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Abstract

We describe Concurrent ALisp, a language that al-
lows the augmentation of reinforcement learning
algorithms with prior knowledge about the struc-
ture of policies, and show by example how it can
be used to write agents that learn to play a subdo-
main of the computer game Stratagus.

1 Introduction

Learning algorithms have great potential applicability to the
problem of writing artificial agents for complex computer
games [Spronck et al., 2003]. In these algorithms, the agent
learns how to act optimally in an environment through experi-
ence. Standard “flat” reinforcement-learning techniques learn
very slowly in environments the size of modern computer
games. The field of hierarchical reinforcement learning [Parr
and Russell, 1997; Dietterich, 2000; Precup and Sutton, 1998;
Andre and Russell, 2002] attempts to scale RL up to larger en-
vironments by incorporating prior knowledge about the struc-
ture of good policies into the algorithms.

In this paper we focus on writing agents that play the game
Stratagus (stratagus.sourceforge.net). In this game, a player
must control a medieval army of units and defeat oppos-
ing forces. It has high-dimensional state and action spaces,
and successfully playing it requires coordinating multiple
complex activities, such as gathering resources, constructing
buildings, and defending one’s base. We will use the follow-
ing subgame of Stratagus as a running example to illustrate
our approach.

Example 1 In this example domain, shown in Figure 1, the
agent must defeat a single ogre (not visible in the figure). It
starts out with a single peasant (more may be trained), and
must gather resources in order to train other units. Even-
tually it must build a barracks, and use it to train footman
units. Each footman unit is much weaker than the ogre so
multiple footmen will be needed to win. The game dynamics
are such that footmen do more damage when attacking as a
group, rather than individually. The only evaluation measure
is how long it takes to defeat the ogre.

Despite its small size, writing a program that performs
well in this domain is not completely straightforward.
It is not immediately obvious, for example, how many
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Figure 1: An example subgame of Stratagus.

peasants should be trained, or how many footmen should
be trained before attacking the ogre. One way to go about
writing an artificial agent that played this program would
be to have the program contain free parameters such as
num peasant s-t o- bui | d- gi ven- si ngl e- eneny,
and then figure out the optimal setting of the parameters,
either “by hand” or in some automated way. A naive
implementation of this approach would quickly become
infeasible? for larger domains, however, since there would
be a large number of parameters, which are coupled, and so
exponentially many different joint settings would have to be
tried. Also, if the game is stochastic, each parameter setting
would require many samples to evaluate reliably.

The field of reinforcement learning [Kaelbling, 1996] ad-
dresses the problem of learning to act optimally in sequential
decision-making problems and would therefore seem to be
applicable to our situation. However, standard “flat” RL algo-
rithms scale poorly to domains the size of Stratagus. One rea-
son for this is that these algorithms work at the level of prim-
itive actions such as “move peasant 3 north 1 step”. These al-
gorithms also provide no way to incorporate any prior knowl-
edge one may have about the domain.

A more sophisticated instantiation of this approach, com-
bined with conventional HRL techniques, has been proposed re-
cently [Ghavamzadeh and Mahadevan, 2003].



Hierarchical reinforcement learning (HRL) can be viewed
as combining the strengths of the two above approaches, us-
ing partial programs. A partial program is like a conventional
program except that it may contain choice points, at which
there are multiple possible statements to execute next. The
idea is that the human designer will provide a partial pro-
gram that reflects high-level knowledge about what a good
policy should look like, but leaves some decisions unspec-
ified, such as how many peasants to build in the example.
The system then learns a completion of the partial program
that makes these choices in an optimal way in each situation.
HRL techniques like MAXQ and ALisp also provide an addi-
tive decomposition of the value function of the domain based
on the structure of the partial program. Often, each compo-
nent in this decomposition depends on a small subset of the
state variables. This can dramatically reduce the number of
parameters to learn.

We found that existing HRL techniques such as ALisp were
not directly applicable to Stratagus. This is because an agent
playing Stratagus must control several units and buildings,
which are engaged in different activities. For example, a
peasant may be carrying some gold to the base, a group of
footmen may be defending the base while another group at-
tacks enemy units. The choices made in these activities are
correlated, so they cannot be solved simply by having a sepa-
rate ALisp program for each unit. On the other hand, a single
AL.isp program that controlled all the units would essentially
have to implement multiple control stacks to deal with the
asynchronously executing activities that the units are engaged
in. Also, we would lose the additive decomposition of the
value function that was present in the single-threaded case.

We addressed these problems by developing the Concur-
rent ALisp language. The rest of the paper demonstrates by
example how this language can be used to write agents for
Stratagus domains. A more precise description of the syntax
and semantics can be found in [Marthi et al., 2005].

2 Concurrent ALisp

Suppose we have the following prior knowledge about what a
good policy for Example 1 should look like. First train some
peasants. Then build a barracks using one of the peasants.
Once the barracks is complete, start training footmen. Attack
the enemy with groups of footmen. At all times, peasants not
engaged in any other activity should gather gold.

We will now explain the syntax of concurrent ALisp with
reference to a partial program that implements this prior
knowledge. Readers not familiar with Lisp should still be
able to follow the example. The main thing to keep in mind is
that in Lisp syntax, a parenthesized expression of the form ( f
argl arg2 arg3) means the application of the function
f to the given arguments. Parenthesized expressions may also
be nested. In our examples, all operations that are not part of
standard Lisp are in boldface.

We will refer to the set of buildings and units in a state as
the effectors in that state. In our implementation, each effec-
tor must be given a command at each step (time is discretized
into one step per 50 cycles of game time). The command
may be a no-op. A concurrent ALisp program can be multi-

(defun top ()
(spawn ‘ ‘al |l ocat e- peasants’’
# peas-top nil *peas-eff*)
(spawn ‘‘train-peasants’’ # townhall-top
*townhal [ * *townhal | - ef f *)
(spawn ‘ ‘allocate-gold"’
# alloc-gold nil)

(spawn ‘‘train-footnmen'’ # barracks-top nil)
(spawn ‘‘tactical -decision’
# tactical nil))

Figure 2: Top-level function

(defun peas-top ()
(1 oop
unl ess (null (my-effectors))
do (let ((peas (first (my-effectors))))

(choose ' peas-choice’’
(spawn (list ‘‘gold ' peas)
# gather-gold nil peas)
(spawn (list ‘‘“build ' peas)
# bui |l d- barracks nil peas)))))

Figure 3: Peasant top-level function

threaded, and at any point, each effector is assigned to some
thread.

Execution begins with a single thread, at the functiont op,
shown in Figure 2. In our case, this thread simply creates
some other threads using the spawn operation. For exam-
ple, the second line of the function creates a new thread with
ID “allocate peasants”, which begins by calling the function
peas-t op and is assigned effector * peas- ef f *.

Next, examine the peas- t op function shown in Figure 3.
This function loops until it has at least one peasant assigned
to it. This is checked using the ny- ef f ect or s operation.
It then must make a choice about whether to use this peasant
to gather gold or to build the barracks, which is done using
the choose statement. The agent must learn how to make
such a choice as a function of the environment and program
state. For example, it might be better to gather gold if we have
no gold, but better to build the barracks if we have plentiful
gold reserves.

Figure 4 shows the gat her-gol d function and the
navi gat e function, which it calls. The navigate func-
tion navigates to a location by repeatedly choosing a direc-
tion to move in, and then performing the move action in
the environment using the act i on operation. At each step,
it checks to see if it has reached its destination using the
get - env- st at e operation.

We will not give the entire partial program here, but Fig-
ure 5 summarizes the threads and their interactions. The
al | ocat e- gol d thread makes decisions about whether
the next unit to be trained is a footman or peasant, and
then communicates its decision to the trai n-f oot nen
andt r ai n- peasant s threads using shared variables. The



(defun gather-gold ()
(call navigate *gol d-1oc*)
(action *get-gol d*)
(call navigate *base-|oc*)
(call *dropoff*))

(defun navigate (I oc)
(1 oop
with peas = (first (ny-effectors))
for s = (get-env-state)
for current = (peas-loc peas s)
until (equal current |oc)
do (action ‘‘nav’’
(choose *Nr *S* *W *E*))))

Figure 4: Gather-gold and navigate functions
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Figure 5: Structure of the partia program for the example domain

tacti cal - deci si on thread is where new footman units
are assigned. At each step it chooses whether to launch an
attack or wait. The attack is launched by spawning off a
new thread with the footmen in the tactical thread. Currently,
it just consists of moving to the enemy and attacking, but
more sophisticated tactical manouvering could be incorpo-
rated as prior knowledge, or learnt by having choices within
this thread.

3 Semantics

We now give an informal semantics of what it means to ex-
ecute a partial program. We view each state of the environ-
ment as having a set of effectors, such that the set of actions
allowed at that state is the set of assignments of individual
actions to each effector. Thus, we have to make sure that the
act i on statements in all the threads execute simultaneously.
Also, we would like choose statements to execute simulta-
neously as much as possible. This is based on the intuition
that it is easier to represent and learn the value function for a
single joint choice than for a set of sequential choices, each
depending on the previous ones. Finally, no time is assumed
to elapse in the environment except when the act i on state-
ments are being executed, and each joint action takes exactly

one time step. Section 6 describes how to fit Stratagus into
this framework.

We build on the standard semantics for interleaved execu-
tion of multithreaded programs. At each point, there is a set
of threads, each having a call stack and a program counter.
There is also a set of global shared variables. All this infor-
mation together is known as the machine state §. We also
refer to the joint state w = (s, §) where s is the environment
state. A thread is said to be an action thread in a given joint
state if it isat an act i on statement, a choice thread if it at a
choi ce statement, and a running thread otherwise.

Given a particular joint state w, there are three cases for
what happens next. If every thread with effectors assigned to
it is an action thread, then we are at an joint action state.
The joint action is done in the environment, and the pro-
gram counters for the action threads are incremented. If ev-
ery thread is either an action thread or a choice thread, but
we are not at an action state, then we are at a joint choice
state. The agent must simultaneously make a choice for all
the choice threads, and their program counters are updated
accordingly. If neither of these two cases holds, then some
external scheduling mechanism is used to pick a thread from
the running threads whose next statement is then executed.

It can be shown that a partial program together with a
Markovian environment yields a semi-Markov Decision Pro-
cess (SMDP), whose state space consists of the joint choice
states. The set of “actions” possible at a joint state corre-
sponds to the set of available joint choices, and the reward
function of making choice « in w is the expected reward
gained in the environment until the next choice state w’.

The learning task is then to learn the Q-function of this
SMDP, where Q(w, ) is the expected total future reward if
we make choice v in w and act optimally thereafter. Once a
Q-function is learnt, at runtime the agent simply executes the
partial program, and when it reaches a choice state w, picks
the choice u maximizing Q(w, w). We will discuss how to do
this efficiently in Section 4.

4 Approximating the Q-Function

It is infeasible to represent the function Q(w,w) exactly in
large domains for two reasons. First, the joint state space is
huge, resulting in too many parameters to represent or learn.
Second, in situations with many effectors, the set of joint
choices, exponential in the number of effectors, will be too
large to directly maximize over during execution.

A solution to both these problems is provided by approxi-
mating the Q-function as a linear combination of features :

K
Q(Wa u) = Z wkfk(wv u)
k=1

We can control the number of parameters to learn by setting
K appropriately. Also, if features are chosen to be “local”,
i.e. to each depend on a small subset of the choice threads,
then the maximization can, in many cases, be performed ef-
ficiently [Guestrin et al., 2002] using nonsequential dynamic
programming. Some example features for the Stratagus sub-
game are :
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Figure 6: Architecture of the system

1. A feature fgq that counts how much gold we have in
state w

2. A feature faack that is 1 if there are at least 3 footmen
in the tactical thread and « involves choosing to start an
attack, and 0 otherwise.

3. A feature fqg, 3 that returns the distance of peasant 3 to
his destination after making the navigation choice in w.

Thus, features may depend on the environment state, thread
states, or memory state of the partial program. They may also
depend on the choices made by any subset of the currently
choosing threads.

To further reduce the number of parameters, we make use
of relational feature templates [Guestrin et al., 2003]. The
feature fuig 3 above refers to a specific peasant, but it seems
reasonable to expect that the weight of this feature should be
the same regardless of the identity of the peasant. To achieve
this, we allow the specification of a single “feature template”
faist that results in a distance feature for each peasant in a
given state, all sharing the same weight wyig.

In our implementation, the set of feature templates must be
specified by the user (as Lisp functions). The performance of
the learning algorithms can be strongly dependent on the spe-
cific features used, and in practice feature engineering takes
much more time than writing the partial program.

5 Learning

Figure 6 summarizes the overall system architecture. The
user provides a partial program and features to the learning
algorithm, which uses experience in the environment to learn
a set of weights. The learnt weights can then be used, in con-
junction with the partial program and features, to act in the
environment.

Since the learning task is to learn the Q-function of an
SMDP, we can adapt the standard SMDP Q-learning algo-
rithm to our case. The algorithm assumes a stream of samples
of the form (w, u,r,w’). These can be generated by execut-
ing the partial program in the environment and making joint
choices randomly, or according to some exploration policy.
After observing a sample, the algorithm performs the online
update

—

@i+ a (r+ max Q' u's @) — Qw,us @)) flw, u)

where « is a learning-rate parameter that decays to 0 over
time.

The above algorithm does not make explicit use of the pro-
cedural or thread structure of the partial program - learning is

centralized and acts on the entire joint state and joint choice.
In recent work, we have developed an improved algorithm in
which the learning is done separately for each thread. The al-
gorithm also makes use of the procedural structure of the par-
tial program within each thread. To achieve this, the system
designer needs to specify in advance a reward decomposition
function that takes the reward at each timestep and divides it
among the threads.

6 Experiments

We implemented the Concurrent ALisp language and the
above algorithms on top of standard Lisp. We interfaced with
the Stratagus game using a socket. Time was discretized so
that every 50 steps of game time (typically about a quarter of
a second) corresponds to one “timestep” in the environment.
For simplicity, we made the game static, i.e., it pauses at each
step and waits for input from the ALisp program, but the algo-
rithms ran fast enough that it should be possible to make the
environment dynamic. To fit Stratagus into our framework,
in which a joint action at a state must assign an individual ac-
tion to all the effectors, we added a noop action that can be
assigned to any unit for which there is no specific command
on a given timestep.

We ran the original learning algorithm on the domain from
Example 1. Videos of the policies over the course of learning
can be found on the web?. The initial policy trains no new
peasants, and thus collects gold very slowly. It also attacks
immediately after each footman is trained. In contrast, the
final policy, learnt after about 15000 steps of learning, trains
multiple peasants to ensure a constant supply of gold, and at-
tacks with groups of footmen. Thanks to these improvements,
the time to defeat the enemy is reduced by about half.

7 Scalingup

It is reasonable to ask how relevant the above results are to the
overall problem of writing agents for the full Stratagus game,
since the example domain is much smaller. In particular, the
full game has many more state variables and effectors, and
longer episodes which will require more complex policies.
These will increase the complexity of each step of learning
and execution, the amount of sampled experience needed to
learn a good policy, and the amount of input needed from the
human programmer.

We first address the complexity of each step of the algo-
rithms. Since we are using function approximation, the com-
plexity of our algorithms doesn’t depend directly on the num-
ber of joint states, but only on on the number of features. We
believe that it should be possible to find good feature sets that
are not so large as to be bottlenecks, and are working to verify
this empirically by handling increasingly large subdomains of
Stratagus.

The larger number of effectors will typically result in more
threads, which will increase the complexity of each joint
choice. As discussed in Section 4, a brute-force algorithm
for making joint choices would scale exponentially with the
number of threads, but our algorithm grows exponentially in

2http://wwwv.cs.berkel ey.edu/~bhaskaralijcai 05-videos



the tree-width of the coordination graph and only linearly
with the number of threads. By making each feature depend
only on a small “local” subset of the choosing threads, we can
usually make the treewidth small as well. Occasionally, the
treewidth will still end up being too large. In this case, we
can use an approximate algorithm to find a reasonably good
joint choice rather than the best one. Our current implemen-
tation selectively removes edges from the coordination graph.
Methods based on local search in the space of joint choices
are another possibility. Once again, this is unlikely to be the
major bottleneck when scaling up.

The cost of executing the partial program itself is currently
negligible, but as partial programs become more complex and
start performing involved computations (e.g. path-planning),
this may change. It should be noted that this issue comes up
for any approach to writing controllers for games, whether or
not they are based on reinforcement learning. One intriguing
possibility in the HRL approach is to treat this as a meta-
level control problem [Russell and Wefald, 1991] in which
the amount of computation is itself decided using a choice
statement. For example, an agent may learn that in situations
with few units and no immediate combat, it is worth spending
time to plan efficient paths, but when there is a large battle go-
ing on, it’s better to quickly find a path using a crude heuristic
and instead spend computation on the joint choices for units
in the battle.

The amount of experience needed to learn a good policy
is likely to be more of a concern as the domains get increas-
ingly complex and the episodes become longer. The number
of samples needed will usually increase at least polynomially
with the episode length. This can be mitigated by the use of
reward shaping [Ng et al., 1999]. Note also that concurrent
AL.isp is not wedded to any one particular learning algorithm.
For example, we have extended least-squares policy itera-
tion [Lagoudakis and Parr, 2001], which aims to make better
use of the samples, to our situation. Algorithms that learn a
model of the environment along with the Q-function [Moore
and Atkeson, 1993] are another promising area for future
work.

Finally, the amount of human input needed in writing the
partial program, features, reward decomposition, and shaping
function will increase in more complex domains. A useful di-
rection to pursue in the medium-term is to learn some of these
instead. For example, it should be possible to add a feature
selection procedure on top of the current learning algorithm.

8 Conclusion

We have outlined an approach to writing programs that play
games like Stratagus using partial programming with concur-
rent ALisp, and demonstrated its effectiveness on a subdo-
main that would be difficult for conventional reinforcement
learning methods. In the near future, we plan to implement
our improved learning algorithm, and scale up to increasingly
larger subgames within Stratagus.
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