
Planning Using Multiple Execution Architectures

Gary H. Ogasawara Stuart J. Russell
Computer Science Division
University of California
Berkeley, CA 94720

garyo@cs.berkeley.edu russell@cs.berkeley.edu

Abstract
We discuss two techniques used by the RALPH-
MEA agent architecture to facilitate decision mak-
ing in complex, real-time domains. Multiple ex-
ecution architectures are four implementations of
the agent function, a function that receives percepts
from the environment as input and outputs an ac-
tion choice. The four execution architectures are
defined by the different knowledge types that each
uses. Depending on the domain and agent capa-
bilities, each execution architecture has different
speed and correctness properties. Metalevel control
of planning computes the value of information of
planning to compare to the utility of executing the
current default plan. Examples are presented from
an autonomous, underwater vehicle domain.

1 Introduction
The goal of a decision-making system is to select the best
action in the current situation. In a decision-theoretic frame-
work, this is expressed as choosing the optimal action, ,
given theprobability distributionon theoutcomestates, ,
and a utility function on outcome states, :

If an agent can continuously apply this equation (decision
theory’smaximum expected utility (MEU) principle) to select
“best” actions, it can be considered to be generating optimal
behavior with respect to its goals. However, in even moder-
ately complex domains, the MEU Principle cannot be imple-
mented directly because of limited resource constraints (e.g.,
time) and uncertainty about the utilityof outcome states. This
paper discusses two general-purpose techniques used by the
RALPH-MEA1 agent architecture that alleviate this AI scala-
bility problem: multiple execution architectures andmetalevel
control of planning.
An agent can be defined as a function : where
is the set of percept sequences from the environment and
is the set of action decisions available to the agent. An exe-

cution architecture (EA) [Russell, 1989] is an implementation

This research was supported by NSF grants IRI-8903146, INT-
9207213, and CDA-8722788, and the Lockheed AI Center.

1Rational Agents with Limited Performance Hardware–Multiple
Execution Architectures

of the agent function that operates on a specific combination
of knowledge types (e.g., goals, probabilities of states, out-
comes of actions, etc.). Different execution architectures will
have different competences and costs in different situations
— for example, reactive condition-action rules are good for
shooting down missiles and playing standard chess openings,
but decision-theoretic planningmay bemore useful for select-
ing missile targets and playing tactically sharp middle games.
Employingmultiple EAs with the appropriate control to arbi-
trate the final action choice should allow greater competence
to be exhibited than is possible for a single EA alone.
The second tool we use to implement the MEU princi-

ple is metalevel control of planning. Planning is the method
of projecting the current state into the future to predict pos-
sible outcomes. If the domain is simple enough, there is
no need for planning since the the MEU principle can be
applied with exact probability and utility functions for the
action outcomes. However, as the domain becomes more
complex, we need to consider subsequent action sequences
in order to calculate the utility of the outcomes of our im-
mediate actions. Metalevel control of planning determines
when and how much planning should be done. By view-
ing planning as a computational action, it can be integrated
into the same decision cycle as base-level actions (i.e., ac-
tions that directly affect the external world). On each cycle,
a best action must be selected, and it may be a base-level
or computational action. Theoretical and practical issues of
decision-theoreticmetareasoning have recently been an active
research area (e.g., [Russell and Wefald, 1989; Doyle, 1990;
Henrion et al., 1991]). Our approach calculates a “value of
information” [Howard, 1965] of doing various planning ac-
tions, selecting the planning or base-level action that has the
highest utility.
First, we will discuss the representation used for multiple

execution architectures and planning (section 2). Then we
will describe the decision cycle that uses those representa-
tions to output action recommendations (section 3). Section 4
describes results from an autonomous, underwater vehicle
(AUV) domain, implemented at the Lockheed AI Center.

2 Representation
2.1 Knowledge Types
Each execution architecture (EA) is a different representation
of the agent function, : , that outputs decisions.
The EA categorization is based on the use of six types of

Proceedings of the 13th International Joint Conference on Artificial Intelligence.
Chambery, France, 1993.

Next State

d*.t
Best Action

U.t+1
Utility at t+1

Current State
.tX

F

A

B

C

MEU

E
D

.t+1X.t+1 X t| D.

Figure 1: Knowledge forms for multiple execution architec-
tures.

knowledge. The original specification [Russell, 1989] of the
knowledge types used a situation calculus representation, but
in this paper, we introduce an extended influence diagram
representation. An influence diagram explicitly accounts for
the uncertainty of the states and provides inference algorithms
to update beliefs given new evidence. An influence diagram
represents actions as decision nodes, outcome states (includ-
ing goals) as probabilistic state nodes, and preferences among
outcome states using value nodes. Depending of the node
types they connect, the arcs in the influence diagram repre-
sent probabilistic, informational, or value dependence.
Our extended influence diagram (EID) representation dif-

fers from an influence diagram by defining the dependencies
using the six types of knowledge. These dependencies are
more specialized than the general probabilistic, informational,
and value dependencies used in an influence diagram, and
therefore, specialized inference procedures can be used rather
than the standard influence diagram inference techniques.
To describe the current world state, we use a set of state

variable nodes, 1 , a decision node
, and a utility node . The suffix is used to indicate

time . For the next time, 1, the nodes are represented as
1 1 1 1 , a decision node 1,

and a utility node 1. Assuming a Markov property on the
states allows specification of the influences on 1 using
only and .
As is shown in figure 1, the six knowledge types of the

EID representation, denoted by the letters ,
connect the different knowledge components together. These
six knowledge types are given decision-theoretic definitions
as follows:

A:
Type rules specify the likelihood of a state node given
information about other state nodes for the same time.
Rules of this type can be used for the interpretation of
percepts. For example, the dependence of the variable
FuelGauge.t given the percept BatteryFailure.t
can be represented as a conditional probability function:

.

B: 1
Type rules describe the effects of actions by specifying
the influence of an action on the resulting state. In con-
trast to a type rule, an action and conditions at
time influence the node 1 at time 1. The ex-

FuelGauge.t

DataRecovered.t

U.t+1

D.t

D

Condition−Action EA

A

A

A

D.t−1

DataAccrued.t

Action−Utility EA

FuelGauge.t

DataRecovered.t

U.t+1

D.t

E

A

A

A

D.t−1

DataAccrued.t

MEU

FuelGauge.t

DataRecovered.t

U.t+1

D.t

A

A

A

F
Goal−Based EA

B

B

B

D.t−1

DataAccrued.t

FuelGauge.t+1

DataRecovered.t+1

DataAccrued.t+1

Decision−Theoretic EA

FuelGauge.t

DataRecovered.t

U.t+1

D.t

A

A

A

B

B

B

D.t−1

DataAccrued.t

FuelGauge.t+1

DataRecovered.t+1

DataAccrued.t+1

C

MEU

Figure 2: EID repr. for the four execution architectures in the
AUV domain. Decision nodes are squares, value nodes are
diamonds, and state nodes are ovals. The conditional prob-
ability functions or utility functions at the nodes are labeled
by their type of knowledge () they
represent. The suffix t or t+1 denotes the node’s time.

ample 1 0 0 states that
the node 1 of time 1 is directly affected by

0 and 0 of time 0.

C: 1 1
Type rules are utility functions on the state. In the EID,
this is represented using a value function on the node 1
which is bounded by the minimum and maximum possible
utilities, and .

D: 1
Type rules are akin to standard condition-action rules used
in reactive or production rule systems. They state that if the
specified conditions hold now, then the specified action is
best. The utility 1 is conditioned on and of
time . Type rules express absolute certainty by using the
endpoints of the utility range as their only possible values.

E: 1
Type rules are “action-value” rules that specify the utilityof
condition-actionpairs, for example Q-tables [Watkins, 1989].
In the EID representation, they represent the same qualitative
influences as rules but the utility value is generalized to the
range 0 1 .

F: 1 1
The type rule, which is similar to a classical goal [Newell,
1982], expresses the utilitiesof states in the future time period,
1. The utility is restricted to or values. A desirable

goal is when 1 1 .

2.2 Execution Architectures

Exactly four execution architectures can be defined using the
four different combinations of knowledge types to make an
action decision (figure 2).

CA: Condition-Action EA: (path)
Knowledge of type D provides best action choices directly.
In many production systems, uncertainty regarding the pre-
conditions of a rule is not considered. A precondition either
is true or false, and the action of any rule whose precon-
ditions are matched is executed. This type of system can
be implemented by the Condition-Action EA by allowing no
uncertainty about the conditions (0 1). The
Condition-Action EA then would output the first action, , it
considers such that 1 (the max-
imum possible utility) and the rule’s preconditions hold. The
alternative Condition-Action EA implementation is to allow
uncertainty about the preconditions. However in this case,
the expected utilities of each action must be computed and
compared to select the best action. Computational savings
can still be achieved by taking advantage of the restriction of
utilityvalues to theminimumand maximum possible utilities:

. For example, if 0, many propagations of
values in the EID are immediately pruned.

GB: Goal-Based EA: (path)
Knowledge of types A, B, and F suggests actions that achieve
the desired goal condition. Similar to the case with the
Condition-Action EA, two possible implementations of the
Goal-Based EA can be considered. If the probability values
of conditions are restricted to 0 and 1, the first action satis-
fying the goal utility function is selected. If uncertainty of
conditions is allowed, the expected utilities of actions need
to be computed, but computational savings results from the
restriction of utility values to .

AU: Action-Utility EA: (path MEU)
Knowledge of type E for various actions is combined with
the MEU principle to select the most valuable one. Inference
in the Action-Utility EA uses the standard probabilistic and
decision-theoretic reasoning techniques done in influence di-
agrams: the conditional probabilities of each state node are
revised by propagating the effect of evidence through the net-
work, the expected utility of each action is computed, and the
action with the maximum expected utility is selected. The
Q-tables from Q-learning [Watkins, 1989] are knowledge of
type E.

DT: Decision-Theoretic EA: (path MEU)
Knowledge of types A, B, and C is combined to find the best
action using the MEU principle. As in the Action-UtilityEA,
standard decision-theoretic reasoning needs to be used in the
Decision-Theoretic EA because of the lack of restrictions on
the possible utility values.

In order to succeed in complex environments, an agent will
need all four execution architectures, which will come into
play at different times. If we consider chess, for example,
it seems obvious that action-utility rules have restricted use-
fulness (perhaps just for describing the value of exchanges,
knight forks etc.); condition-action rules constitute the “open-
ing book”, some endgame knowledge and perhaps plausible
move generators; goal-based reasoning occurs when identi-
fiable goals (such as checkmate, trapping a queen, queening

FuelGauge.0

DataRecovered.0

U.1

D.0

A

A

A

B

B

B

D.−1

DataAccrued.0

FuelGauge.1

DataRecovered.1

DataAccrued.1

MEU
C U.2

D.1

B

B

B
FuelGauge.2

DataRecovered.2

DataAccrued.2

C U.3

D.2

B

B

B
FuelGauge.3

DataRecovered.3

DataAccrued.3

C

MEUMEU

Figure 3: A Decision-Theoretic EA influence diagram with a
3-step planning window.

a pawn etc.) become achievable with reasonable likelihood;
and the remaining situations are covered by decision-theoretic
planning using a utility function on states (material, center
control etc.). It would be absurd to try to build a chess
program based entirely on condition-action rules or action-
utility rules, because such a program would be unimaginably
vast. Compact representations of good decision procedures
require a variety of knowledge types. It would also take a
long time to learn a complete set of condition-action rules
for chess, whereas it takes only an hour or two for a human
to learn type B rules describing how the pieces move. This
provides another motivation for multiple execution architec-
tures: learning is more effective for the explicit knowledge
types (A,B,C) but execution is more efficient for the compiled
types (D,E,F); thus we learn for one architecture and compile,
where reasonable, for another2.

2.3 Planning windows
For an action sequence rather than a single action, many
single-decision templates like the ones of Figure 2 can be
chained together. Assuming theMarkov property of the states,
we can reproduce the same decision template repeatedly as
the world state is projected forward in time using only local
connections. The planning window is the influence diagram
that is currently being considered. For one-step planning, the
length of the window is one time step. For -step planning,
the influence diagram is extended by chaining decision tem-
plates together.
Figure 3 shows a 3-step planning window obtained by

chaining together three decision templates of the Decision-
Theoretic EA in a simplified version of the autonomous un-
derwater vehicle (AUV) domain. The utility of the AUV’s
mission is defined in terms of whether it recovers survey
data (nodes: DataAccrued and DataRecovered) and
the amount of fuel used (node: FuelGauge). The decision
node has three possible actions to choose from: wait,
wait for data to accrue at the sensor; return, return to the
surface to be recovered; and pickup, go to the sensor to pick
up the data. The decision node of the previous time, 1,
becomes evidence for the next decision, .
The utility of the action sequence in general can be a func-

tion of all the nodes in the planning window, however, a
2In [Ogasawara, 1993] we show general conditions under which

learning action-utility values (e.g., Q-learning [Watkins, 1989])
works better or worse than learning the utilities of states.

Condition−
Action
EA

Percepts d*

Action−Utility
EA

Goal−Based
EA

Decision−
Theoretic
EA

Metalevel

Computed
Results

Control
Commands

Figure 4: RALPH-MEA system architecture.

common restriction is to make the action sequence utility a
function of the utilities at each time slice (e.g., in figure 3, the
utility of the 0 1 2 sequence would be a function
of the utility nodes 1 2 3). Another method is to eval-
uate the action sequence using only the utilityof the final time
slice (e.g., 3).
It should be noted that planning windows apply only to the

Goal-Based EA and Decision-Theoretic EA. The Condition-
Action EA and the Action-Utility EA do not contain knowl-
edge describing the effects of actions (Type B knowledge),
therefore, there is no way to chain together single deci-
sion templates. Also, “planning” in this decision-theoretic
framework is somewhat different from the traditional no-
tion of planning for goal achievement. The aim of plan-
ning is no longer to achieve goals but to maximize ex-
pected utility. As has been often pointed out, the gener-
ality of maximizing expected utility rather than achieving
goals is necessary to deal with multiple objectives and goal
achievement uncertainty (e.g., [Feldman and Sproull, 1977;
Wellman and Doyle, 1991]).

3 The Decision Cycle
Given the execution architecture and planning window rep-
resentation, there is still the issue of how to use the four
execution architectures together to make decisions. Our cur-
rent implementationworks as follows. Corresponding to each
of the four EAs, there is a separate influence diagram that is
executed in parallel to determine an action recommendation
for that EA. A separate Metalevel influence diagram receives
updates from the four EAs and makes the final decision on
the action choice by checking the values of a “best action”
node. At this stage of the research, this method has the ad-
vantage of modularizing the EAs to allow the design and
performance of individual EAs to be isolated3. The Metalevel
is also separated from the implementation of the EAs and can
be developed independently. Figure 4 shows the high-level
system architecture view of RALPH-MEA.
The decision making algorithm follows a cycle in which

the following computation occurs:
1. Themodel is updated by advancing the planningwindow
and entering new evidence.

2. Each EA computes its action choice.
3Later versions will combine the separate Extended Influence

Diagrams in order to share nodes.

1. Instantiate last executed action node, , as evi-
dence.

2. Add new time slice 1.
3. Integrate out nodes of time (X).
4. Set 1.
5. Enter new evidence for X nodes.
6. Propagate evidence through network.

Figure 5: The Updating the Model step.

3. The Metalevel ID determines when to stop the EA com-
putations and output the current best action.

The following sections examines each of these steps in turn4.

3.1 Updating the model
As the agent makes decisions, the planningwindow is updated
by modifying the influence diagram. After is executed,
its value is instantiated as evidence. For a -step planning
window, a new time slice is added by connecting nodes of
time to the new nodes of time 1. Nodes of
time , , are then removed from the network
by integrating their values into the rest of the network. In
general this is done by converting the conditional probabilities

1 into marginal probabilities:

1 1

The time variable is then incremented so that the next
decision to execute is again . Evidence for the new
nodes in each EA influence diagram is entered at this point.
For example, if we detect a battery failure, the corresponding
node BatteryFailure.t is set to True. Finally, prop-
agation is done to transmit the effects of the new influence
diagram and new evidence to all the nodes.
Similar techniques have become common recently in the

uncertainty community. [Kjaerulff, 1992] discusses an im-
plementation of “model reduction” and “model expansion”
that moves a belief network forward in time, allowing a con-
tinuously existing agent to maintain an updated world model
indefinitely5. [Kanazawa and Dean, 1989], [Hanks, 1990],
and [Nicholson, 1992] also discuss similar temporal projec-
tion methods.

3.2 EA Computation
As each EA computes using its separate influence diagram, it
modifies its assessment of the utilities of the possible actions.
These action utilities are periodically read by the Metalevel
ID to update its assessment of the action utilities and to de-
termine when to stop computing and output the current best
action. The EAs run in parallel and if theMetalevel decides to
execute its current best action before some EA has finished its
computation, the EA is interrupted to start the next decision
cycle.

4Because of space limitations, many important details have been
omitted, but can be found in [Ogasawara, 1993].

5This assumes that the dependency structure remains fixed (e.g.,
there is no addition or removal of arcs or nodes)

1.
2. Compute ˆ for each subtree of .
3. ˆ

4. if (ˆ 0)
then next plan step; exit.
else if (is a decision node) then change its
action value; goto 1.
else ; goto 2.

Figure 6: The EA Computation step.

It is in this EA Computation step that we consider planning
actions to change the choice of base-level actions. We assume
the planning window is initialized with a nominal plan that
specifies a default action for eachD.i in the planningwindow.
The expected utility if the next plan step were executed is the
current utilityof the U.t+k node since the nominal plan steps
are “programmed” in by initializing the prior probabilities of
the corresponding decision nodes to near 1 for the actions of
the nominal plan. The utility of executing the next plan step
is compared to the utility of executing a planning action. The
value of planningmay be positive, for example, if there is new
evidence since the plan was constructed or if the plan can be
easily improved.
As our possible planning actions, we consider replanning

decisions affecting different portions of the utility model in
the influence diagram. For example, in figure 3, the direct
influences on the utility node 3 are the 3,

3, and 3 nodes. We seek to
work on repairing the attribute nodes that will yield the max-
imum net utility gain, that is, the nodes with the maximum
value of replanning.
Each node is the root of a subtree of other nodes that

influence it. Suppose we determine that replanning the
3 subtree in the influence diagram has the high-

est estimated value of replanning. Recursively, the value of
replanning the subtrees of 3 are computed, and
continuing in this manner the influence diagram is examined
until (1) a decision node is reached and modified to the action
value that maximizes utility or (2) all examined subtrees have
a negative estimated value of replanning.
Let be the root of the subtree we are considering re-

planning. Assuming that we can separate the time-dependent
utility, , from the “intrinsic” utility, , the es-
timated value of information () gained from replanning
subtree is
ˆ ˆ ˆ

where denotes the action of replanning subtree
and ˆ indicates an estimated quantity.
The estimated utility of replanning a portion of the influence

diagram ˆ is computed by taking the utilitydifference
between the the subtree after replanning, , and the current
subtree, . To compute the utility for , we must know
the probability that different s will occur as a result of
replanning. For a decision node, because it is completely
controllable, the probability is 1 that any particular value can
be achieved and simply the action value that maximizes utility
is selected. But for chance nodes, we estimate the probability
and update it based on replanning experiences.

1. Do propagation for the current values to compute
.

2. Do propagation to compute .
3. ∆ ∆

4. If ∆ 0
then execute ; exit.
else goto 1.

Figure 7: The Metalevel Computation step.

As an example, suppose is the subtree rooted at
3. The utility of the current probability distri-

bution of 3 node can be computed directly. But
to compute the utility of the same node 3 after
replanning decisions that might change its probability distri-
bution, we must estimate how likely it is that the replanning
will alter actions in the plan to achieve a new distribution

3 . In the example, if the initial probability dis-
tributionfor 3 has a high probability for the value

, the utility of that subtree will be relatively low. But
if we know that there is a high probability that replanning
(perhaps by omitting actions to lower fuel consumption) will
change the probability distribution to more heavily weight

, the utility of the 3 subtree will be
higher. Thus ˆ would be positive.
If the estimated value of replanning, ˆ , is

positive, the replanning action with the highest value is ex-
ecuted, and the EA computation step is repeated with the
new plan by comparing executing the next plan step and ex-
ecuting a planning action. When the value of replanning is
non-positive, the EA computation step finishes with the next
plan step as its action choice.

3.3 Metalevel computation
The metalevel problem is to take the computed results (in

this case, the action utilities) of the four EAs and to output a
final action choice. At any time with its current information,
the Metalevel ID has a current best action . As the results
from the EAs arrive asynchronously, the Metalevel must de-
cide whether to execute the current best action or to wait
∆ for possible updates from the EAs. This is the basic met-
alevel computation algorithm described in [Horvitz, 1988].
[Breese and Fehling, 1988] also discuss a metalevel control
architecture that uses multiple reasoning methods, but in their
case, a particular method is chosen and then only that method
is executed rather than combining the results of the methods.
The Metalevel ID is first used to compute the expected

utility of the optimal action, , by using the current
running time of the decision cycle to instantiate the
node, propagating the current evidence from the EAs through
the network, and determining the optimal action
and its expected utility . This calculation
requires a measure of the “quality” of the computed results of
the EA as a function of the time spent computing, , that is,
a “performance profile” for each EA as a function of . We
define the performance profile to be the probability that the
decision that a particular EA would take after is the same
decision that would be taken by the metalevel.
Using the same method, the expected utility of the optimal

action after waiting∆ , , is also computed by setting

the node to the sum of the running time of this decision
cycle and an increment ∆ .
The expected value of waiting ∆ is

∆ ∆ (1)

If ∆ 0, then there is no benefit in waiting and
the current best action, , is executed. However, if

∆ 0 then we should wait for more computation
by the EAs and repeat the metalevel computation step.

4 AUV Example
We have implemented examples (300–400 nodes) of mul-
tiple EAs and planning windows for the AUV domain and
have been encouraged by the results. For the implementation,
we use the HUGIN software [Andersen et al., 1989] which
operates only on probabilistic belief networks [Pearl, 1988].
Therefore, the extended influence diagram is converted to a
corresponding belief networkas in [Cooper, 1988] by convert-
ing decision and value nodes intoprobabilisticstate nodes. On
top of the HUGIN software, we have written C code to im-
plement the multiple execution architectures framework and
metalevel control of planning.
Since each EA has a different “performance profile” (deci-

sion qualityas a function of computation time), in themultiple
EAs implementation an interesting interaction that occurs be-
tween EAs as computation time varies can be observed. In
our implementation, the Condition-Action performance pro-
file quickly rises to a medium level of decision quality, while
in contrast, the Decision-Theoretic performance profile has
a higher decision quality but only after a longer period of
computation. Therefore, as computation time increases, the
results of the Condition-Action EA are weighted less, and
the results of the Decision-Theoretic EA are more heavily
weighted. For a given situation, the Metalevel’s best deci-
sion may change several times as the EA computation time
increases. Complex decision-making behavior is thus gen-
erated by specifying simple probability and utility functions
and exploiting the modularity of the EAs.
We have also implemented the value of replanning mech-

anism and have seen it successfully replan when various dy-
namic events occur and successfully not replan when there
is no or little benefit to be gained. In one example, after
the execution of the first step of the nominal plan, a battery
failure occurs. This event causes the value of replanning
the subtree to be positive, and after recursively
computing values of replanning in the network, a decision is
changed from waiting two cycles for data to accrue to waiting
zero cycles, thereby reducing the use of fuel for the mission.

5 Conclusion
Two techniques used by RALPH-MEA to facilitate decision-
theoretic reasoning were discussed. The Multiple execution
architectures framework uses performance profiles to com-
bine the information from four different implementations of
the agent function to output an action choice. Decision-
theoretic planning uses a projectible decision template to
construct a planning window. Within a planning window, the
value of replanning is calculated to provide metalevel control
over planning and execution.

We are currently building a more complex model of the
AUV domain to use for decision-making. As the model be-
comes more complex, the need formultipleEAs and decision-
theoretic planning become more important, so we expect to
get more impressive results from metalevel control. We are
also working on acquiring and learning more accurate assess-
ments of the requisite probabilities and utilities needed (e.g.,
the performance profiles).

References
[Andersen et al., 1989] S. K. Andersen, K. G. Olesen, F. V. Jensen,
and F. Jensen. HUGIN— a shell for building belief universes for
expert systems. In Proc. 11th Intl. Joint Conf. on AI. 1989.

[Breese and Fehling, 1988] J. S. Breese andM. R. Fehling. Control
of problem solving: principles and architecture. In Proc. 4th
Conf. on Uncertainty in AI. 1988.

[Cooper, 1988] G. F. Cooper. A method for using belief networks
as influence diagrams. In Proc. 4th Conf. on Uncertainty in AI,
1988.

[Doyle, 1990] J. Doyle. Rationality and its roles in reasoning. In
Proc. 8th Natl. Conf. on AI. 1990.

[Feldman and Sproull, 1977] J. A. Feldman and R. F. Sproull. De-
cision theory and A I II: The hungry monkey. Cognitive Science,
1:158–192, 1977.

[Hanks, 1990] S. Hanks. Practical temporal projection. In Proc. 8th
Natl. Conf. on AI, 1990.

[Henrion et al., 1991] M. Henrion, J. S. Breese, and E. J. Horvitz.
Decision analysis and expert systems. AI Magazine, 12(4):64–92,
1991.

[Horvitz, 1988] E. J. Horvitz. Reasoning about beliefs and actions
under computational resource constraints. In L. N. Kanal and J. F.
Lemmer, editors, Uncertainty in AI. North Holland, 1988.

[Howard, 1965] R. A. Howard. Information value theory. IEEE
Trans. on Systems, Man, and Cybernetics, 2, 1965.

[Kanazawa and Dean, 1989] K. Kanazawa and T. Dean. A model
for projection and action. In Proc. 11th Intl. Joint Conf. on AI.
1989.

[Kjaerulff, 1992] U. Kjaerulff. A computational scheme for reason-
ing in dynamic probabilistic belief networks. In Proc. 8th Conf.
on Uncertainty in AI, 1992.

[Newell, 1982] A. Newell. The knowledge level. Artificial Intelli-
gence, 18(1):87–127, 1982.

[Nicholson, 1992] A. E. Nicholson. Qualitative monitoring of a
robot vehicle using dynamic belief networks. In Proc. 8th Conf.
on Uncertainty in AI, 1992.

[Ogasawara, 1993] G. H. Ogasawara. RALPH-MEA: A Decision-
Theoretic Agent Using Multiple Execution Architectures. PhD
thesis, UCBerkeley, Computer ScienceDivision, 1993. In prepa-
ration.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems. Morgan Kaufmann, 1988.

[Russell and Wefald, 1989] S. J. Russell and E. H. Wefald. Princi-
ples of metareasoning. In Proc. 1st Intl. Conf. on Principles of
Knowledge Repr. and Reasoning. 1989.

[Russell, 1989] S. J. Russell. Execution architectures and compila-
tion. In Proc. 11th Intl. Joint Conf. on AI. 1989.

[Watkins, 1989] C. J. Watkins. Learning from Delayed Rewards.
PhD thesis, Cambridge University, UK, 1989.

[Wellman and Doyle, 1991] M. P. Wellman and J. Doyle. Preferen-
tial semantics for goals. In Proc. 9th Natl. Conf. on AI, 1991.

