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Abstract

We are often uncertain about the identity of objects.
This phenomenon appears in theories of object persis-
tence in early childhood; in the well-known Morning
Star/Evening Star example; in tracking and data asso-
ciation systems for radar; in security systems based on
personal identification; and in many aspects of our ev-
eryday lives. The paper presents a formal probabilis-
tic approach to reasoning about identity under uncer-
tainty in the framework of first-order logics of probabil-
ity, with application to wide-area freeway traffic moni-
toring.

1 Introduction

Object identification—the task of deciding that two ob-
served objects are in fact one and the same object—is
a fundamental requirement for any situated agent that
reasons about individuals. The aim of this paper is to
explore uncertain reasoning about object identity, with
the ultimate aim of understanding how internal repre-
sentations of individual objects should be created and
manipulated within a complete intelligent agent.

The existence of individuals is central to our conceptu-
alization of the world. While object recognition deals
with assigning objects to categories, such as 1988 Toy-
ota Celicas or adult humans, object identification deals
with recognizing specific individuals, such as one’s car
or one’s spouse. One can have specific relations to in-
dividuals, such as ownership or marriage. Hence, it is
often important to be fairly certain about the identity of
the particular objects one encounters.

Formally speaking, identity is expressed by the equality
operator of first-order logic. Having detected an object�

in a parking lot, one might be interested in whether���������	��

. Because mistaken identity is always a

possibility, this becomes a question of the probability
of identity: ��
 ���������	��
�� all available evidence � .

For many years, philosophers have pondered this ques-
tion (or rather, more general versions thereof). The fa-
mous example of the Evening Star and Morning Star,
long thought to be distinct but in fact the same object
(Venus), shows that one can be mistaken about iden-
tity and that it is really a matter of inference from ac-
cumulated evidence. The doctrine of the Indiscernibil-
ity of Identicals states, uncontroversially, that if

�����
,� 
 � ��� � 
 � � for any predication

�
. The Identity of

Indiscernibles states the converse, thereby pointing out
that identity, and hence the choice of what one consid-
ers to be individuals, is strongly related to the choice of
predications one wishes to make.

There has been little analytical work on object identity
in AI or, it seems, in probability and statistics. The
one area where the issue has been addressed is that of
tracking and data association, as we discuss in Sec-
tion 5. This paper sketches a more general framework,
in which the data association model can be accommo-
dated and extended. It draws extensively on the pre-
vious work of the author and his colleagues and stu-
dents [6, 10, 12, 13, 9].

We begin in Section 2 with what is perhaps the simplest
possible scenario involving identity uncertainty, and we
apply straightforward mathematical techniques to solve
it. Section 3 developes a formal language, combin-
ing probability and first-order logic, that allows identity
questions to be posed in general settings with many ob-
jects, properties, and relations. Section 4 shows how in-
ference for this formal language may be achieved using
Markov chain Monte Carlo (MCMC) algorithms, where
the Markov chain is defined on a state space consisting
of the relational models of the first-order language. Sec-
tion 5 shows how MCMC may be used for reasoning
about vehicle identities in the context of a large-scale
traffic surveillance system.
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2 Balls and Urns

Papers on the foundations of probability are fond of
drawing balls from urns. Here, we consider the follow-
ing scenario. The experimenter is given an urn contain-
ing an unknown collection of balls, and

�
are performed.

In each, a ball is removed from the urn, its colour is
examined, and it is returned to the urn, which is then
shaken vigorously. The standard question in the litera-
ture is, “What is the probability that the next ball drawn
is red?” Instead, we will ask, “How many balls are in
the urn?”

Intuitively, it is clear that reasoning about identity is re-
quired in order to answer this question. Consider the
case where the experimenter can determine that the first
five balls drawn are identical—that is, the same ball is
drawn five times. Then it seems reasonable to infer that
the urn probably contains just one ball.

A formal probability model for this problem is defined
on the following random variables:��� is the number of balls, with prior ��
 � � .� C

�������	�
�	��� �
�
are the true colours of the � balls

in the urn, each with an identical prior ��
 ��� � .��� � � ���
�	�
��� ��� are the true identities of the
balls drawn; the value of each is an integer in��� �	�
�	��� ��� . By assumption, these variables are in-
dependent and uniformly distributed.� Y
�������	�
�	����� � are the observed colours of the

�
balls drawn, each distributed according to an iden-
tical sensor model ��
 ����� ���! � .

The joint distribution is then

��
 � � C � � � Y � �
��
 � �#"%$ ��'&(� ��
 � � �*),+ ��.- � $ �� &/� ��
 ����� �#�0 � (1)

Notice how the identity of the balls enters into this ex-
pression, by selecting the true colours of the observed
balls and hence correlating the observed colours.

The question, “How many balls are there?” is answered
by the posterior distribution ��
 � �Y � y � , given by1 ��
 � ��2 ��43 �65

c 7 �8�'&(� ��
 �
� �*9 5 � �8� &(� ��
 � � � � �  �
(2)

(In this expression, the sum over c may be replaced
by an integral if the colour distribution is continuous.)
When

�;: � , this expression can be simplified some-
what, but in general the summation over all � � identity

assignments must be calculated. This is characteristic of
all the identity uncertainty problems we have studied.

One question of particular interest is whether the num-
ber of balls can be identified exactly in the limit of many
experiments, i.e., as

�=<?>
. The answer to this ques-

tion depends on the nature of the colour distribution and
sensor model. If there can be indistinguishable but non-
identical balls—for example, if the colour distribution is
discrete and the sensor model is exact—then it is impos-
sible for any set of observations to distinguish among
the situations with � , @ � , A � ,

�	�
�
balls. In that case,

the posterior will tend to a collection of delta functions
placed at values of � equal to multiples of the lowest
common multiple of the denominators of the reduced-
form fractions of each colour. For example, if the ob-
served fractions of three colours in the limit are 1/3, 1/3,
and 1/3, then there could be 3, 6, 9,

�
�	�
balls. On the

other hand, if the colour distribution is continuous, in-
distinguishable balls occur with probability zero and the
posterior converges to the true number as

�B<C>
.

3 A formal theory

The preceding section gave an example and developed a
specific formula for that example. In this section, we de-
scribe a general representation language that combines
probability theory with a restricted fragment of first-
order logic, sufficient to represent many cases of iden-
tity uncertainty. Given this language, a single algorithm
can be used to answer questions about all such cases.

The basic principles of first-order probabilistic logic
(FOPL) were given by [5]. Each model structure of a
FOPL knowledge base should be viewed as a probabil-
ity measure over the possible worlds (logical models)
defined by the constant, function, and predicate sym-
bols of the knowledge base. Entailment between prob-
abilistic assertions is then defined identically to ordi-
nary logical entailment, i.e., via truth in all model stuc-
tures. Given a complete knowledge base—one that fixes
a unique model structure—the probability of a sentence
is defined to be the sum of probabilities assigned to all
the possible worlds in which that sentence is true.

We extend the relational probability models of [8] as
follows:� A set D of classes denoting sets of objects, related

by subclass/superclass relations. Each class has an
associated prior distribution over the cardinality of
the class.� A set E of named instances denoting objects, each
an instance of one class.
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� A set
�

of simple attributes denoting func-
tions. Each simple attribute � has a domain type������� �
	�� D and a range that is a finite, enumer-
ated set of values 
 ��� � ��	 .� A set � of complex attributes denoting relations.
Each complex attribute � has a domain type������� ��	�� D and a range type � ������� � ��	�� D .
We allow for reference uncertainty, i.e., the values
of each complex attribute may be unknown.� With each complex attribute � , we associate
a simple reference attribute


���� � ��	 , such that

 ��� � 
���� � ��	�	 is a finite, enumerated set of named
instances. (Where no confusion arises, we may
drop the


���� �! 	 and use the attribute name itself.)� A special relational attribute “=”, standing for
identity in the standard logical sense.� A set of conditional probability models
��
"� � � � � �
	 � for the simple attributes. A
parent chain for a simple attribute is a
nonempty chain of (appropriately typed) at-
tributes # � � � �  $ $ � �&% � �(' , where �)' is a simple
attribute. � � � �
	 is the set of � ’s parents, namely
the set of all instance variables reached by any
parent chain for all possible combinations of
values of all the uncertain complex attributes,
as well as all the reference variables for those
attributes.� Dependencies are expressed as before by a con-
ditional distribution ��
 
���� � ��	 � � � � 
���� � ��	�	 � . The
parents of


���� � ��	 are those attributes or attribute
chains that influence the choice of an instance as
the value of attribute � .

Most applications of FOPL assume that there is no ref-
erence uncertainty, and that every instance is distinct
(unique names assumption, hence no identity uncer-
tainty). Thus, a possible world is defined by the values
of the instance variables—the simple attributes for all
named instances—and the knowledge base specifies a
complete distribution over all possible worlds. With ref-
erence uncertainty, possible worlds also vary according
to the relations that hold among objects, which deter-
mine in turn the probabilistic influences among instance
variables. With identity uncertainty, we also must spec-
ify which instances in the representation map to which
objects in the possible world, and how many objects
the world contains—thus, the possible world is a com-
plete structure and interpretation as in first-order predi-
cate calculus with equality. This means that the proba-
bility of any given sentence is given by summing over
all possible identity relations and numbers of objects,

all possible relational structures among objects, and all
possible values for the instance variables.

To represent the balls-and-urn example, we need two
classes, � ���*� and + �-,.� 
�/���021 � � . A prior is specified for
the cardinality of the � ���*� class. There is one complex
attribute,

���.�3� 
 ��04��5 � �
, which maps an + �-,.� 
�/���021 � �

to the 
 ��67198$�*� that generated it. Each + �-,.� 
�/ ��021 � � of
a vehicle reports a

8 � � ��: 

, which depends (through the

sensor model) on the
8 � � ��: 


of the corresponding � ���"� .
For each observation, a new + �$,;� 
�/ �<021 � � instance is
added to the KB with its colour set to the measured
value, and with a new � ���*� instance attached. A query
can be issued to the inference algorithm asking for the
posterior cardinality of the � ���*� class.

4 MCMC on logical models

Exact inference for full FOPL languages is undecidable;
for decidable fragments with reference uncertainty, the
complexity is very high. Initial experiments suggest,
however, that approximate inference using MCMC is a
promising approach [9].

MCMC [4] generates samples from a posterior distribu-
tion = 
?> � over possible worlds > by defining a Markov
chain whose states are the worlds > and whose station-
ary distribution is = 
?> � . In the Metropolis–Hastings
method (henceforth M-H), transitions in the Markov
chain are constructed in two steps:� Given the current state > , a candidate next state is

generated from the proposal distribution @�
?>A' � > � ,
which may be (more or less) arbitrary.� The transition to >B' is not automatic, but occurs
with an acceptance probability defined by1 
*> ' � > � � � 19� 2 � � = 
?>B' �C@�
?> � >B' �= 
*> �4@�
*> ' � > � 3

It is not necessary that all the variables of state > be
updated simultaneously, in a single transition function.
Single-component M-H alters each variable in turn. It
is also possible to factor @ into separate transition func-
tions for various subsets of variables. Provided that @ is
defined in such a way that the chain is ergodic, this tran-
sition mechanism defines a Markov chain whose sta-
tionary distribution is = 
?> � .
The Gibbs sampling algorithm for Bayesian net-
works [11] is a special case of Metropolis–Hastings in
which the proposal distribution samples a single vari-
able D � using the distribution ��
*D � �mb 
?D � � � , where
mb 
?D � � denotes the current values of the variables in
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the Markov blanket of D � (its parents � � � D � 	 , children���
, and children’s other parents). In this case, the ac-

ceptance probability is always 1. One can show easily
that

��
*D � �mb 
?D � � � � 1 ��
*D � � � � � D � 	 � � 8 � ��
 � ��� � � � ��� 	 �
(3)

Gibbs sampling is very simple and also local: transi-
tions are generated referring only to parts of the model
directly connected to the variable in question. Hence,
the cost per transition is typically independent of model
size. M-H sampling is also typically local because all
the parts of the model that are not changed by the tran-
sition cancel in the ratio = 
?>B' � � = 
?> � . In particular, if
the proposal concerns a single variable D � , this ratio
reduces to ��
?>B'� �mb 
*D � � � � ��
*> � �mb 
*D � � � , where >B'� is
the proposed value of D � and > � is its current value. The
M-H algorithm, unlike Gibbs, has the added advantage
that the transition may often be computed without refer-
ring to the other values of D � at all, as we will see.

MCMC can be applied to FOPL inference by definng
the state space to be the set of possible worlds, as de-
scribed above. For the balls-and-urn example, transi-
tions may modify the true colours of the balls, the iden-
tities of the sampled balls, or the number of balls. For
cases where the true posterior converges to a single delta
function as

�4< >
, MCMC mixes well and the apr-

poximation is very accurate. (It should be possible to
give good convergence bounds for this case.) For cases
with ambiguous posteriors, MCMC mixing with a sim-
ple “random walk” proposal on � will not converge
very quickly because, for large

�
, the chain will become

trapped in one of the peaks in teh posterior distribution.
At present it is not known if the approximation prob-
lem is intractable or whether a better proposal can be
designed.

5 Traffic surveillance

We have developed one large-scale application of
MCMC for identity uncertainty—a traffic surveillance
system that uses multiple cameras to asses the state of
a large freeway network [10]. The sensors used in this
project are video cameras placed on poles beside the
freeway (Figure 1). Observations made at multiple cam-
eras must be combined to track vehicles through the
freeway network. Object identification is required for
two purposes: first, to measure link travel time—the ac-
tual time taken for vehicles to travel between two fixed
points on the freeway network; and second, to provide
origin/destination (O/D) counts—the total number of
vehicles traveling between any two points on the net-

�������	��

���
Images from two surveillance cameras

roughly two miles apart on Highway 99 in Sacramento,
California. The top image is from the upstream camera,
and the bottom image is from the downstream camera.
Are the two boxed vehicles the same?

work in a given time interval.

Combining multiple observations into tracks is a task
addressed by the data association field—see [2, 1]. The
intractability of exact data association inference [3] has
led to many approximate methods. In our approach,
MCMC is used to sample from possible track histories
for all vehicles. MCMC transitions simply switch two
tracks at some point in their histories. For two cam-
eras, this gives a polynomial-time approximation [7]—
the first approximation result for data association. Our
experiments show that MCMC converges quickly—in
100 samples or so—as each new vehicle is added, even
in state spaces with thousands of vehicles.

Figure 2 shows a simulated freeway network. The aim
is to estimate the origin-destination counts between the
two entry points and the three exit points. This requires
tracking each object across the entire network. In this
task, we compare two algorithms: Huang–Russell [6]
and MCMC. The Huang–Russell algorithm gives a
good approximation to pairwise identity probabilities,
and then concatenates these identities to track vehicles
over several cameras. Because MCMC does joint es-
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 � ���������
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������ ����� ��� ������������� ���! 
�#"$��� 
��%� ��
 
'&(��)+* 
'�,&(� ��-+& ���.
/* ��* 
0����� 
 ����� �
1 ���2�3" 
4��*��657���,�8���9�:��
 
���; 
 ��� � 
4�<��� �	���<�')>=
� 
���� �	��
��
��; 
 � 
�*?� ����*�� 
'�@��*A� 
�B ������=C�D�@�.
 

� � ������*? �� 
E�E� ��*A��� ����*���� �#*?�F�G��*��H; 
�
 ����" 
I�9���8��
 
'�
�'� �J��
 
K1�LM1�LN��*��PO �?��* ��Q>R �3��� 
�"�"S��" �T�� 
� ���.
3�H��=U�>�V�W� �#*A��� ����*X���Y�.
 
I����"$� �	�7*A� �Z� 
V;�� � �� 
��*�� 
 �

timation over the whole network, we expect it to per-
form much better than Huang–Russell as the measure-
ment noise increases. The results in Figure 2 bear this
out. The second graph in the figure also shows that both
methods are unable to find exact matches accurately for
high levels of noise. The ability of the MCMC algo-
rithm to recover reasonable counts despite the failure of
individual matches suggests that its samples contain a
reasonable amount of information about the ensemble
behaviour of the vehicles.

6 Conclusions

This paper has introduced the general problem of iden-
tity uncertainty as a subject of study for AI and soft
computing generally. MCMC was proposed as a
promising technique that can be applied to perform ap-
proximate inference on general first-order probabilis-
tic logics, by sampling from possible worlds. Many
open problems remain. Perhaps the most important is
that of finding natural ways to specify distributions over
possible identity relations—i.e., how many things are
there? How frequently do new things appear? Resolv-
ing this issue and combining the solution with existing
methods—such as Bayes nets and relational probability
models—should open up many new applications.
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