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Abstract

A new, general approach is described for ap-
proximate inference in first-order probabilistic lan-
guages, using Markov chain Monte Carlo (MCMC)
techniques in the space of concrete possible worlds
underlying any given knowledge base. The sim-
plicity of the approach and its lazy construction of
possible worlds make it possible to consider quite
expressive languages. In particular, we consider
two extensions to the basic relational probability
models (RPMs) defined by Koller and Pfeffer, both
of which have caused difficulties for exact algo-
rithms. The first extension deals with uncertainty
about relations among objects, where MCMC sam-
ples over relational structures. The second exten-
sion deals with uncertainty about the identity of
individuals, where MCMC samples over sets of
equivalence classes of objects. In both cases, we
identify types of probability distributions that al-
low local decomposition of inference while encod-
ing possible domains in a plausible way. We apply
our algorithms to simple examples and show that
the MCMC approach scales well.

1 Introduction
Recent work in AI has made clear the advantages to be de-
rived from combining probability theory with (at least some
of) the expressive power of first-order logic[Wellmanet al.,
1992]. We will call languages that exhibit such a combina-
tion first-order probabilistic languages(FOPLs). The abil-
ity to handle objects, relations, and quantification gives such
languages a huge advantage in representational efficiency in
certain situations. To take a purely logical example: the rules
of chess can be written in about one page of Prolog but re-
quire perhaps millions of pages in a propositional language.
A recent thesis on first-order probabilistic languages[Pfeffer,
2000] describes a battlespace management system involving
potentially thousands of objects whose relationships are un-
known and changing.[Pasulaet al., 1999] describe a freeway
traffic surveillance involving probabilistic inference about the
identities and properties of thousands of vehicles. These ap-
plications would be infeasible without some ability to specify
and reason with FOPL knowledge bases.

The semantics of FOPLs are based on the idea that each
model of a FOPL knowledge base should be viewed as a prob-
ability measure over the possible worlds (logical models) de-
fined by the constant, function, and predicate symbols of the
knowledge base[Halpern, 1990]. Although “wildly undecid-
able” in full generality, highly restricted FOPLs appear tobe
practical, especially with finite models. Two threads have
arisen, based on semantic networks (e.g.,[Koller and Pfef-
fer, 1998]) and logic programming (e.g.,[Sato and Kameya,
1997]).

In this paper, we focus on the family ofrelational probabil-
ity models(RPMs)[Pfeffer, 2000], although our ideas apply
equally to other languages. RPMs, like semantic networks,
are based onclassescontaininginstances, with each instance
possessingattributes. (See Section 2 for details.) RPMs al-
low one to specify probability distributions over the attribute
values of an instance, either directly or via inheritance from
classes. These distributions may depend on other attribute
values of the instance or of other instances. For example, a
PhD student’s success may depend on the fame of his or her
advisor.

[Pfefferet al., 1999] describe an exact inference algorithm
for RPM knowledge bases calledstructured variable elimi-
nation (SVE). Roughly speaking, SVE applies the variable
elimination algorithm[Zhang and Poole, 1996] to a dynami-
cally constructed Bayesian network whose nodes are all those
ground propositional variables defined by the knowledge base
and relevant to the current query. SVE derives an efficient
variable ordering from the structure of the knowledge base
and reuses computation results where possible. It is often
able to answer queries involving hundreds of variables in a
few seconds.

Despite SVE’s excellent performance, its runtime is at least
exponential in the size of the largest clique in the optimal tri-
angulation of the network. The expressive power of RPMs
makes it very easy to construct knowledge bases whose cor-
responding Bayesian networks have very large cliques. For
example,[Pfeffer, 2000] describes a model for matches in
a sports league. The knowledge base consists of a single,
generic conditional distribution for the outcome of a match
given the quality of the two teams, a single prior distribution
for the quality of the teams, and the results of some matches.
If every team plays every other, then the team qualities form
a clique in the corresponding Bayesian network and the infer-



ence cost is exponential in the number of teams. Similar prob-
lems will arise in any application in which there are complex
relationships among large numbers of objects—i.e., precisely
those domains for which FOPLs are really necessary.

The situation is exacerbated when the RPM language is
extended to allow forstructural uncertainty—i.e., uncertainty
about which probabilistic dependencies actually exist. We
consider two forms of structural uncertainty:

reference uncertainty: the value of a relational attribute
may be uncertain—e.g., we may not know which of two
professors is the advisor of a certain student;

identity uncertainty: we may not know whether two objects
in the knowledge base are the same—e.g., when we see a
red bus at two different camera locations on the freeway.

Each of these extensions may lead to Bayesian networks
whose size alone causes difficulties and whose high connec-
tivity makes exact inference completely impractical. For ex-
ample, the inference problem in the freeway surveillance ap-
plication of[Pasulaet al., 1999] is known to be #P-hard, i.e.,
almost certainly exponential in the number of vehicles.

The solution proposed by[Pasulaet al., 1999] is to use
a Markov chain Monte Carlo (MCMC) algorithm (see Sec-
tion 3 for details). The algorithm samples from possible
matchings among vehicles, converging (in some cases poly-
nomially) to approximately correct probabilities. Often afew
hundred samples suffice for a state space of21000 states. The
states being sampled are essentially the possible worlds de-
fined by the constant symbols (observed vehicles) and pred-
icates (equality) of the knowledge base. This approach—
sampling possible worlds with MCMC—can be turned into
a general inference algorithm for first-order probabilistic lan-
guages, as suggested by[Russell, 1999; Pfeffer, 2000].

In this paper, we investigate MCMC on possible worlds
as an inference method to handle reference uncertainty (Sec-
tion 4) and identity uncertainty (Section 5). We show how
the possible worlds may be constructed dynamically and how
the transition probabilities may be computed efficiently. For
the case of transitions involving a referentially uncertain rela-
tional attribute value, we identify a large family of conditional
distributions that render the calculation independent of all but
the particular values involved in the transition. We illustrate
the algorithms using simple examples and give experimental
results suggesting that the algorithms scale well.

2 Relational probability models
The following definitions are adapted from[Koller and Pfef-
fer, 2000]. A relational probability model, in its most basic
form, consists of� A set C of classesdenoting sets of objects, related by

subclass/superclass relations.� A set I of named instancesdenoting objects, each an
instance of one class.� A set A of complex attributesdenoting functional re-
lations. Each complex attributeA has a domain typeDom[A℄ 2 C and a range typeRange[A℄ 2 C.
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Figure 1:The simple RPM defined in the text, with its associated
conditional probability models.
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Figure 2: Bayesian network structure generated from the RPM in
Figure 1. Theadvisorrelationship, being certain, doesn’t appear.� A setB of simple attributesdenoting functions. Each

simple attributeB has a domain typeDom[B℄ 2 C and
a range that is a finite, enumerated set of valuesV al[B℄.� A set of conditional probability modelsP (BjPa[B℄)
for the simple attributes.Pa[B℄ is the set ofB’s par-
ents, each of which is a nonempty chain of (appropri-
ately typed) attributes� = A1: � � � :An:B0, whereB0 is
a simple attribute. Probability models may be attached
to instances or inherited from classes.

For now, we will assume that the values of all the complex
attributes are known (no reference uncertainty), and that ev-
ery instance is distinct (unique names assumption, hence no
identity uncertainty). Thus, a possible world is defined by the
values of theinstance variables—the simple attributes for all
named instances.

Consider the following very simple RPM. There are two
classes,StudentandProfessor, and two instances,Student1
and Prof1. There is one complex attribute,advisor (map-
ping Student to Professor) and the advisor of Student1
is Prof1. There are three simple attributes, all Boolean:
successof a Student and fameand$$ (funding level) of aProfessor. For anyStudents, s:successhas one parent,s:advisor:fame, with an appropriate conditional distribution.
For anyProfessorp, p:famehas no parents and a simple prior
distribution, whilep:$$ depends onp:fame. Figure 1 shows
the knowledge base with probability distributions and Fig-
ure 2 shows the Bayesian network structure for the attribute
variables definable from the knowledge base.



3 Markov chain Monte Carlo algorithms
MCMC [Gilks et al., 1996] generates samples from a pos-
terior distribution�(x) over possible worldsx by defining
a Markov chain whose states are the worldsx and whose
stationary distributionis �(x). In the Metropolis–Hastings
method (henceforth M-H), transitions in the Markov chain
are constructed in two steps:� Given the current statex, a candidate next state is gener-

ated from theproposal distributionq(x0jx), which may
be (more or less) arbitrary.� The transition tox0 is not automatic, but occurs with an
acceptance probabilitydefined by�(x0jx) = min�1; �(x0)q(xjx0)�(x)q(x0jx) �

It is not necessary that all the variables of statex be up-
dated simultaneously, in a single transition function.Single-
componentM-H alters each variable in turn. It is also to factorq into separate transition functions for various subsets of vari-
ables. Provided thatq is defined in such a way that the chain
is ergodic, this transition mechanism defines a Markov chain
whose stationary distribution is�(x).

The Gibbs sampling algorithm for Bayesian net-
works[Pearl, 1988] is a special case of Metropolis–Hastings
in which the proposal distribution samples a single variableXi using the distributionP (Xijmb(Xi)), where mb(Xi)
denotes the current values of the variables in the Markov
blanket ofXi (its parentsPa[Xi℄, childrenYj , and children’s
other parents). In this case, the acceptance probability is
always 1. One can show easily thatP (Xijmb(Xi)) = �P (XijPa[Xi℄))Yj P (Yj jPa[Yj ℄) (1)

Gibbs sampling is very simple and alsolocal: transitions are
generated referring only to parts of the model directly con-
nected to the variable in question. Hence,the cost per transi-
tion is typically independent of model size. M-H sampling is
also typically local because all the parts of the model that are
not changed by the transition cancel in the ratio�(x0)=�(x).
In particular, if the proposal concerns a single variableXi,
this ratio reduces toP (x0ijmb(Xi))=P (xijmb(Xi)), wherex0i is the proposed value ofXi andxi is its current value. The
M-H algorithm, unlike Gibbs, has the added advantage that
the transition may often be computed without referring to the
other values ofXi at all, as we will see.

4 Handling reference uncertainty
Reference uncertainty arises whenever relations among ob-
jects, as described by complex attribute values, are not known
with certainty. For example, we may be unsure as to which of
three professors isStudent1’s advisor. We need to be able to
describe this uncertainty and to specify the dependencies that
influence it. The following definitions are adapted from[Pf-
effer, 2000]:� With each complex attributeA, we associate a sim-

ple reference attributeref [A℄, such thatV al[ref [A℄℄
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Figure 3: Bayesian network structure with reference uncertainty
aboutStudent1:advisor. The reference attribute is shown in a double
oval.

is a finite, enumerated set of named instances. (Where
no confusion arises, we may drop theref [�℄ and
use the attribute name itself.) Dependencies are
expressed as before by a conditional distributionP (ref [A℄jPa[ref [A℄℄). The parents ofref [A℄ are those
attributes or attribute chains that influence the choice of
an instance as the value of attributeA.� Reference uncertainty modifies the definition of attribute
chains. Suppose that an attributeB depends on the par-
ent chain� = A1: � � � :An:B0. Any of the complex at-
tributes in the chain may be uncertain. Then the parent
variables forB are all the instance variables reached by
the chain for all possible combinations of values of all
the uncertain complex attributes, as well as all the refer-
ence variables for those attributes.

The simple example of Figure 1 can be extended to include
reference uncertainty, ifStudent1:advisor is unknown. We
define a reference attributeref [Student1:advisor℄ with range
(say)fProf1;Prof2;Prof3g. The choice of advisor depends
(generically) on the funding (Prof:$$) of each candidate,
which depends (generically) onProf:fame. This gives the
instance-variable network structure shown in Figure 3. Ob-
viously, when reference attributes have many possible values,
very large implicit network structures can result.

4.1 Exact inference with reference uncertainty
As mentioned above, the runtime of any variable elimination
algorithm is exponential in the size of the largest clique inthe
optimally triangulated graph. Looking at Figure 3, it is ap-
parent that a straightforward application leads to two “large”
cliques: one containingStudent1:successand its parents, and
one containingref [Student1:advisor℄ and its parents. In gen-
eral, these will haven + 2 andn + 1 members respectively,
wheren is the number of possible values for the reference
attribute. Thus, inference cost grows exponentially with this
number.

[Pfeffer, 2000] observes that at least one of these cliques—
the one associated withStudent1:success—can be decom-
posed. Given a known value forref [Student1:advisor℄,
Student1:successdoesnot depend on the fame of other pro-
fessors (Figure 4). This is an extreme form of context-specific
independence, and allows then + 2-variable factor to be re-
placed by a product ofn 3-variable factors in the variable
elimination process. This decomposition applies in general
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Figure 4: The network structure conditioned on
Student1:advisor=Prof2.

to variables that have referentially uncertain parents.
Unfortunately, the clique associated with the reference at-

tribute itself—ref [Student1:advisor℄ in this case—cannot be
decomposed. We are left with a network structure that seems
(in general) to be intractable for exact inference. The situa-
tion becomes worse still as more complex interactions occur
among several reference attributes.

4.2 MCMC inference with reference uncertainty
In our approach, we extend the MCMC algorithm commonly
used on Bayesian networks by augmenting the Markov chain
state space to include reference variables denoting relational
uncertainty, and defining appropriate transition functions.
Simple attributes, such asStudent1:success, use Gibbs sam-
pling as usual—and context-specific independence can some-
times be used to simplify those steps further. Reference at-
tributes, such asref [Student1:advisor℄, depend on a slightly
more involved M-H step.

The Gibbs steps
In what follows, we abbreviateStudent1 to S1, advisor toa, and so on. Let us consider an extended version of Fig-
ure 3 withn potential advisors. Let the current value ofS1:a
be Pi. Suppose we want to apply Gibbs sampling toPj :f
(Profj :fame), wherej 6= i. By Equation (1), the sampling
distribution is�P (Pj :f)P (Pj :$$jPj :f)P (S1:sjP1:f; : : : ; Pn:f; S1:a=Pi)= �P (Pj :f)P (Pj :$$jPj :f)P (S1:sjPi:f; S1:a=Pi)= �0P (Pj :f)P (Pj :$$jPj :f)
The first step of this derivation uses the fact thatS1:s de-
pends only on the fame ofS1’s advisor, Pi:f , and not
on other professors; the second step simply observes thatP (S1:sjPi:f; S1:a=Pi) is constant w.r.t.Pj :f . Thus, when
the reference attribute is instantiated, sampling operates ex-
actly as if the links from non-selected parents are nonexistent.
The same holds when sampling a child of the reference vari-
able (e.g.,S1:s). Thus, while reference variables remain con-
stant, the network has a simplified form, such as that shown
in Figure 4. MCMC sampling on this simpler network should
converge quickly. When the value of the reference variable
changes, however, so does the effective structure of the net-
work. We now address this issue.

The Metropolis–Hastings steps
Gibbs sampling for a reference variable withn values in-
volves consideringn possible network structures, so we ap-
ply M-H sampling instead. M-H proposes a single new value
for the reference variable, and then decides whether to ac-
cept it. (We can ignore the proposal distribution, which we
will assume for now is uniform and hence cancels.) For the
transition fromS1:a=Pi to S1:a=Pj , then, we need (from
Equation (1), and simplifying based on known values of the
reference variable) the ratioP (S1:a=Pj jP1:$$; : : : ; Pn:$$)P (S1:sjPj :f; S1:a=Pj)P (S1:a=PijP1:$$; : : : ; Pn:$$)P (S1:sjPi:f; S1:a=Pi)
At first sight, it would seem that calculating this ratio re-
quires accessing the current values ofP1:$$; : : : ; Pn:$$, i.e.,
the funding levels of all possible candidate professors, even
though the transition involves just two of them. (This is be-
cause the probability of picking any one advisordoesdepend
on the funding levels of all candidates.) In turn, this requires
that all those nodes be constructed and instantiated, whichwe
prefer to avoid if possible.

It so happens, fortunately, that conditional distributions for
“selecting” a value for a relational attribute, given properties
of a set of candidates, may have some structural properties
that simplify the task. Suppose, for example, that for alli,P (S1:a=PijP1:$$; : : : ; Pn:$$) = f(Pi:$$)Pj f(Pj :$$)
for some arbitrary functionf . Then, in the transition proba-
bility ratio given above, the summations

Pj f(Pj :$$) cancel,
leaving f(Pj :$$)P (S1:sjPj :f; S1:a=Pj)f(Pi:$$)P (S1:sjPi:f; S1:a=Pi)
which does not mention any values for the reference variable
besidesPi andPj . The property of conditional distributions
that we require is satisifed by some well-known conditional
distributions, including thesoftmaxdistribution:P (X = ijY1= y1; : : : ; Yn= yn) = eyiPj eyj
Softmax is indeed a reasonable model for selecting an advisor
based on funding.

The complete algorithm
Once we put the two types of steps together, the complete
algorithm alternates between ordinary Gibbs steps on a sim-
plified network and M-H steps altering the network structure.
It should be noted that different network structures may result
in different sets of variables being, at any given time, relevant
or irrelevant to the query. Our approach restricts computation
to variables that are strictly relevant[Zhang and Poole, 1996]
according to the current structure.

A further possible enhancement islazy constructionof the
Bayesian network. For example, the network can be grown
“from the query outwards”, with nodes added as they are
needed to sample a node currently in the network. (Struc-
tural variables are, like others, instantiated on creation, yield-
ing a network in the usual simplified format.) If necessary,
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nodes may then be discarded when they become irrelevant
to the query under the current network structure. By using
an “intelligent” M-H proposal, as discussed in Section 6, we
can also focus computation on variables that are “important”
to the query—perhaps visiting only an infinitesimal fraction
of the potentially relevant variables—without sacrificingthe
guarantee of convergence to correct probabilities in the limit.

4.3 Experimental Results

To check our algorithm, we applied it first to the knowledge
base with reference uncertainty, no identity uncertainty,and
three professors. In this case, the algorithm generates and
evaluates the network shown in Figure 3. We set values for
fame or funding for each professor, and queried the posterior
probability of Student1:success. In this tiny model, we can
compute the exact value for comparison. The MCMC esti-
mates in Figure 5 clearly converge to the correct value.

We also tested the scalability of the algorithm by trying it
out on various types of networks of increasing size. As an
example, let us consider networks with withn professors and4n+1 students, each of whom could have any one of the pro-
fessors as advisor. We specified the success (or otherwise)
of 4n students and queried the success of the last. Figure 6
shows the inference cost as a function of the total network
size. Because we cannot compute the exact values for alln,
we use a standard convergence diagnostic due to[Gelman,
1996], checking against the exact values for smalln. The
resulting graph appears to be linear in the size of the net-
work. It would appear that, for this type of network, the sam-
pling algorithm scales well. Note also that cost is measured
in terms ofsingle-variablestate transitions performed by the
algorithm, hence the number of transitionsper variable to
reach convergence is approximately constant, regardless of
network size. This held in all our experiments, including ex-
periments (not reported here) on genetic inheritance with un-
certain parentage, where the number of cascaded reference
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variables increases withn.

5 Identity uncertainty

Standard relational probability models[Pfeffer, 2000] in-
corporate the unique names assumption, i.e., each instance
present in the knowledge base corresponds to a different ob-
ject in any given possible world. When this assumption is re-
moved, we must consider the possibility that several instances
may denote the same object. Identity uncertainty is especially
prevalent in settings where an agent perceives multiple ob-
jects over time[Pasulaet al., 1999], but also occurs in almost
all real databases where “duplicate” records abound.

With identity uncertainty, a “possible world” must specify
not only the attribute values for all objects, but also the map-
ping from instances in the knowledge base to objects in the
possible world. (Without identity uncertainty, this mapping
is one-to-one and hence no distinction between instances and
objects is needed.) We represent this mapping using an equiv-
alence relation—a set of equivalence classes, each of which
contains all the instances that co-refer in that particularpos-
sible world.1

Consider the following example, a simplified version
of the data association problem studied by[Pasulaet al.,
1999]. There are two classes,V ehi
le andObservation.
There is one complex attribute,generated by, which maps
an Observation to the V ehi
le that generated it. EachObservation of a vehicle reports a
olour, which depends
(though a probabilistic model of the measuring process) on
the
olour of the correspondingV ehi
le. Instances are added
to the KB as follows: whenever a vehicle is detected at some
sensor, anObservation is instantiated with its colour set to
the measured value, and with a newV ehi
le instance at-
tached. In this domain, inference involves reasoning about

1Note that it doesn’t matterwhichobject the instances denote—
objects are essentially placeholders in a relational structure.
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Figure 7: Bayesian network structure for the two-vehicle case,
where the vehicles are currently assumed to be one and the same
object.

whichV ehi
les are, in fact, identical.2

Figure 7 shows the Bayesian network structure generated
when the knowledge base contains observationsObs1 andObs2 of vehiclesV eh1 andV eh2, and when the equivalence
relation on instances is set toffV eh1; V eh2gg (i.e., V eh1
andV eh2 are the same object).

5.1 Defining a probability distribution
Each possible world now contains an equivalence relation! 2 
 as well as the attribute values, and the knowledge
base must now specify a unique probability distribution over
this enlarged space of worlds. We can writeP (!; hattribute valuesi) = P (hattribute valuesij!)P (!) (2)

Given each fixed!, identity uncertainty is eliminated, and
the probability distribution over the attributes can be defined
as before. All that remains is to specify the priorP (!). When
doing so, we can use the fact that instances in disjoint classes
cannot co-refer—for example, vehicles cannot be observa-
tions.P (!) can thus be factored into terms dealing with each
of the classes. Even then, however, the state space of each
factor is exponential in the number of objects in its class.
Fortunately, there are more compact ways of expressing the!-distribution for each class. The simplest is to give an ex-
plicit distribution over thenumberof objects in each class,
which can be done by adding a number attribute to classes in
the knowledge base. In more complex situations, such as full
data association, the!-distributions are specified implicitly
in conjunction with object arrival and detection models[Pa-
sulaet al., 1999]. The general topic of modular specification
of !-distributions is likely to require a good deal of further
research.

5.2 Inference with identity uncertainty
In the presence of identity uncertainty, exact inference calls
for the a summation over all possible values of!. This is
clearly infeasible whenj
j is large—andj
j is exponential in
the number of instances in identity-uncertain classes. MCMC
permits us to replace the summation with a sample. The al-
gorithm now works as follows. In addition to “normal tran-
sitions,” which run as before given a fixed!, the algorithm
performs “identity transitions” in which! changes. Because
of the large state space of!, the latter type of transition uses

2An alternate interpretation for this knowledge base, more famil-
iar to statisticians, is that there are an unknown number of balls in a
bag; balls are pulled out one at a time, their colour is measured, and
they are replaced.

M-H steps. Moreover, these steps propose changes not only
to !, but also to some of the conventional attributes.

The reason for this is that an identity transition can propose
(among other things) that two currently separate instancesbe
grouped together in the same equivalence class. Clearly, if
these two instances currently have different values for the
same attribute, the probability of the destination state will be
zero. Hence, identity transitions will have a chance of occur-
ing only when the instances “line up”—that is, a sequence of
normal transitions causes all of their attribute values to match
exactly. When instances have many attributes, line-up may be
very rare, resulting in a low acceptance ratio and a slow algo-
rithm. Moreover, there are cases in which waiting for line-up
makes the Markov chain non-ergodic—the algorithm can be
trapped in a subset of possible!s with no escape.

Identity transition proposals
Consider a current assignment!, and a proposed assignment!0. Letu be the set of unobserved attributes of all the objects
in ! affected by the transition, and letu0 be the unobserved
attributes of the corresponding objects in!0. Let o be the
set of all other attributes within the Markov blankets of the
attributes inu or u0: this may include observed attributes, as
well as the unobserved attributes of other objects not affected
by the transition. Note that All attributes ino will remain
fixed throughout the transition.

Each identity transition proceeds as follows:� !0 is chosen using a proposalqI(!0j!). This proposal
can take many forms: one simple possibility is to suggest
that a randomly selected instance move from one equiv-
alence class to another. Another method might suggest
merging two equivalence classes, or splitting an equiva-
lence class in two.� Values for all of u0 are chosen using a proposalqU (u0j!0; !; u; o). The nature ofqU will be explained
further.� The proposed change is accepted with probabilitymin�1; �(!0)qI(!j!0)�(o; u0j!0)qU (uj!; !0; u0; o)�(!)qI (!0j!)�(o; uj!)qU (u0j!0; !; u; o) �
which is derived from Equation (3) using Equation (2)
and the two-step nature of our proposal.

As an example, let us consider the world state portrayed in
Figure 7. In this situation,� ! = ffV eh1; V eh2gg� u = ffV eh1; V eh2g:
olour; fV eh1; V eh2g:sizeg
A split can now be proposed as follows:� !0 = ffV eh1g; fV eh2gg� u0 = fV eh1:
olour; V eh2:
olour; V eh1:size; V eh2:sizeg
To ensure that the chain is ergodic, new values must then be
proposed byqU for at least the newly created attributes.

Choosing the attribute values
One possibleqU proposal picks a value uniformly at random
from the values available at each attribute. This approach is
simple to implement and yields an acceptance ratio that is



easy to calculate. TheqU (uj : : :) terms reduce to1=Pui juij.
This is the algorithm that we test experimentally below.

Unfortunately, thisqU proposal may suggest very un-
likely value combinations for the attributes, resulting in
low acceptance ratios. We might be better off with a
more intelligent proposal mechanism, such as likelihood
weighting which generates samples fromqU (ujo; !) =Qxi2u P (xijPa(xi); !) together with weightsw(ujo; !) =Qxi2o P (xijPa(xi); !). Since�(uj!; o) = w(ujo; !)qU (u0jo; !)Pu=U w(U jo; !)qU (U jo; !)
the fraction in the acceptance ratio can now cancel to give�(!0jo)qI (!j!0; o)w(u0jo; !0)Pu=U w(U jo; !)qU (U jo; !)�(!jo)qI (!0j!; o)w(ujo; !)Pu0=U w(U jo; !0)qU (U jo; !0)
This ratio is no longer so simple, as the summations may be
quite time-consuming. Fortunately, if the set of uncertainat-
tributes can be split into several d-separated sets, the summa-
tions can be rewritten as products of summations over those
sets. If these sets are all small, this algorithm may be feasible.
Yet another approach is to run a “local” MCMC algorithm
insideqU to generate attribute values that reflect the current
values ofo and hence are likely to be accepted.

5.3 Experimental Results
To check our identity uncertainty algorithm, we first per-
formed experiments analogous to those in Section 4.3. We
began with a problem that was small enough for exact calcu-
lation: it consisted of five observations with known attribute
values, and queried the posterior probability of the vehicle
generating the first observation. Figure 8 shows that our al-
gorithm’s estimates clearly converge to the correct value over
time.

We then tested the scalability of the algorithm by, once
more, applying it to randomly generated networks of increas-
ing size, and measuring time to convergence using a stan-
dard diagnostic. The results shown in Figure 9 were obtained
by constructing larger and larger sets of vehicle–observation
pairs, and requesting a posterior distribution over the number
of vehicles. As before, the algorithm appears to scale well.

Finally, we performed an additional experiment to demon-
strate that our algorithm works as expected. It should be true
that, if observations are generated from a specific set of vehi-
cles, increasing the number of observations in the knowledge
base will enable us to model characteristics of that set of ve-
hicles with increasing accuracy. Figure 10 shows that adding
more and more observations does enable us to infer the num-
ber of vehicles responsible for them.

6 Conclusions and further work
We have proposed an algorithmic approach for inference in
first-order probabilistic languages, based on Markov chain
Monte Carlo. Our preliminary investigations suggest that the
approach is very promising. We believe that it can signifi-
cantly increase the expressive power of languages that can be
considered “practical” for knowledge representation and rea-
sonining under uncertainty. For example, the lazy exploration
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approach should make it possible to handle infinite recursive
models, including temporal models, with somehwat greater
generality than so far envisaged[Koller and Pfeffer, 2000].

The Metropolis–Hastings algorithm allows for a wide va-
riety of proposal distributions. In particular,intelligent pro-
posalscan be used to focus computation. One can easily con-
structdata-drivenandquery-drivenproposals, analogous to
forward and backward chaining in logical systems, that es-
sentially result in “activation” spreading outwards from query
and evidence variables. These concepts can be subsumed by
a general mechanism for proposing transitions based on the
expected value of computation[Russell and Wefald, 1991].
We can also insert arbitrary domain-specific knowledge into
the proposal mechanism—for example, proposing candidate
advisors based on the student’s research interest. Such
knowledge-based proposals, which result in faster conver-
gence, can also belearnedvia so-calledadaptive proposals—
that is, allowing the proposal distributionq to change over
time based on the algorithm’s experience in generating sam-
ples and computing acceptances.

Clearly, we have just scratched the surface of this topic.
A large effort is needed to apply first-order probabilistic lan-
guages to real problems, in order to identify useful language
features, common representation structures, and their effect
on inference. Having a flexible and general—albeit some-
times slow—MCMC inference engine should help with this
task. We also need to develop complexity results for approxi-
mate inference, using tools such as those provided by[Jerrum
and Sinclair, 1997].
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