Approximating Optimal Policiesfor Partially Observable Stochastic Domains

Ronald Parr, Stuart Russdll
Computer Science Division
University of California
Berkeley, CA 94720, USA
{parr,russell } @cs.berkeley.edu
Tel: (510) 642-2038, Fax: (510) 642-5775

Abstract

The problem of making optimal decisionsin uncer-
tain conditionsis central to Artificial Intelligence.
If the state of the world is known at all times, the
world can be modeled as a Markov Decision Pro-
cess (MDP). MDPs have been studied extensively
and many methods are known for determining op-
timal courses of action, or policies. The more
realistic case where state information is only par-
tially observable, Partially Observable Markov De-
cision Processes (POMDPs), have received much
less attention. The best exact algorithms for these
problems can be very inefficient in both space and
time. We introduce Smooth Partialy Observable
Value Approximation (SPOVA), a new approxima-
tion method that can quickly yield good approxima-
tions which can improve over time. This method
can be combined with reinforcement learning meth-
ods, acombinationthat wasvery effectiveinour test
Ccases.

1 Introduction

Markov Decision Processes (MDPs) have proven to be useful
abstractions for a variety of problems. When a domain fits
into the MDP framework, a variety of methods can be used
that are practical for small- to medium-sized problems. Un-
fortunately, many interesting domains cannot be modeled as
MDPs. In particular, domains in which the state of the prob-
lem is not fully observable at al times cannot be modeled
as MDPs. Partially Observable Markov Decision Processes
(POMDPs) extend the MDP framework to include partially
observable stateinformation. With thisextension, weareable
to model alarger and more interesting class of problems, but
we are no longer able to use the solution methods that exist
for MDPs.

POMDP agorithms are much more computationaly in-
tensive than their MDP counterparts. The reason for this
complexity is that uncertainty about the true state of model
induces a probability distribution over the model states. Most
MDP algorithms work by determining the value of being in
one of afinite number of discrete states, while most POMDP
algorithms are forced to deal with probability distributions.
Thisdifference changes adiscrete optimizationproblemintoa
problemthat isdefined over acontinuousspace. Thisincrease
in complexity is manifested in the performance of POMDP

algorithms: The best algorithms can take prohibitively large
amounts of time even for very small problems.

Our approach, Smooth Partially Observabl e Value Approx-
imation (SPOVA), usesasmooth functionthat can be adjusted
with gradient descent methods. This provides an extremely
simple improvement rule that is amenable to reinforcement
learning methods and will permit an agent to gradually im-
prove its performance over time.

In our test cases, we found that agents using this rule could
rapidly improvetheir behavior to near-optimal levelsinafrac-
tion of thetimerequiredto runtraditional POMDP a gorithms
to compl etion.

The following section will introduce the MDP formalism,
and section 3 will show how this can be extended to include
partial observability. Section 4 introduces a smooth approx-
imation to the max function that is the basis of our SPOVA
algorithms. A simple gradient descent SPOVA agorithm is
described in section 5, and results for this algorithm are pre-
sented in section 6, where it finds optimal policies for two
test worlds. An approach based on simulated exploration and
reinforcement learning is introduced in section 7, where re-
sults are presented showing this method rapidly finds good
policies. Section 8 briefly discusses other related work, and
section 9 contains concluding remarks.

2 Markov Decision Processes

One useful abstraction for modeling uncertain domainsisthe
Markov Decision Process or MDP. An MDP dividestheworld
into states with actions that determine transition probabilities
between these states. The states are chosen so that each state
summarizes all that is known about the current status of the
world: the probability of the next state is a function of the
current state and action only, not any of the previous states or
actions. Moreformally, we say that for any actiona and string
of states and actions Sja; ... Sa, P(S+1|aSa-1...a1S) =
P(S+1]a:S). Thisiscalled the Markov Property.

An MDPisa4-tuple, (S A T,R) where Sisafinite set of
states, Aisafiniteset of actions, T isamapping from Sx Ainto
distributions over the statesin S, and R is a reward function
that maps from Sto real-valued rewards. This paradigm can
be extended to distributions over rewards, or to map from
Sx Atorewards or distributionsover rewards. There may be
an additional element, I, which specifies an initia state.

A policy for an MDP is a mapping from Sto actionsin A.
It can be an explicit mapping, or it can be implicit in avalue
function, V, that maps from elements of Sto real values. This
valuefunction represents thevalue of being in any state asthe
expected sum of rewards that can be garnered from that point

forward. We can use a value function to assign actions to
statesin Sby choosing the action that maximizes the expected
value of the succeeding states. Policies can be defined for two
types of problems, finite-horizon, where the number of steps
or actions permitted has a hard limit, and infinite-horizon,
where there is no fixed time limit. The infinite-horizon case
gtill can respect the value of time by incorporating a cost
or negative reward with each step, or by discounting future
rewards by a discount factor, 0 < 5 < 1.

For any MDP, there existsan optimal valuefunction V* that
can be used to induce an optimal policy. The present value of
the rewards expected by an agent acting on an optimal policy
will be at least as great as that received by an agent under any
other policy. There are severa methods for determining opti-
mal policiesfor MDPs. One effective method for determining
avalue function for theinfinite horizon case is valueiteration
[Bellman, 1957]. If the transition probabilitiesfor the model
are not known, reinforcement learning [Sutton, 1988] can be
used to learn an optimal policy through exploration.

When separate val ue functions are maintained for each ac-
tion, these functions are often called Q-functions. When re-
inforcement learning is used to learn Q-functionsit is called
Q-learning [Watkins, 1989]. Our algorithms do not maintain
separate value functions for each action. Aswe will discuss
below, we regard thisas simply an implementation detail and
not an important distinctionfor our approach.

3 Partial Observability

It isimportant to realize that although actions have uncertain
outcomes in MDPs, there is never any uncertainty about the
current state of the world. Before taking any action, an agent
may be uncertain about the consequences of its action, but
once the action is taken, the agent will know the outcome.
This can be an extremely unrealistic assumption about the
ability of an agent’s sensors to distinguish between world
states.

A Partialy ObservableMarkov Decision Process(POMDP)
isjust like an MDP with outputs attached to the states. The
outputs can be thought of as sensor observations that provide
(usually) uncertain information about the state of the world.
as hints about the true state of the world, or as sensor inputs.
More formaly, a POMDP is a 5-tuple (S A, T, R, O), where
S A T, and R are defined as in an MDP and O maps from
statesin Sto a set of outputs. Note that if O assigns a unique
output to every state and the initia state is known, then the
POMDP becomes an MDP because the state information is
fully observable. POMDPs can be extended to make S map
from states to distributionsover outputs, or from Sx A to out-
putsor distributionsover outputs. There may be an additional
element, |, that determines an initial distribution over states.

The change to partial observability forces an important
change in the type of information an agent acting in aworld
must maintain. For the fully observable case, an agent will
always know what state it isin, but for the partialy observ-
able case, an agent that wishesto act optimally must maintain
considerably moreinformation. One possibility isacomplete
history of all actions taken and al observations made. Since
this representation can become arbitrarily large, the mainte-
nance of a joint probability distribution over the states in S
oftenismoretractable. Thisdistribution sometimesisreferred
to asabelief state.

It can be shown that theMarkov property holdsfor the belief
states induced by aPOMDP. This means that in principle, we
can construct an MDP from the belief states of aPOMDP, find

an optimal policy for the MDP and then use thispolicy for the
POMDP. Unfortunately, most interesting POMDPs induce a
very large or infinite number of belief states, making direct
application of MPD agorithmsto POMDPs impractical.

A survey of existing POMDP algorithms [Lovejoy, 1991]
shows that many POMDP algorithmswork by constructing a
finiterepresentation of avaluefunctionover belief states, then
iteratively updating this representation, expanding the hori-
zon of the policy it implies, until a desired depth is reached.
For some classes of problems[Sondik, 1971] infinite-horizon
policies will have finite representations and value functions
can be obtained for these problems by expanding the hori-
zon until the value function converges to a stable value. In
practice, infinite-horizon policies often can be approximated
by extremely long finite horizons even if convergence is not
obtained. Regardless of whether they are run to convergence,
existing exact algorithms can take an exponential amount of
space and time to compute a policy, even if the policy itself
does not require an exponentia size representation. These
drawbacks have led to a number of approximation algorithms
that work by discretizing the belief space. The most advanced
methods dynamically adjust the resolution of the discretiza
tion for different parts of the belief space, but it is unclear
whether this can be done efficiently for large problems.

It is worth noting for the reader unfamiliar with this area
that most POMDPs with known solutions have less than 10
states and that exact solutionsto POMDPs with tens of states
can take anywhere from minutes to days if convergence is
obtained at all.

We will introduce a new approximate method for deter-
mining infinite horizon policies for POMDPs. This method
differsfrom existing methodsin that it uses a continuousand
differentiable representation of the value function.

4 The Differentiable Approximation

The first, and perhaps most important, decision that must be
made in any approach to thisproblem is how to represent the
value function. Sondik showed [1971] that an optimal finite-
horizon value function can be represented as the max over a
finite set of linear functions of the belief state. For a belief
state b, a vector representing a distribution over the states of
the world, the value function can be represented as:

V(b) = maxb - v
vyer

where " isaset of vectors the same dimension as b, defining
planes in value x belief space. Each «; in ' can be shown
to represent a fixed policy, meaning that we are maximizing
over aset of policiesto find the onethat is best in aparticular
region of the belief space. (See [Littman, 1994] for an in-
depth interpretation of the v vectors.) Graphicdly, ~; is a
hyperplane in value space and the max of these functions
forms a convex piecewise-linear surface. The significance of
Sondik’sresult isthat it providesapotentially compact means
of representing the optimal value function for finite-horizon
problems, athough it does not make any guarantees that ||
will be tractably small.

For very large horizons, the value function may be quite
smooth as it may be comprised of a very large number of
vectors. For infinite horizons, the value function may be
comprised of an infinite number of pieces, which means that
it islikely to be smooth in at least parts of the belief space.
In any case, because it is the maximum of a set of linear
functions, it will be convex. For these reasons, a good candi-
date for a differentiable approximation of the infinite horizon

14

12 -

10 -

Max Approximator for Different Values of k

1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Belief

Figurel: Closenessof the MAX approximation ask increases.

value function would be a convex function that behaves like
max. The following function works rather nicely and is the
foundation of the smooth approximation made by SPOVA: 1

V(o) = /S (b7
~yer

To keep things simple, we will assume that the true value
function, V*, is always positive and that the individual com-
ponents of the y;s, the v; s, are al positive. This assumption
comes with no loss of generality since we easily can shift the
function into the positive part of the value space to satisfy
these conditions. This can be done by replacing (b - +) with
([b-~] + w) where w is aconstant offset.

Sincethe; sare always positive, the second partial deriva
tive in each of the dimensions is aways positive, and the
function is always convex. The function will behave like an
over-estimate of max that is smoothed at the corners. Fig-
ure 1 shows a two-dimensional example of how this works.
Wehave chosenT” = {(9,0), (4, 8), (6,6), (0, 10) } and graphed
our differentiable max approximator for different values of
k. The convex piecewise-linear function below the smooth
curves is the max function. (Only one belief dimension is
shown because the second is 1 minus the first.) Notice that
as k increases, the approximation approaches the shape of
the convex surface that is the max of the linear functions.
The height of the function is less important than the shape
here since the policy induced by a value function depends on
relative, not absolute, val ue assignments.

The k parameter gives us a great dea of flexibility. For
example, if we believethat the infinite horizon value function
can berepresented by themax of asmall set of linear functions,
we may choose a large value for k and try for a very close
approximation. On the other hand, if we believe the optimal
infinitehorizon valuefunctioniscomplex and highly textured,
requiring more components than we have time or space to
represent, a smaller value of k will smooth the approximate
value function to partially compensate for alower number of
~ vectors.

5 Thebasic SPOVA algorithm

The main advantage of a continuous representation of the
value function is that we can use gradient descent to adjust

There are other possible choicesfor “soft” max approximations.
See, for example, [Martinetz et al,, 1993].

the parameters of the function to improve our approximation.
| deally, we could use data pointsfrom the optimal valuefunc-
tion, V*, to construct I'. Such information generally is not
available, but an approach similar to valueiteration for MDPs
can be to make our value equation look more like V*. We
know from value iteration that the optimal value equation for
an MDP must satisfy the following constraint:

Vs: V(9 =R(9 + 3 max Z P(s'|s, a)V*(s)
ses

Since a POMDP induces an MDP in the belief states of the
POMDP, weknow that thisequation must hold for theoptimal
value function for POMDPs as well. This gives us a strategy
for improving the value function: Search for inconsistencies
in our value function, then adjust the parameters in the di-
rection that minimizes these inconsistencies. Thisis done by
computing the Bellman residual [Bellman, 1957],

E(b) = V(b) — (R(b) + 5 max > PE|ba)V(b))
b’ enexi(b,a)

where nexi(b, a) isthe set of belief statesreachable from b on
taking action a. We can then adjust theysin thedirection that
minimizes the error. By using a smooth max approximation
described above, we are able to use atypical gradient descent
approach: Aw = «E(b)VyV(b), where « is interpreted as a
step sizeor learning rate. In thiscase, the weights correspond
to the components of the v vectors, so the update for the j™
component of theit" v vector, 7i;» turnsout to be:

_ aE[)bb-)X
TN

Thisequationfor thegradient hasseveral appealing properties.
The (b - 4;)¥ part increases with the contribution 4; makes to
the value function so the +;s that contribute most to the value
function are changed the most. Thisisthen multiplied by by,
reflecting the influence of the probability of beingin statej on
thej™ component of the gradient of ~;. Wealso can interpret k
asameasure of how “rigid” the systemis. For small values of
k, many weightswill be updated with each change. However,
for large values of k, the (b - ~;)* component of the gradient
will permit only minuscule changes to all but the the ; that
maximize b - 4;. Figure 2 showsthe SPOVA agorithm.

For each belief state b
E « V(b) — (R(b) + 3 max Z P(0'|b, a)V(b'))
acA
b’ enex(b,a)
Fori from 1to ||
Forj from1ton
i < 7 +aEb(vi - DV (D)X

Figure 2: The SPOVA agorithm.

Since it is impossible to sample al possible belief states,
we used the simple approach of randomly selecting belief
states. Empirically, we found that we obtained the best results
when we varied k during the run-time. Typically, we would
start k at 1.2 and increase k linearly until it reached 8.0 when
75% of the requested number of updates were performed. As
showninFigurel, small values of k make smoother and more
genera approximations. Small values of k aso spread the
effect of updates over awider area, in some sense increasing

+1

Figure 3: The 4x4 World.

the “energy” of the system. This gradual increase in k can be
thought of as aform of simulated annealing.

The updates can be repeated until some termination con-
dition is met, either afixed limit in the number of iterations,
a minimum number of consecutive samples processed with-
out E exceeding some threshold, or perhaps something more
problem-specific.

Whilewe do not yet have aconvergence proof for thisalgo-
rithm, we are optimistic that with enough iterations, decaying
o, and sufficiently large I that as k tends toward infinity, the
value function will converge to the optimal value function if
the function has afinite piecewise-linear representation. This
is because our error function will become arbitrarily close
to the Bellman residua as k increases. For a large number
of updates, the system should move towards its only stable
equilibrium point, the point at which the value function is
consistent and, therefore, optimal for all pointsin the belief
space.

One question that has not been addressed is how to pick
the number of ~ vectorsto use. For a sub-optima number of
vectors, the gradient descent approach will adjust these vec-
torsin the direction of lower error even though convergence
may not be possible. Our agorithmsdo not yet automatically
determine the optimal number of vectors needed to converge
to the value function in the limit. One practical way to in-
corporate this ability would be to code what we did by hand:
use a binary search to find the smallest number of vectorsthat
gives an optima policy (one that is no worse than the best
policy produced with alarger number of vectors).

6 SPOVA reaults

Wetriedthebasic SPOVA agorithminitializedwith random~
vectorsfor two gridworldsthat have appeared intheliterature.
Thefirgt, shownin Figure3,isa4x4world from [Cassandraet
al., 1994]. Movement into adjacent squaresispermittedinthe
four compass directionsbut an attempt to move off the edge of
theworld has no effect, returning the agent to itsoriginal state
with no indication that anything unusua has happened. All
states have zero reward and the same appearance, except for
the bottom right state, which hasa+1 reward and adistinctive
appearance.

The initia state for this problem is a uniform distribution
over dl but the bottom right state. Any action taken from the
bottom right state resultsin a transition to any one of there-
maining zero reward states with equal probability (i.e., return
to theinitial distribution). For thisproblem we are interested
inthe optimal infinite-horizon policy with adiscount factor of
£ = 0.8. With amoment’s thought, it should be clear that the
optimal policy for thismodel aternates between moving East
and South. This does not mean that the optimal infinite hori-

0.25

0.2

0.15 -

01

Reward per step

0.05 -

0

.
0 2000 4000 6000 8000 10000 12000 14000 16000
Number of iterations

Figure 4: Policy quality vs. number of iterations for gradient
descent in the 4x 4 world.

zon value functionis easily obtainable. In fact, there are 887
belief states that are reachable from the initia state and the
optimal value function defined over al belief states requires
20 vectors using Sondik’ s representation.

We ran gradient descent with just 1 vector for 50,000 iter-
ations and compared the value of the resulting approximate
policy to the value of the optimal policy at 1000-iteration
intervals. We did this by taking a snapshot of the value func-
tion a each interval, then simulating 10,000 steps through
the world and counting the average reward per step garnered
during this period. This provides an estimate of the current
policy quality. We compared this against the policy quality
for the known optimal policy for the same time period. Fig-
ure 4 shows a graph of the average reward garnered per step
vs. the number of iterationsperformed. The horizontal lineis
the value of the optimal policy, computed using the Witness
agorithm[Cassandra et al.,, 1994], perhaps the fastest known
exact algorithm. Both agorithms required time on the order
of CPU minutes.

Our second problem, shown in Figure 5, is from [Russall
and Norvig, 1994]. Itisa4x 3 grid-worldwith an obstruction
a (2,2). The coordinates are labeled in x,y pairs, making
(1,3) the top left. There is no discounting, but a penalty of
0.04 ischarged for every step that istaken in thisworld. The
two reward states, +1 and -1, are both directly connected to a
single zero-reward absorbing state. Originaly, this problem
was used in a fully observable context, but we have made
it partially observable by limiting state information to that
obtained from one east-looking and one west-looking wall
detector. Each is activated when there is a wall in the im-
mediately adjacent square. For example, this makes (1,1),
(1,3), and (3,2) indistinguishable. Theinitia state is sel ected
uniformly at random from the nonterminal states.

Unlikethe4x 4world, transitionsare not deterministic. Ev-
ery action succeeds with probability 0.8 and failswith proba-
bility 0.2 moving the agent in a direction perpendicular from
theintended one. If such amovement isobstructed by awall,
then the agent will stay put instead. Moving right from (1,3),
for example, will move the agent right with probability 0.8,
down with probability 0.1 and nowhere with probability 0.1.

We ran the gradient descent method for 400, 000 iterations
with 3 vectors and obtained the results in Figure 6. The
algorithm requires many samples, about 250,000 (42 CPU
minutes), before it has enough data in the relevant portion
of the space to calculate an approximately optima policy.
The comparison policy shown in the figure with areward per
step of 0.1108 was obtained after over 12 CPU hours using

3
2 .
1

1 2 3 4

Figure5: The 4x3 world from [Russdll and Norvig, 1994].

0.14

012 -

0.1

0.08 -

0.06 -

Reward per step

0.04 -

0.02 -

-0.02

-0.04

.
0 10000 20000 30000 40000 50000 60000
Number of iterations

Figure 6: Performance of the gradient descent algorithm on
the4x 3 world, showing the policy quality asafunction of the
number of iterations.

the Witness algorithm and uses 30 vectors. In this case the
Witness agorithm did not converge, although recent results
in [Littman et al,, in press] indicate that convergence or near
convergence may not be necessary inal casesto obtain agood
policy from the Witness Algorithm.

One perhaps surprising aspect of our approxi mation method
is that the number of vectors required is drastically lower
than that for an exact solution. We were initially surprised
to discover that the 4 x 4 problem requires a single vector,
making the value function linear. Part of the savings comes
from the fact that our simulations considered only reachable
belief states, while exact solutionslikethe Witness algorithm
congtruct policies that cover the entire belief space. Also
many more vectors may be required to specify acorrect value
function than are needed to specify a correct policy. Fromthe
policy perspective, it is sufficient to know the relative value
of al of the belief states, not their exact value, making the
shape of the value function much more important than the
specific valuesit returns. For the 4 x 4 problem, any function
that assigns a higher value to belief states that suggest that
the agent is closer to the southeast corner of theworld will be
sufficient. A simplelinear functionisal that is needed here.

The use of asmooth function a so can reduce the number of
vectorsrequired. For example, acomplex bend that isformed
by many hyperplanesin the exact value function often can be
approximated very closely by a single smooth bend.

7 A reinforcement learning approach

Thestraightforward gradient descent method can bring our ap-
proximate value function fairly close to the exact one. With a
sufficient number of iterations, the average difference over the
entire state space will be very small. A possible shortcoming

of thismethod isthat it cannot guarantee that the approxima-
tionwill not differ significantly fromV* at critica partsof the
space, such astheinitia state. In addition, random selection
of belief states may waste time refining the value function in
parts of the belief space that would rarely, if ever, be visited
by an agent following an optimal policy. Finaly, the gradient
descent method, like some exact methods, does not make use
of information about the initial distribution over states. This
information can gresatly limit the number of reachable belief
states, making the problem easier.

We have implemented a second variation on our SPOVA
approach, SPOVA-RL (Smooth Partially Observable Value
Approximation with Reinforcement Learning), which avoids
these problems. The algorithm uses the known model to ssim-
ulatetransitionsin the environment. Effectively, it “explores’
the belief state space with the aim of finding high-utility re-
gions. Thistendsto focusthe updatesto the value functionon
belief states that are likely to be encountered by an agent us-
ing an optimal or near-optimal policy. The SPOVA-RL update
rulefor abelief state b isshow in Figure 7.

a < best action according to V
b' < simulated result of taking ain b.
ErL(b) « V(b) — (R(b) + V(b"))
Fori from 1to ||
Forj from1ton
i, = i, + oEru(b)by(vi - b)*/V (b)*

Figure 7: The SPOVA-RL updaterule.

For each transition, the algorithm applies the same +;, up-
date as the gradient descent algorithm, but we compute Eg_
withto respect thebelief statethat isencountered inthe simu-
lation, rather than by maximizing over all possible successor
states. Where b isthebdlief state at timet and b’ isthe belief
dtate at time t + 1 we compute:

Eru(b) = V(b) — (R(b) + V(b))

To ensure sufficient exploration of the world, we chose
initial valuesfor they vectorsthat guaranteed an overestimate
for every possible belief state. This forced the algorithm to
disprovethe optimistic estimates by visiting different areas of
the belief space. This rather smplistic policy was sufficient
for our examples, but we are investigating the application of
some of the methodsthat have been used for MDPsto improve
the speed of convergence and to provide stronger guarantees
that enough of the belief space will be covered.

We ran the algorithm on the same two worlds as before.
The results are shown in Figures8 and 9. SPOVA-RL finds
an approximately optimal policy for the 4x 4 world in about
80 iterations (1.4 seconds), and for the 4x 3 world in about
6000 iterations (59 seconds).

By focusing its efforts on the most important states in the
belief space, SPOVA-RL is able to learn a nearly optimal
policy extraordinarily quickly. While some of this speed may
come at the expense of accurate value estimations for rarely
visited states, this is an acceptable price to pay for many
domains.

As afinal experiment, we investigated the world shown in
Figure 10. Thisworld isdesigned to require a value function
with more than one vector. (Intuitively, beinginalinear com-
bination of the A-states is much worse than being definitely in
oneor theother.) Figure 11 showstheexpected result, namely
that SPOVA-RL effectively approximates an optimal 3-vector

policy.

0.25

0.2

0.15 -

Reward per step

0.1

0.05

40 60 8‘0 100
Number of epochs
Figure 8: Performance of the SPOVA-RL algorithm on the

4x 4 world, showing the policy quality as a function of the
number of epochs.

0.14 -

012 -

0.08

Reward per step

0.06

0.04

0.02

40 60 8‘0 100
Number of epochs
Figure 9: Performance of the SPOVA-RL algorithm on the

4x 3 world, showing the policy quality as a function of the
number of epochs.

Figure 10: A simple domain requiring more anonlinear value
function. States labelled A are indistinguishable, but actions
b and c can lead either to a +1 or a —1 reward depending
on which if the A-states the agent isin. Action a leads to a
digtinctive state (either C or D), which enables the agent to
find out whereit is.

0.25

02

0.15 -

014

0.05 &

Reward per step

-0.05

-0.1

0 10‘()0 20‘00 3(3:00 40‘00 5000
Number of epochs

Figure 11: Performance of the SPOVA-RL algorithm on the
environment shown in Figure 10. With one vector, SPOVA-
RL finds a policy of value 0.134 (the lower horizontal line).
With threevectors, SPOVA-RL quickly findsthe optimal one-
vector policy, but after about 600 iterations abandons it in
favour of the more complex 3-vector policy, which eventually
reaches the optimal value of 0.225 (the upper horizontal line).

8 Rdation toother work

Many MDP and POMDP algorithms determine Q values
rather than a single value function as we have done here.
The problem of determining the best action from an ordinary
valuefunctionrequiresan agent to consult amodel tosimulate
one step intothefutureand consider the val ue of possiblenext
states. An agent using Q values does not need to look ahead
in this fashion since the value of each action is represented
directly. Inthe case of Q learning, amodel is not even needed
to construct the Q values as they are learned directly from
agent’s experience. This so-called “model-free” property of
Q-learning does not carry over to POMDPs. The agent must
know something about the dynamics of the world if a com-
pact state description is to be maintained over time. Without
amodel, this state description cannot be evolved and an agent
would be forced either to guess about its true location or to
define value functions or Q functions over its entire history.
Thus, reengineering a POMDP algorithm to compute Q func-
tionsrather than a value function may change the analysis of
thealgorithm, but it does not change fundamentally the nature
of the problem as it is alleged to do for MDPs. In fact for
the SPOVA implementations we have discussed here, it isa
trivial change.

Another approach to the problem of partial observability
isto simply pretend that the sensor observations correspond
exactly to states. Deterministicpolicies constructed for this
"sensor space” usually fail miserably, typicaly resulting in
looping behavior. This can be dleviated to some extent by
using randomizedolicies of the kind first proposed for use
in games of partial information. Jaakolaet al.[in press| have
shown how to learn from reinforcement using randomized
policies, demonstrating that the approach is not unreasonable
in some cases.

A linear value approximator is combined with a clever
mode! learning mechanism in [McCallum, 1993] and [Chris-
man, 1992]. It may be possible to generalize their approach
to include more complex functions like those represented by
SPOVA. A neura network based approach is used in [Lin
and Mitchell, 1992]. They consider a variety of approaches

that can make use of an agent’s history to learn hidden state
information. The idea of a smoothed or “soft” max has been
around for awhile, It isthe basic idea behind the use of the
Boltzman distribution for action selection in [Watkins, 1989]
and a similar approach has been used in neura networksin,
for example, [Martinetz et al,, 1993]. We suspect that it may
be possibleto adapt these approximators for use in POMDPs
using a similar approach to the one described here athough
we have not yet investigated this fully. In recent work by
Littman et al. [in press] an update rule was devel oped inde-
pendently that can be interpreted as a special case of SPOVA.
Thiswas shown to be adequate for determining good policies
for problemswith over 30 states.

9 Conclusionsand futurework

We have investigated SPOVA, an approximation scheme for
partially observable Markov decision problems based on a
continuous, differentiable representation of the value func-
tion. A simple “vaue iteration” algorithm using gradient
descent and random sampling is shown to find approximately
optimal policies but requires alarge number of samples from
the belief state space. We conjectured that many of these sam-
ples correspond to very unlikely or even unreachable belief
states, and therefore designed SPOVA-RL, a reinforcement
learning agorithm that focuses its value function updates on
belief states encountered during actual exploration of the state
space. SPOVA-RL wasableto solvethe4x4 and 4x 3worlds
very quickly, suggesting that optimism concerning the value
of generalized approximation methods for POMDPs may be
justified.

The next steps are to tackle larger problems, to obtain con-
vergence results, and to incorporate methods for learning the
environment model. We currently are investigating the appli-
cation of a new agorithm for learning dynamic probabilistic
networks (DPNs) [Russdll et al, 1994]. Such algorithms can
find decomposed representations of the environment model
that should allow very large state spaces to be handled. Fur-
thermore, the DPN provides a reduced representation of the
belief state that may facilitate additional generaizationinthe
representation of thevaluefunction. Weplanto usetheoverall
approach to learn to drive an automobile.

10 Acknowledgement

Membersof theU.C. Berkeley MDP reading group, especially
Daphne Koller, provided hel pful suggestionsand feedback on
theideas contained in thispaper. We are very grateful to Tony
Cassandra and Michael Littman for sharing their Witness al-
gorithm results with us and running their algorithm on our
4 x 3 world. Michadl Littman aso provided extensive com-
ments on an early draft of this paper. Tim Huang provided
help with formatting and figures.

References

[Bellman, 1957] Richard Ernest Bellman. Dynamic Po-
gramming. Princeton University Press, Princeton, New
Jersey, 1957.

[Cassandraet al., 1994] A. R. Cassandra, L. P. Kaglbling,
and M. L. Littman. Actingoptimallyinpartially observable
stochastic domains. In Proceedings of the Twel fth National
Conference on Artificial Intelligence (AAAI-94), pages

1023-1028, Sesttle, Washington, August 1994. AAAI
Press.

[Chrisman, 1992] Lonnie Chrisman. Reinforcement learning
with perceptua aliasing: The perceptua distinctions ap-
proach. In Proceedings of the Tenth National Conference
on Artificial Intelligence (AAAI-92), pages 183-188, San
Jose, California, July 1992. AAAI Press.

[Jaakolaet al., inpress] Tommi Jaakola, Satinder P. Singh,
and Michadl |. Jordan. Reinforcement learning algorithm
for partially observable Markov decision problems. In
Neural Information Processing Systems 7, to appear, in
press.

[Lin and Mitchell, 1992] Long-Ji Lin and Tom M. Mitchell.
Memory approaches to reinforcement learning in non-
Markovian domains. Technical report, Computer Sci-
ence Department, Carnegie-Mellon University, Pittsburgh,
Pennsylvania, 1992.

[Littman et al., in press] Michagl L. Littman, Anthony R.
Cassandra, and Ledlie P. Kaglbling. Learning policies for
partially observabl e environments: Scaling up. In Proceed-
ings of the Twelfth International Conference on Machine
Learning, to appear, in press.

[Littman, 1994] Michad L. Littman. The witness algorithm:
Solving partialy observable Markov decision processes.
Technica report, Computer Science Department, Brown
University, Providence, Rhode Idland, 1994.

[Loveioy, 1991] W. S. Loveioy. A survey of agorithmic
methodsfor partially observed Markov decision processes.
Annals of Operations Research, 28(1-4):47-66, April
1991.

[Martinetz et al., 1993] Thomas M. Martinetz, Stanisav G.
Berkovich, and Klaus J. Schulten. “neural-gas’ network
for vector quantization and its application to time series
prediction. |IEEE Transactionson Neural Networks, SSC-
4:558-569, 1993.

[McCallum, 1993] Andrew R. McCalum. Overcoming in-
complete perception with utile distinction memory. In
Proceedings of the Tenth I nternational Conference on Ma-
chine Learning, pages 190-196, Amherst, Massachusetts,
July 1993. Morgan Kaufmann.

[Russdll and Norvig, 1994] Stuart J. Russdl and Peter
Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Englewood Cliffs, New Jersey, 1994.

[Russdll et al., 1994] Stuart J. Russell, John Binder, and
Daphne Koller. Adaptive probabilistic networks. Techni-
cal Report UCB/CSD-94-824, Computer Science Division,
University of Californiaat Berkeley, July 24 1994.

[Sondik, 1971] E. J. Sondik. The Optimal Control of Par-
tially Observable Markov Decision Processes. PhD thesis,
Stanford University, Stanford, California, 1971.

[Sutton, 1988] R. S. Sutton. Learning to predict by the meth-
ods of temporal differences. Machine Learning, 3:9-44,
August 1988.

[Watkins, 1989] C.J. Watkins. Modelsof Delayed Reinforce-
ment Learning. PhD thesis, Psychol ogy Department, Cam-
bridge University, Cambridge, United Kingdom, 1989.

