 11(b) shows the weights of the
averages and the structure of the resulting linear combination
after 7 steps.

5 Extensons

It ispossibleto extend the algorithm in many ways. In partic-
ular relying on an exact, agnostic learning operator 114 isnot
practical. Herewe briefly discussthe use of two other learni ng
operators and we hope in the future to consider others still.

5.1 PAC(e, d) learning
Most significantly we have extended our algorithmto the case
where the learning step 15 cannot be done exactly butisin-

stead a PAC learning step Hif (see [Papavassiliou and Rus-
s, 1998]). We actually usethe same ¢ and ¢ for every iter-

ation, so the learning step 115° has the same complexity for
every iteration. Thisis simpqwfe but most likely not optimal.
One appealing aspect of considering PAC aghosticlearningis
the potentia availability of sample complexity results based
on some measure of the complexity of . Unfortunately it is
necessary tolearn and estimate risk under the stationary di stri-
bution of the Markov chain. Simply running the chain to gen-
erate sampleswill only generate them correctly in the steady-
state limit. Therefore computing sample complexity results
for therisk estimation and agnostic learning steps requires ex-
tending the current state of the theory to the case where sam-
plesare generated fromaMarkov chain, rather thani.i.d. One
would expect the sample compl exity to depend on the mixing
time of the Markov chain and the variance of the sasmple dis-
tribution. The form of these theoremswill also determine the
extent to which samples can be reused between the different
risk estimation steps within an iteration or even across itera
tions.

5.2 Suboptimal learning

Previousa gorithmsfor thisproblem have been shownto con-
verge for learning operators 114 that are non-expansions
My V — T W < [V - W]

Theconvergenceresultsfor Bridgeholdfor learning operators
that perform agnostic learning. Unfortunately thereis a gen-
eral lack of useful agnosticlearning algorithms(therisk mini-
mizationstepistypicaly intractable), so it wouldbe beneficial
to extend the results to learning systems that are not optimal.

It is possible to weaken the conditions on the learning op-
erator and give convergence resultsfor Bridgethat hold when
T4 satisfiesthe banana-fudge condition

IV - 1x V]|
kq (|[V — W)
for some nondecreasing functionsk; > 0 and k;. The only
modification necessary to Bridgeistoincludek; andk; inthe
calculation of the relative error bound errBound(«, v, 7).
Note that for ky(z) = 1 and kz(z) = z, thiscondition re-
ducesto
IV —Tx V]| = [[V - W[< [[W — 1T, W]

which isin fact the property of agnostic learning that is used
to derive the resultsin this paper.

Intuitively, the nonexpansion condition for Il requires
that two pointsthat are close to each other, are mapped close

—kz([[V - W[)) < |W - 1T W||

to each other. The banana-fudge condition requires that two
pointsthat are close to each other, are mapped a similar dis-
tance away, but they can be mapped in oppositedirectionsand
so end up very far from each other. The banana-fudge con-
dition is obviously the weaker one, requiring only similarity
in level of success and not similarity in outcome. It disal-
lowsthe case where onefunctionislearned very well, but an-
other functionvery closetothefirstislearned very poorly. We
are currently searching for learning algorithmsthat satisfy the
banana-fudge condition, but unfortunately it seems most com-
mon practical learning algorithmsdo not.

6 Other Approaches

We briefly discuss other known aternatives to Bridge as well
as mention some of the new directions one might consider.

6.1 Alternatives

If # is convex and 114 is the agnostic learning operator,
then Il is a nonexpansion and V.1 = 11TV, con-
verges. For nonconvex 4, an alternative approach to Bridge
isto PAC-agnostically learn the convex hull of H using I14
at each iteration [Lee et al., 1995]. The resulting iterated
procedure V.11 = Ileonyer—nun(#) TV, cONVerges since
Heonver—nuti(z) 1IS@nonexpansion. Unfortunately, thisago-
rithm requires many more agnostic learning steps per iteration
than seems practical.

A noniterative method that returnsthe optimal answer isto
reduce the value determination problem to a single instance
of supervised learning by using the operator T*° (otherwise
knownasTD(A = 1)). It does unlimited lookahead, has con-
tractionfactor v* = 0 and soit generates V* after just oneit-
eration. Looked at another way, thedistributionPY... (-|z) has
mean V*(x) and so Il TV = V7, . Unfortunately thereis

empirica evidencethat suggests the sample distribution PY...
isvery hard to learn and requiresvery many samples (perhaps
because it can have high variance).

Strictly spesking, it is not necessary to backup values be-

yond the e-horizonwhichislog, E(Rl—”). Even this, however,

may yield sample distributions with too much variance for
practical use, athoughit isoffset by the need to perform only
asinglelearning step.

Finally it may be possible, using Lemma 1, to establish
convergence rates and error boundsfor theiterated procedure
Vo1 = lxgT™V, where m is less than the e-horizon.
However, m would probably have to be much larger than j,
the number of lookahead steps used by Bridge, and so again
we would expect bad sample complexity.

6.2 New Directions

There are many ways in which the basic tools used in con-
structing this algorithm might be used in constructing more
powerful methods. Specifically thegeometricrel ationship be-
tween V., TV and V* established in Lemma 1 isvery use-
ful in (1) providing geometricintuitionto design new methods
and (2) proving performance guarantees for these methods.

One can think of many different waysto throw abridge and
many different kinds of bridgesto throw. For example, we es-
tablish W, the other end of the bridge by learning the point
V+ 1_17] (T/V — V). Thischoiceisrather arbitrary, picked
to simplify the error bound analysis. One might try instead
learning a point further or alittlecloserto V.

Once we establish W, we throw a one-dimensional, linear
bridgefrom V to W and learn a point close to T? 'V on this
line (learning is equivalent to projection in linear hypothesis
classes). Onemight try establishing morethan two pointswith
which to support the bridge. For example, given V and after
establishing W (1), we could try establishing W (2) by learn-
ing apoint strategically located far from both 'V and W (1) on
the other side of the hypersphere defined by Lemma 1. Then
we could throw atwo-dimensional, planar bridge across these
three points and project T7'V (or a point close by) onto this
plane. We can continuein thisway, considering methods that
establish W (1), ..., W(n) and use an n-dimensional hyper-
plane to learn T7V. In the logica limit this method looks
likealoca version of [Lee et al., 1995] which learns the full
convex hull. It islocal in that it only closes under weighted
averaging those points of 7 that are closest to some point of
the hypersphere defined by Lemma 1. Our current method
which only uses one-dimensiona bridgesiseffectively alight
version of these convex-hull methods, in that before learning
TV it closes under linear combinationsonly two pointsfrom
H, namely V and W.

7 Conclusion

We have devel oped a method that reduces the value determi-
nation problem to the agnostic learning problem. Requesting
that our algorithm halt in fewer iterations or with better er-
ror bounds pushes more of the complexity into the learning
step and in the limit effectively forces it to consider infinite
lookahead which is T=°. Similarly, if we were to extend our
algorithm to use more and more supports for the bridge, we
suspect it would approximate the performance of the convex
hull learning algorithm. Thus our method can be thought of
as amore versatile and hopefully more efficient aternative to
these aggressive methods.

The key features that characterize our approach are (1) the
complication of learning isabstracted into alearning operator
T4, (2) we use anew operator B rather than being restricted
to the backup operator T, (3) we form linear combinations of
hypotheses from a class 4 rather than being limited to just
‘H, and (4) we use Lemma 1 to prove convergence and error
bound results. These techniques can be applied or modified
to develop endless variationson Bridge as well as completely
new algorithms.

A big missing ingredient in justifying one method over an-
otherissample complexity. In particular, we do not know how
sample complexity depends on thelookahead j, or, in the case

of Hif , how it depends on ¢, and so we cannot properly trade
off these parameters to achieve the best performance.

Our results are stated for the problem of value determina-
tion, but they apply to any situation with an operator that is
a contraction with respect to a norm defined by a samplable
distribution. For the problem of value determination, the op-
erator is T, the one-step backup operator, and it is a con-
traction under the norm defined by the stationary distribution
of the Markov chain. As stated previoudy, this distribution
can only be sampled exactly in the steady-state limit, so im-
provementsin the theory are necessary. Finally, abig hurdle
to a practical, implementable agorithm is the lack of useful,
well-behaved (agnostic or not) learning agorithms. By ap-
plying the techniques used in devel oping Bridge, we hope to
bridge the gap between the available supervised learning al -
gorithmsand those needed by theoretically justified reinforce-

ment |earning methods.

References

[Baird, 1995] Leemon Baird. Residua agorithms. Re-
inforcement learning with function approximation. In
Proceedings of the Twelfth International Conference on
Machine Learning, Tahoe City, CA, Proceedings of the
Twelfth International Conference on Machine Learning
1995. Morgan Kaufmann.

[Bertsekas and Tsitsiklis, 1996] D. C. Bertsekas and J. N.
Tsitsiklis. Neuro-dynamic programming. Athena Scien-
tific, Belmont, Mass., 1996.

[Gordon, 1995] Geoffrey J. Gordon. Stable function approx-
imation in dynamic programming. In Proceedings of the
Twelfth International Conference on Machine Learning,
Tahoe City, CA, July 1995. Morgan Kaufmann.

[Haussler, 1992] David Haussler. Decision theoretic general -
izations of the pac model for neural net and other learning
applications. Information and Computation, 100(1):78—
150, 1992.

[Jaakkolaet al., 1995] Tommi Jaakkola, Satinder P. Singh,
and Michadl |. Jordan. Reinforcement learning algorithm
for partially observable Markov decision problems. In
G. Tesauro, D. Touretzky, and T. Leen, editors, Advancesin
Neural InformationProcessing Systems 7, pages 345-352,
Cambridge, Massachusetts, 1995. MIT Press.

[Lecetal.,, 1995] W.S. Lee, PL. Bartlett, and R.C.
Williamson. On efficient agnostic learning of linear
combinations of basis functions. In Proceedings of the
Eighth Annual Conference on Computational Learning
Theory, pages 369-376, 1995.

[Papavassiliou and Russell, 1998] V. Papavassiliou and
S. Russl. Convergence of reinforcement learning
with pac function approximators. Technical Report
UCB//CSD-98-1005, University of California, Berkeley,
1998.

[Sutton, 1988] R. S. Sutton. Learning to predict by the meth-
ods of temporal differences. Machine Learning, 3:9-44,
August 1988.

[Tsitsiklisand Van Roy, 1996] John N. Tsitsiklis and Ben-
jamin Van Roy. An analysis of temporal -difference learn-
ing with function approximation. Technical Report LIDS-
P-2322, Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, 1996.

A Detailed Algorithm

Herewe give detailsof the algorithm as well asdefine therel -
ative error bound errBound(«, v, j). BridgeValueDet
first cal culates the necessary number of backup steps j in or-
der to achieve the desired error bounds within the desired
number of iterations. For each iteration it intelligently selects
the parameter « and calls the subroutine BridgeStep with the
current approximation. Finally it detectswhen it can halt suc-
cessfully and returns aweighted tree of hypotheses.

BridgeValueDet(v, eg, N)

2Rma.r. € 1/N
’ X goal — 5 Amaxr = agoal

€mazr =

1 - 'Y Cmax
Choose smallest 5 suchthat errBound(aimas,”,j) < v
n=0; awta=1; Vo =someinitia hypothesis

LOOPUNTIL aiotar € agoar {
Choose smallest «, Sit.

@ errBound(a]
Xmax Z Qp 2 goal (o 77])

~ Ototal v
V5,41 = BridgeStep(V,, an, j)
Qtotal = Ntotalln; n=n-4+ 1}
RETURN V,,
BridgeStep(V,a,)
1
B=1 T -1
+ (1 -]
W = II4BV; u=|V-W|x

v=r.(V,Pr;); w =r.(W,Pr;)
ﬁ:a\/1—72] _'}/J\/I_O{2
(1-a?)

TEN T)
v—w+u
o 2u
RETURN (1—p)V 4 pW

errBound(a, v, j)
B=ay/T-72 =41 -a?
o= _7%[1 +V (1=)/ (1 =a?)(8 -1 -52)]

V1—a? @
o = 2V28 1 ——. ca = ()2
/1_72] 1_7J
5 27 2¢3 4+ cacy
Cq4 = 5 Cs = —57 = -
1—7 1—~2 co + 2cic4
IF cs <cs THENRETURN + oo
dercs—c3 if s<ecs

4(cz+egcqtercs) -

[cicidcacstes if
(ca—cs)?

ELSE RETURN

