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Abstract

A new, general approach is described for ap-
proximate inference in first-order probabilistic lan-
guages, using Markov chain Monte Carlo (MCMC)
techniques in the space of concrete possible worlds
underlying any given knowledge base. The sim-
plicity of the approach and its lazy construction of
possible worlds make it possible to consider quite
expressive languages. In particular, we consider
two extensions to the basic relational probability
models (RPMs) defined by Koller and Pfeffer, both
of which have caused difficulties for exact algo-
rithms. The first extension deals with uncertainty
about relations among objects, where MCMC sam-
ples over relational structures. The second exten-
sion deals with uncertainty about the identity of
individuals, where MCMC samples over sets of
equivalence classes of objects. In both cases, we
identify types of probability distributions that al-
low local decomposition of inference while encod-
ing possible domains in a plausible way. We apply
our algorithms to simple examples and show that
the MCMC approach scales well.

Introduction

The semantics of FOPLs are based on the idea that each
model of a FOPL knowledge base should be viewed as a prob-
ability measure over the possible worlds (logical modeés) d
fined by the constant, function, and predicate symbols of the
knowledge basfHalpern, 1990 Although “wildly undecid-
able” in full generality, highly restricted FOPLs appeati®
practical, especially with finite models. Two threads have
arisen, based on semantic networks (digaller and Pfef-
fer, 1998) and logic programming (e.glSato and Kameya,
1997).

In this paper, we focus on the family edlational probabil-
ity models(RPMs)[Pfeffer, 2000, although our ideas apply
equally to other languages. RPMs, like semantic networks,
are based onlasse<ontaininginstanceswith each instance
possessingttributes (See Section 2 for details.) RPMs al-
low one to specify probability distributions over the ditrie
values of an instance, either directly or via inheritanaerfr
classes. These distributions may depend on other attribute
values of the instance or of other instances. For example, a
PhD student’s success may depend on the fame of his or her
advisor.

[Pfefferet al., 1999 describe an exact inference algorithm
for RPM knowledge bases calletructured variable elimi-
nation (SVE). Roughly speaking, SVE applies the variable
elimination algorithnmZhang and Poole, 19960 a dynami-
cally constructed Bayesian network whose nodes are aléthos

Recent work in Al has made clear the advantages to be deéround propositional variables defined by the knowledge bas
rived from combining probability theory with (at least some and relevant to the current query. SVE derives an efficient
of) the expressive power of first-order lodi¢/ellmanet al,,
1994. We will call languages that exhibit such a combina-and reuses computation results where possible. It is often

tion first-order probabilistic language§~OPLs). The abil-
ity to handle objects, relations, and quantification givsshs

variable ordering from the structure of the knowledge base

able to answer queries involving hundreds of variables in a
few seconds.

languages a huge advantage in representational efficiancy i Despite SVE'’s excellent performance, its runtime is attleas
certain situations. To take a purely logical example: tHesu exponential in the size of the largest clique in the optimial t

of chess can be written in about one page of Prolog but reangulation of the network. The expressive power of RPMs
quire perhaps millions of pages in a propositional languagemakes it very easy to construct knowledge bases whose cor-
A recent thesis on first-order probabilistic languaffeffer,
2004 describes a battlespace management system involvingkample,[Pfeffer, 2000 describes a model for matches in
potentially thousands of objects whose relationships are u a sports league. The knowledge base consists of a single,
known and changindPasulzt al., 1999 describe a freeway generic conditional distribution for the outcome of a match
traffic surveillance involving probabilistic inferencealt the
identities and properties of thousands of vehicles. Thpse a for the quality of the teams, and the results of some matches.

plications would be infeasible without some ability to spec

and reason with FOPL knowledge bases.

responding Bayesian networks have very large cliques. For

given the quality of the two teams, a single prior distribati

If every team plays every other, then the team qualities form
a clique in the corresponding Bayesian network and the-nfer



ence cost is exponential in the number of teams. Similarproly Student
Iemg will grise in any application in WhiCh. there are complex success{T.3 —F Professor
relationships among large numbers of objects—i.e., pedcis Tlo7fosN— |
those domains for which FOPLs are really necessary. Floz2]os8 fame:{T.F OTB on
The situation is exacerbated when the RPM language i5advisore——{j~—_| —

extended to allow fostructural uncertainty—i.e., uncertainty | $${T.F} T1F
about which probabilistic dependencies actually exist. We =7 T10703
consider two forms of structural uncertainty: F 104/ 06
reference uncertainty: the value of a relational attribute

may be uncertain—e.g., we may not know which of two

professors is the advisor of a certain student; Studentl Profl Prof2 Prof3

identity uncertainty: we may not know whether two objects
in the knowledge base are the same—e.qg., when we seeRigure 1: The simple RPM defined in the text, with its associated
red bus at two different camera locations on the freewayconditional probability models.

Each of these extensions may lead to Bayesian networks
whose size alone causes difficulties and whose high connec-
tivity makes exact inference completely impractical. For e
ample, the inference problem in the freeway surveillance ap
plication of[Pasuleet al., 1999 is known to be #P-hard, i.e.,
almost certainly exponential in the number of vehicles.

The solution proposed bjPasulaet al, 1999 is to use

a Markov chain Monte Carlo (MCMC) algorithm (see Sec- success

tion 3 for details). The algorithm samples from possible

matchings among vehicles, converging (in some cases poly-. _ )
nomially) to approximately correct probabilities. Oftefesv Fllgure 2: Bayesian network structure generated from the RPM in
hundred samples suffice for a state spac2'¢f° states. The Figure 1. Theadvisorrelationship, being certain, doesn’t appear.
states being sampled are essentially the possible worlds de

fined by the constant symbols (observed vehicles) and pred- ) i i i

icates (equality) of the knowledge base. This approach— ® A set B of 'SImpIe attrlbutesjgnotlng functions. Each
sampling possible worlds with MCMC—can be turned into simple attributeB has a domain typ®om|[B] € C and

a general inference algorithm for first-order probabitistin- arange that s a finite, enumerated set of valde B].

guages, as suggested iRussell, 1999; Pfeffer, 2000 e A set of conditional probability model®(B|Pa[B])

In this paper, we investigate MCMC on possible worlds for the simple attributes Pa[B] is the set ofB's par-
as an inference method to handle reference uncertainty (Sec ents each of which is a nonempty chain of (appropri-

tion 4) and identity uncertainty (Section 5). We show how ately typed) attributes = A,.---.A,,.B', whereB' is

:Ee Ft)rO?\SIi?ilenWOrrldbs E}ﬁ%’ benc]:onitruct?:]j d){ngmlf(f:iaillyn?ln(r:i EOW a simple attribute. Probability models may be attached
€ transition probabilities may be computed elficientiy to instances or inherited from classes.

the case of transitions involving a referentially uncertala-

tional attribute value, we identify a large family of condital - For now, we will assume that the values of all the complex
distributions that render the calculation independentidfiet  attributes are known (no reference uncertainty), and that e
the particular values involved in the transition. We ilkase ey instance is distinct (unique names assumption, hence no
the algorithms using simple examples and give experimentgljentity uncertainty). Thus, a possible world is definedHoy t

results suggesting that the algorithms scale well. values of thénstance variables-the simple attributes for all
named instances.
2 Relational probability models Consider the following very simple RPM. There are two

classesStudentand Professoy and two instancesStudent

and Prof,. There is one complex attributadvisor (map-

ping Studentto Professoy and the advisor of Student

is Prof,. There are three simple attributes, all Boolean:

e A set( of classesdenoting sets of objects, related by succes®f a Student andfameand $$ (funding level) of a
subclass/superclass relations. Professor. For anyStudents, s.successhas one parent,

s.advisorfame with an appropriate conditional distribution.

For anyProfessorp, p.famehas no parents and a simple prior

distribution, whilep.$$depends om.fame Figure 1 shows

e A set. A4 of complex attributeslenoting functional re- the knowledge base with probability distributions and Fig-
lations. Each complex attributéd has a domain type ure 2 shows the Bayesian network structure for the attribute
Dom[A] € C and a range typ&ange[A] € C. variables definable from the knowledge base.

The following definitions are adapted frofidoller and Pfef-
fer, 200Q. A relational probability model, in its most basic
form, consists of

e A set7 of named instancedenoting objects, each an
instance of one class.



3 Markov chain Monte Carlo algorithms
MCMC [Gilks et al, 1994 generates samples from a pos-

$$ $$ $$
terior distribution=(z) over possible worlds: by defining "
a Markov chain whose states are the woridsind whose Zudentd Profl. Prof2.
stationary distributionis 7 (x). In the Metropolis—Hastings advisor fame fame
are constructed in two steps: .
e Given the current state, a candidate next state is gener-

be (more or less) arbitrary. Figure 3: Bayesian network structure with reference uncertainty

e The transition to:’ is not automatic. but occurs with an aPoutStudent.advisor The reference attribute is shown in a double

method (henceforth M-H), transitions in the Markov chain
success,
ated from theproposal distributiong(z'|z), which may
acceptance probabilitdefined by val.

a(z'|z) = min <1_ M) is a finite, enumerated set of named instances. (Where
" w(z)q(a’|x) no confusion arises, we may drop thef[] and

. . use the attribute name itself.) Dependencies are

It is not necessary that all the variables of statdbe up- expressed as before by a conditional distribution

dated simultaneously, in a single transition fpncti@ingle— P(ref[A]|Pa[ref[A]]). The parents ofef[A] are those
componeni/-H alters each variable in turn. Itis also to factor attributes or attribute chains that influence the choice of
¢ into separate transition functions for various subsetsdf v an instance as the value of attribute

ables. Provided thatis defined in such a way that the chain ) . . .
is ergodic, this transition mechanism defines a Markov chain ® Reference uncertainty modifies the definition of attribute

whose stationary distribution is(z). chains. Suppose that an attribidedepends on the par-
The Gibbs sampling algorithm for Bayesian net- ~ entchaino = A;.---.A,.B'. Any of the complex at-
works[Pearl, 198Bis a special case of Metropolis—Hastings ~ tributes in the chain may be uncertain. Then the parent
in which the proposal distribution samples a single vagabl ~ Variables forB are all the instance variables reached by
X; using the distributionP(X;/mb(X;)), where mb(X;) the chain for all possible combinations of values of all
denotes the current values of the variables in the Markov  the uncertain complex attributes, as well as all the refer-
blanket ofX; (its parentsPa[X;], childrenY;, and children’s ence variables for those attributes.
other parents). In this case, the acceptance probability i¥he simple example of Figure 1 can be extended to include
always 1. One can show easily that reference uncertainty, itudent.advisoris unknown. We

define a reference attribute f[Student.advisof with range
P(X;|mb(Xy)) = aP(X;|Pa[X:])) [[ P(Y;|Pal¥;]) (1)  (say){Prof,, Prof,, Prof,}. The choice of advisor depends
J (generically) on the fundingRrof.$9 of each candidate,
Gibbs sampling is very simple and alkzal: transitions are  Which depends (generically) ofrof.fame This gives the
generated referring only to parts of the model directly Con_|rjstance-var|able network s_tructure shown in F|gu_re 3. Ob-
nected to the variable in question. Henites cost per transi-  Viously, when reference attributes have many possiblesgalu
tion is typically independent of model si2d-H sampling is ~ VerY large implicit network structures can result.

also typically local because all the parts of the model that a 41 Exactinference with referen ncertaint
not changed by the transition cancel in the ratje') /= (). . actinterence elerence uncertainty

In particular, if the proposal concerns a single variallle ~ As mentioned above, the runtime of any variable elimination
this ratio reduces td(z!|mb(X;))/P(x;)mb(X;)), where  algorithmis exponential in the size of the largest cliquéhia

' is the proposed value of; andz; is its current value. The optimally triangulated graph. Looking at Figure 3, it is ap-
M-H algorithm, unlike Gibbs, has the added advantage thaparent that a straightforward application leads to twodér
the transition may often be computed without referring ® th cliques: one containin§tudent.successnd its parents, and

other values ofX; at all, as we will see. one containinge f[Student.advisof and its parents. In gen-
eral, these will haves + 2 andn + 1 members respectively,
4 Handling reference uncertainty wheren is the number of possible values for the reference

. . , attribute. Thus, inference cost grows exponentially wiitis t
Reference uncertainty arises whenever relations among Ol?l'umber.

jects, as described by complex attribute values, are noVkn0 pfefer, 2000 observes that at least one of these cliques—
with certainty. For example, we may be unsure as to which of;,o qne associated witBtudent.success-can be decom-
three professors iStudent’s advisor. We need to be able to posed. Given a known value foref[Student.advisoi
describe this uncertainty and to specify the dependerité#s t gy gent successioesnot depend on the fame of other pro-
influence it. The following definitions are adapted froRf- fessors (Figure 4). This is an extreme form of context-gfeeci
effer, 2000: independence, and allows thet 2-variable factor to be re-

e With each complex attributel, we associate a sim- placed by a product of 3-variable factors in the variable

ple reference attributere f[A], such thatVal[ref[A]] elimination process. This decomposition applies in gdnera



The Metropolis—Hastings steps

Gibbs sampling for a reference variable withvalues in-
volves considering: possible network structures, so we ap-
ply M-H sampling instead. M-H proposes a single new value
for the reference variable, and then decides whether to ac-
cept it. (We can ignore the proposal distribution, which we
will assume for now is uniform and hence cancels.) For the
transition fromS,.a = P; to S;.a = P;, then, we need (from
Equation (1), and simplifying based on known values of the
reference variable) the ratio

Figure 4: The network structure conditoned on P(S1.a=P|P1.$% ..., Py.$§P(S1.5\P;.f, S1.a=P;)

Studentl._
advisor'F>r0f2

Student.advisor= Prof,. At first sight, it would seem that calculating this ratio re-
quires accessing the current valuedf$$ ..., P,.$3 i.e.,
to variables that have referentially uncertain parents. the funding levels of all possible candidate professorsnev

Unfortunately, the clique associated with the referenee atthough the transition involves just two of them. (This is be-
tribute itself—re f[Student.advisof in this case—cannot be C€ause the probability of picking any one advisoesdepend
decomposed. We are left with a network structure that seenf@n the funding levels of all candidates.) In turn, this regsi
(in general) to be intractable for exact inference. Theasitu thatall those nodes be constructed and instantiated, wich

tion becomes worse still as more complex interactions occuPréfer to avoid if possible.

among several reference attributes. It so happens, fortunately, that conditional distribusidor
“selecting” a value for a relational attribute, given proipes
4.2 MCMC inference with reference uncertainty of a set of candidates, may have some structural properties
In our approach, we extend the MCMC algorithm commonlythat simplify the task. Suppose, for example, that foi all
used on Bayesian networks by augmenting the Markov chain f(P;.$9
state space to include reference variables denoting oakiti P(S1.a=F|P1.$% ..., P,.$% = m
J o

uncertainty, and defining appropriate transition funcsion

Simple attributes, such &tudent.successuse Gibbs sam- for some arbitrary functiorf. Then, in the transition proba-
pling as usual—and context-specific independence can sombtlity ratio given above, the summatiods; f(P;.$$) cancel,
times be used to simplify those steps further. Reference ateaving

tributes, such ase f[Student.advisot, depend on a slightly f(P;.$9P(S1.5|P;.f,S1.a=F;)
more involved M-H step. F(P.$9P(S1.5|P.f,51.a=P)
The Gibbs steps which does not mention any values for the reference variable

In what follows, we abbreviatStudent to S;, advisorto besidesP; and P;. The property of conditional distributions
a, and so on. Let us consider an extended version of Figthat we require is satisifed by some well-known conditional
ure 3 withn potential advisors. Let the current value$f.a  distributions, including theoftmaxdistribution:

be P;. Suppose we want to apply Gibbs samplingRp f Ui
(Prof..fame, wherej # i. By Equation (1), the sampling PX=ilYi=y,...,.Yy=y,n) = =
distri{)ution is Zj evi

aP(P;.f)P(P;.$8P;.f)P(S1.5|P,.f,. .., Po.f.Si.a=P) Softmax is indeed a reasonable model for selecting an adviso

 aP(Pyf)P(P; 4P, [)P(S1.5|Pf. S1a—py  Pasedonfunding.
o P(P;.f)P(P;.$$P;.f) 'Cl')he complete algorithm

nce we put the two types of steps together, the complete
The first step of this derivation uses the fact tisats de-  algorithm alternates between ordinary Gibbs steps on a sim-
pends only on the fame of;’s advisor, P;.f, and not plified network and M-H steps altering the network structure
on other professors; the second step simply observes th#itshould be noted that different network structures maultes
P(S1.s|P;.f,S1.a=F;) is constant w.r.tP;.f. Thus, when in different sets of variables being, at any given time, veie
the reference attribute is instantiated, sampling opsrake  or irrelevant to the query. Our approach restricts companiat
actly as if the links from non-selected parents are nonemist to variables that are strictly relevaithang and Poole, 1996
The same holds when sampling a child of the reference variaccording to the current structure.
able (e.g.S:.s). Thus, while reference variables remain con- A further possible enhancementiézy constructiorof the
stant, the network has a simplified form, such as that showBayesian network. For example, the network can be grown
in Figure 4. MCMC sampling on this simpler network should “from the query outwards”, with nodes added as they are
converge quickly. When the value of the reference variableneeded to sample a node currently in the network. (Struc-
changes, however, so does the effective structure of the netural variables are, like others, instantiated on creatyged-
work. We now address this issue. ing a network in the usual simplified format.) If necessary,
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Figure 5:MCMC convergence on a simple example with three pro- Figure 6: MCMC convergence as a function of network size. The
fessors and one student. The exact probability is 0.36Jizdmtal y-axis measures the number of state transitions requiredachra
line). Each point represents the estimate from one of 10 Mark preset convergence threshold for a standard diagnosti sirhight
chains after a given number of samples (log scale). Thedittte line is a regression fit to the data, which is averaged overidl®t
shows the average of the 10 individual estimates.

. ) variables increases wittn.
nodes may then be discarded when they become irrelevant

to the query under the current network structure. By usin . .
an “intelligent” M-H proposal, as discussed in Section 6, weo ldentity uncertainty
can also focus computation on variables that are “impottant
to the query—perhaps visiting only an infinitesimal fraatio
of the potentially relevant variables—without sacrificitig
guarantee of convergence to correct probabilities in tiné.li

Standard relational probability model®feffer, 2000 in-
corporate the unique names assumption, i.e., each instance
present in the knowledge base corresponds to a different ob-
ject in any given possible world. When this assumption is re-
- moved, we must consider the possibility that several ircgtan
4.3 Experimental Results may denote the same object. Identity uncertainty is eslhecia
To check our algorithm, we applied it first to the knowledge prevalent in settings where an agent perceives multiple ob-
base with reference uncertainty, no identity uncertaiahg  jects over timgPasulaet al, 1999, but also occurs in almost
three professors. In this case, the algorithm generates arall real databases where “duplicate” records abound.
evaluates the network shown in Figure 3. We set values for With identity uncertainty, a “possible world” must specify
fame or funding for each professor, and queried the posterionot only the attribute values for all objects, but also thegma
probability of Student.success In this tiny model, we can ping from instances in the knowledge base to objects in the
compute the exact value for comparison. The MCMC esti-possible world. (Without identity uncertainty, this mapgi
mates in Figure 5 clearly converge to the correct value. is one-to-one and hence no distinction between instanaks an
We also tested the scalability of the algorithm by trying it objects is needed.) We represent this mapping using an-equiv
out on various types of networks of increasing size. As aralence relation—a set of equivalence classes, each of which
example, let us consider networks with wittprofessors and  contains all the instances that co-refer in that particptzs-
4n+ 1 students, each of whom could have any one of the prosible world?
fessors as advisor. We specified the success (or otherwise) Consider the following example, a simplified version
of 4n students and queried the success of the last. Figure 6f the data association problem studied [Basulaet al,
shows the inference cost as a function of the total network999. There are two classed/ehicle and QObservation.
size. Because we cannot compute the exact values for all There is one complex attributgenerated_by, which maps
we use a standard convergence diagnostic dU&®@man,  an Observation to the Vehicle that generated it. Each
199d, checking against the exact values for small The  Observation of a vehicle reports aolour, which depends
resulting graph appears to be linear in the size of the nettthough a probabilistic model of the measuring process) on
work. It would appear that, for this type of network, the sam-thecolour of the corresponding ehicle. Instances are added
pling algorithm scales well. Note also that cost is measurego the KB as follows: whenever a vehicle is detected at some
in terms ofsingle-variablestate transitions performed by the sensor, atDbservation is instantiated with its colour set to
algorithm, hence the number of transitioper variableto the measured value, and with a né%ehicle instance at-
reach convergence is approximately constant, regardiess @ached. In this domain, inference involves reasoning about
network size. This held in all our experiments, including ex
periments (not reported here) on genetic inheritance with u  Note that it doesn't mattewhichobject the instances denote—
certain parentage, where the number of cascaded referenobjects are essentially placeholders in a relational &trac



{Vent, ven2) M-H steps. Moreover, these steps propose changes not only
colour id to w, but also to some of the conventional attributes.

The reason for this is that an identity transition can prepos
(among other things) that two currently separate instabees
- - grouped together in the same equivalence class. Clearly, if
colour colour these two instances currently have different values for the

same attribute, the probability of the destination statélvei

Figure 7: Bayesian network structure for the two-vehicle case,Z€r0. Hence, identity transitions will have a chance of occu
where the vehicles are currently assumed to be one and the saning only when the instances “line up"—that is, a sequence of
object. normal transitions causes all of their attribute values &dahn
exactly. When instances have many attributes, line-up reay b
very rare, resulting in a low acceptance ratio and a slow-algo
Iafhm. Moreover, there are cases in which waiting for linge-u

akes the Markov chain non-ergodic—the algorithm can be
trapped in a subset of possills with no escape.

which Vehicles are, in fact, identica.

Figure 7 shows the Bayesian network structure generate
when the knowledge base contains observatiohs, and
Obs; of vehiclesV eh; andVehs, and when the equivalence

relation on instances is set {dVehi,Veha}} (i.e., Veh, Identity transition proposals

andVeh, are the same object). Consider a current assignmentand a proposed assignment
. e e w'. Letu be the set of unobserved attributes of all the objects

5.1 Defining a probability distribution in w affected by the transition, and let be the unobserved

Each possible world now contains an equivalence relatiomttributes of the corresponding objectsufi Let o be the

w € Q as well as the attribute values, and the knowledgeset of all other attributes within the Markov blankets of the
base must now specify a unique probability distributionrove attributes inu or »': this may include observed attributes, as
this enlarged space of worlds. We can write well as the unobserved attributes of other objects not &ftec

) _ by the transition. Note that All attributes i will remain
P(w, (attribute valuep) = P((attribute valuejw) P(w) (2)  fixed throughout the transition.

Given each fixedv, identity uncertainty is eliminated, and ~ Each identity transition proceeds as follows:

the probability distribution over the attributes can be ded e ' is chosen using a propos@l(w’|w). This proposal

as before. All that remains is to specify the prigfw). When can take many forms: one simple possibility is to suggest

doing so, we can use the fact that instances in disjointetass that a randomly selected instance move from one equiv-

cannot co-refer—for example, vehicles cannot be observa-  alence class to another. Another method might suggest

tions. P(w) can thus be factored into terms dealing with each merging two equivalence classes, or splitting an equiva-

of the classes. Even then, however, the state space of each lence class in two.

factor is exponential in the number of objects in its class.

Fort.unatelly, there are more compact ways pf exp_ressing the qu (u'|o’,w,u,0). The nature ofy; will be explained

w-distribution for each class. The simplest is to give an ex- further

plicit distribution over thenumberof objects in each class, '

which can be done by adding a number attribute to classes in ® The proposed change is accepted with probability

the knowledge base. In more complex situations, such as full (
min | 1,

e Values for all of v’ are chosen using a proposal

data association, the-distributions are specified implicitly
in conjunction with object arrival and detection modgfa-

m(w")gr(wlw") (o, v |w")qu (u|w,w', u', 0)
7 (@)1 (@) (0, 0l gur (@'l 0, 1, 0)

Sulaet.al.,- 1999 T.he.general t0p|C Of modular Specification Wh|Ch is derived from Equation (3) using Equation (2)

of w-distributions is likely to require a good deal of further and the two-step nature of our proposal.

research. . .
“As an example, let us consider the world state portrayed in

5.2 Inference with identity uncertainty Figure 7. In this situation,

In the presence of identity uncertainty, exact inferendisca ® w = {{Vehi,Vehs}}

for the a summation over all possible valuesuof This is o u={{Vehi,Vehs}.colour,{Vehi,Vehsy}.size}

clearly infeasible whef?| is large—and(?| is exponential in i b d as follows:
the number of instances in identity-uncertain classes. MicM A SPIit can now be proposed as follows:

permits us to replace the summation with a sample. The al- ® w' = {{Veh},{Vehs}}

gorithm now works as follows. In addition to “normal tran- o ' = {Veh,.colour, Vehs.colour, Veh, .size, Vehs.size}
sitions,” which run as before given a fixed the algorithm
performs “identity transitions” in whiclhy changes. Because
of the large state space of the latter type of transition uses

To ensure that the chain is ergodic, new values must then be
proposed by for at least the newly created attributes.

2An alternate interpretation for this knowledge base, mareik Choosmg_the attribute Va“!es .
iar to statisticians, is that there are an unknown numbeat§lina  One possible pr0p_053| picks a Va'”? unlforml_y at random .
bag; balls are pulled out one at a time, their colour is measuand ~ from the values available at each attribute. This approsch i

they are replaced. simple to implement and yields an acceptance ratio that is



easy to calculate. Thgs(u|...) termsreducetad/ ", |u,|. 0.45

This is the algorithm that we test experimentally below.
Unfortunately, thisqy proposal may suggest very un- 04r 1 -,

likely value combinations for the attributes, resulting in 035l  * v
low acceptance ratios. We might be better off with a > o Lo
more intelligent proposal mechanism, such as likelihood 3 08| o . D e il
weighting which generates samlples froqm(u|o,w) = S o2l . fi;-;
[1,,ex P(zilPa(z;), w) together with weightso(uo,w) = e R et
[1,,eo P(wilPa(xi),w). Since 02y ) L e T 1

w(ulo, w)qy (u'|o,w) 0157

T ) = S w(Ulo.w)ao (Ul ) o1
w 0, W 0, W . ! ) ) !

u=U W)U ’ 64 128 256 512 1024 2048

the fraction in the acceptance ratio can now cancel to give No of samples

! ! ! !
m(w'o)gr(wlw', ojw(u'jo,w’) 30,y w(Ulo, w)qu (Ulo, w) Figure 8:MCMC convergence on a simple example with five ob-
m(wlo)gr (w'|w, o)w(ulo,w) 3, _ry w(U]o, w")qu (Ulo,w") served vehicles. The exact probability is 0.271 (horizbite).

. L : . ach point represents the estimate from one of 6 Markov shafin
Th]s ratlo IS no Ionger so simple, as the summations may bEeraglci)ven nurFm)wber of samples (log scale). The dotted linesstioe
quite time-consuming. Fortunately, if the set of uncerttin average of the 6 individual estimates.
tributes can be split into several d-separated sets, thensam
tions can be rewritten as products of summations over those

sets. If these sets are all small, this algorithm may be liéasi 9000
Yet another approach is to run a “local” MCMC algorithm 8000 ¢
inside ¢y to generate attribute values that reflect the current 7000
values ofo and hence are likely to be accepted. ,, 6000¢
Q.
5.3 Experimental Results g %
To check our identity uncertainty algorithm, we first per- g 00
formed experiments analogous to those in Section 4.3. We 3000
began with a problem that was small enough for exact calcu- 2000
lation: it consisted of five observations with known atttiéu 1000
values, and queried the posterior probability of the vehicl ol ‘ ‘ ‘ ‘ ‘
generating the first observation. Figure 8 shows that our al- 0 5 10 15 20 25 30 3
gorithm’s estimates clearly converge to the correct vaker o No of instances in network

time. , _ _
We then tested the scalability of the algorithm by, OnceFlgure 9:MCMC convergence as a function of network size. The

o ; y-axis measures the number of state transitions requiredachra
more, applying it to randomly generated networks of mc{easrgreset convergence threshold for a standard diagnosti sirhight
[

ing size, and measuring time to convergence using a sta ne is a regression fit to the data, which is averaged overiat

dard diagnostic. The results shown in Figure 9 were obtaine
by constructing larger and larger sets of vehicle—obsamat

pairs, and requesting a posterior distribution over the ineim 08 Prior
of vehicles. As before, the algorithm appears to scale well. 07| |2 opsenations

Finally, we performed an additional experiment to demon- 0.6 - 24 observations—— |
strate that our algorithm works as expected. It should be tru

X X o ) z 05f
that, if observations are generated from a specific set af veh =
cles, increasing the number of observations in the knovdedg 3 04r
base will enable us to model characteristics of that set of ve & o3l
hicles with increasing accuracy. Figure 10 shows that agldin
more and more observations does enable us to infer the num- 021
ber of vehicles responsible for them. 0.1r
o LE-

6 Conclusions and further work 0 5 15 20

. . . . No of objects in network
We have proposed an algorithmic approach for inference in

first-order probabilistic languages, based on Markov chairkigyre 10:Distributions over the number of objects in the network.
Monte Carlo. Our preliminary investigations suggest thatt The prior distribution is shown; note that it insists thagréh are at
approach is very promising. We believe that it can signifi-least two vehicles. Observations are then generated fractlgxtwo
cantly increase the expressive power of languages thatean lehicles. When given just two observations, the algoritomverges
considered “practical” for knowledge representation agetr  to a distribution close to the prior, as expected. As morentagions
sonining under uncertainty. For example, the lazy expionat are added, the result moves closer to the true value of twizhesh



approach should make it possible to handle infinite recarsiv[Pearl, 1988 Judea Pearl. Probabilistic Reasoning in Intelligent
models, including temporal models, with somehwat greater Systems: Networks of Plausible Inferenddorgan Kaufmann,

generality than so far envisagfi€oller and Pfeffer, 200D San Mateo, California, 1988.
The Metropolis—Hastings algorithm allows for a wide va- [Pfefferet al, 1999 A. Pfeffer, D. Koller, B. Milch, and K.T.
riety of proposal distributions. In particulantelligent pro- Takusagawa. SPOOK: A system for probabilistic objectrued

posalscan be used to focus computation. One can easily con- knowledge representation. ldncertainty in Artificial Intelli-
structdata-drivenand query-drivenproposals, analogous to gence: Proceedings of the Fifteenth Conferei8teckholm, Au-
forward and backward chaining in logical systems, that es- 9ust 1999. Morgan Kaufmann.

sentially result in “activation” spreading outwards fromegry ~ [Pfeffer, 2000 Avrom J. Pfeffer.Probabilistic Reasoning for Com-
and evidence variables. These concepts can be subsumed byplex SystemsPhD thesis, Stanford University, Stanford, Califor-
a general mechanism for proposing transitions based on the Nnia, 2000.

expected value of computatigRussell and Wefald, 1991 [Russell and Wefald, 1991Stuart J. Russell and Eric H. Wefald.
We can also insert arbitrary domain-specific knowledge into Do the Right Thing: Studies in Limited RationalitylIT Press,
the proposal mechanism—for example, proposing candidate Cambridge, Massachusetts, 1991.

advisors based on the student’s research interest. Su¢Russell, 199D Stuart Russell. Expressive probability models in
knowledge-based proposals, which result in faster conver- science. InProc. of the 2nd Int'l Conf. on Discovery Science
gence, can also bearnedvia so-calledadaptive proposals- Tokyo, Japan, December 1999. Springer Verlag.

that is, allowing the proposal distributionto change over [sato and Kameya, 19P7T. Sato and Y. Kameya. PRISM: A
time based on the algorithm’s experience in generating sam- symbolic-statistical modeling language. Rioceedings of the

ples and computing acceptances. Fifteenth International Joint Conference on Atrtificial étiigence
Clearly, we have just scratched the surface of this topic. (IJCAI-97) pages 1330-1335, Nagoya, Japan, August 1997.
A large effort is needed to apply first-order probabilisaai Morgan Kaufmann.

guages to real problems, in order to identify useful languag [Wellmanet al, 1994 M. P. Wellman, J. S. Breese, and R. P. Gold-
features, common representation structures, and theicteff =~ man. From knowledge bases to decision modefsiowledge
on inference. Having a flexible and general—albeit some- Engineering Reviewr(1):35-53, March 1992.

times slow—MCMC inference engine should help with this [Zhang and Poole, 1996N.L. Zhang and D. Poole. Exploiting
task. We also need to develop complexity results for approxi causal independence in Bayesian network inferedoeirnal of
mate inference, using tools such as those providddéyum Artificial Intelligence Researct5:301-328, 1996.

and Sinclair, 1991
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