
On Representation Complexity of Model-based and Model-free
Reinforcement Learning

Hanlin Zhu* Baihe Huang* Stuart Russell

Department of Electrical Engineering and Computer Sciences, UC Berkeley

October 4, 2023

Abstract

We study the representation complexity of model-based and model-free reinforcement learn-
ing (RL) in the context of circuit complexity. We prove theoretically that there exists a broad
class of MDPs such that their underlying transition and reward functions can be represented by
constant depth circuits with polynomial size, while the optimal Q-function suffers an exponen-
tial circuit complexity in constant-depth circuits. By drawing attention to the approximation
errors and building connections to complexity theory, our theory provides unique insights into
why model-based algorithms usually enjoy better sample complexity than model-free algorithms
from a novel representation complexity perspective: in some cases, the ground-truth rule (model)
of the environment is simple to represent, while other quantities, such as Q-function, appear
complex. We empirically corroborate our theory by comparing the approximation error of the
transition kernel, reward function, and optimal Q-function in various Mujoco environments,
which demonstrates that the approximation errors of the transition kernel and reward function
are consistently lower than those of the optimal Q-function. To the best of our knowledge, this
work is the first to study the circuit complexity of RL, which also provides a rigorous framework
for future research.

1 Introductions

In recent years, reinforcement learning (RL) has seen significant advancements in various real-world
applications (Mnih et al., 2013; Silver et al., 2016; Moravčík et al., 2017; Shalev-Shwartz et al., 2016;
Yurtsever et al., 2020; Yu et al., 2020; Kober et al., 2014). Roughly speaking, the RL algorithms
can be categorized into two types: model-based algorithms (Draeger et al., 1995; Rawlings, 2000;
Luo et al., 2018; Chua et al., 2018; Nagabandi et al., 2020; Moerland et al., 2023) and model-free
algorithms (Mnih et al., 2015; Lillicrap et al., 2015; Van Hasselt et al., 2016; Haarnoja et al., 2018).
Model-based algorithms typically learn the underlying dynamics of the model (i.e., the transition
kernel and the reward function) and then learn the optimal policy utilizing the knowledge of the
ground-truth model. On the other hand, model-free algorithms usually derive optimal policies
through different quantities, such as Q-function and value function, without directly assimilating
the underlying ground-truth models.

In statistical machine learning, the efficiency of an algorithm is usually measured by sample
complexity. For the comparison of model-based and model-free RL algorithms, many previous

∗Equal contributions. Emails: {hanlinzhu,baihe_huang,russell}@berkeley.edu

1

ar
X

iv
:2

31
0.

01
70

6v
1

 [
cs

.L
G

]
 3

 O
ct

 2
02

3

works also focus on their sample efficiency gap, and model-based algorithm usually enjoys a better
sample complexity than model-free algorihms (Jin et al., 2018; Zanette and Brunskill, 2019; Tu and
Recht, 2019; Sun et al., 2019). In general, the error of learning 1 can be decomposed into three
parts: optimization error, statistical error, and approximation error. Many previous efforts focus
on optimization errors (Singh et al., 2000; Agarwal et al., 2020; Zhan et al., 2023) and statistical
errors (Kakade, 2003; Strehl et al., 2006; Auer et al., 2008; Azar et al., 2017; Rashidinejad et al.,
2022; Zhu and Zhang, 2023), while approximation error has been less explored. Although a line of
previous work studies the sample complexity additionally caused by the approximation error under
the assumption of a bounded model misspecification error (Jin et al., 2019; Wang et al., 2020; Zhu
et al., 2023b; Huang et al., 2021; Zhu et al., 2023a), they did not take a further or deeper step to
study for what types of function classes (including transition kernel, reward function, Q-function,
etc.), it is reasonable to assume a small model misspecification error.

In this paper, we study approximation errors through the lens of representation complexities.
Intuitively, if a function (transition kernel, reward function, Q-function, etc.) has a low represen-
tation complexity, it would be relatively easy to learn it within a function class of low complexity
and misspecification error, thus implying a better sample complexity. The previous work Dong
et al. (2020b) studies a special class of MDPs with state space S = [0, 1], action space A = {0, 1},
transition kernel piecewise linear with constant pieces and a simple reward function. By showing
that the optimal Q-function requires an exponential number of linear pieces to approximate, they
provide a concrete example that the Q-function has a much larger representation complexity than
the transition kernel and reward function, which implies that model-based algorithms enjoy better
sample complexity. However, the MDP class they study is restrictive. Thus, it is unclear whether
it is a universal phenomenon that the underlying models have a lower representation complexity
than other quantities such as Q-functions. Moreover, their metrics of measuring representation
complexity, i.e., the number of pieces of piece-wise linear functions, is not fundamental, rigorous, or
applicable to more general functions.

Therefore, we study representation complexity via circuit complexity (Shannon, 1949), which is
a fundamental and rigorous metric that can be applied to arbitrary functions stored in computers.
Also, since the circuit complexity has been extensively explored by numerous previous works (Shan-
non, 1949; Karp, 1982; Furst et al., 1984; Razborov, 1989; Smolensky, 1987; Vollmer, 1999; Leighton,
2014) and is still actively evolving, it could offer us a deep understanding of the representation com-
plexity of RL, and any advancement of circuit complexity might provide new insights into our work.
Theoretically, we show that there exists a general class of MDPs called Majority MDP (see more
details in Section 3), such that their transition kernels and reward functions have much lower circuit
complexity than their optimal Q-functions. This provides a new perspective for the better sample
efficiency of model-based algorithms in more general settings. We also empirically validate our re-
sults by comparing the approximation errors of the transition kernel, reward function, and optimal
Q-function in various Mujoco environments (see Section 4 for more details).

We briefly summarize our main contributions as follows:

• We are the first to study the representation complexity of RL under a circuit complexity
framework, which is more fundamental and rigorous than previous works.

• We study a more general class of MDPs than previous work, demonstrating that it is common
in a broad scope that the underlying models are easier to represent than other quantities such
as Q-functions.

1For example, the performance difference between the learned policy and the optimal policy, which can be trans-
lated to sample complexity

2

• We empirically validate our results in real-world environments by comparing the approxima-
tion error of the ground-truth models and Q-functions in various MuJoCo environments.

1.1 Related work

Model-based v.s. Model-free algorithms. Many previous results imply that there exists the
sample efficiency gap between model-based and model-free algorithms in various settings, including
tabular MDPs (Strehl et al., 2006; Azar et al., 2017; Jin et al., 2018; Zanette and Brunskill, 2019),
linear quadratic regulators (Dean et al., 2018; Tu and Recht, 2018; Dean et al., 2020), contextual
decision processes with function approximation (Sun et al., 2019), etc. The previous work Dong
et al. (2020b) compares model-based and model-free algorithms through the lens of the expressivity
of neural networks. They claim that the expressivity is a different angle from sample efficiency. On
the contrary, in our work, we posit the representation complexity as one of the important reasons
causing the gap in sample complexity.

Ground-truth dynamics. The main result of our paper is that, in some cases, the underlying
ground-truth dynamics (including the transition kernels and reward models) are easier to represent
and thus learn, which inspires us to utilize the knowledge of the ground-truth model to boost the
learning algorithms. This is consistent with the methods of many previous algorithms that exploit
the dynamics to boost model-free quantities (Buckman et al., 2018; Feinberg et al., 2018; Luo et al.,
2018; Janner et al., 2019), perform model-based planning (Oh et al., 2017; Weber et al., 2017; Chua
et al., 2018; Wang and Ba, 2019; Piché et al., 2018; Nagabandi et al., 2018; Du and Narasimhan,
2019) or improve the learning procedure via various other approaches (Levine and Koltun, 2013;
Heess et al., 2015; Rajeswaran et al., 2016; Silver et al., 2017; Clavera et al., 2018).

Approximation error. A line of previous work (Jin et al., 2019; Wang et al., 2020; Zhu et al.,
2023b) study the sample complexity of RL algorithms in the presence of model misspecification.
This bridges the connection between the approximation error and sample efficiency. However, these
works directly assume a small model misspecification error without further justifying whether it is
reasonable. Our results imply that assuming a small error of transition kernel or reward function
might be more reasonable than Q-functions. Many other works study the approximation error and
expressivity of neural networks (Bao et al., 2014; Lu et al., 2017; Dong et al., 2020a; Lu et al.,
2021). Instead, we study approximation error through circuit complexity, which provides a novel
perspective and rigorous framework for future research.

Circuit complexity. Circuit complexity is one of the most fundamental concepts in the theory of
computer science (TCS) and has been long and extensively explored (Savage, 1972; Valiant, 1975;
Trakhtenbrot, 1984; Furst et al., 1984; Hastad, 1986; Smolensky, 1987; Razborov, 1987, 1989; Bop-
pana and Sipser, 1990; Arora and Barak, 2009). In this work, we first introduce circuit complexity
to reinforcement learning to study the representation complexity of different functions including
transition kernel, reward function and Q-functions, which bridges an important connection between
TCS and RL.

1.2 Notations

Let 1b = (1, . . . , 1) ∈ Rb denote the all-one vector and let 0b = (0, . . . , 0) ∈ Rb denote the all-zero
vector. For any set X and any function f : X → X , f (k)(x) is the value of f applied to x after k

3

times, i.e., f (1)(x) = f(x) and f (k)(x) = f(f(. . . f︸ ︷︷ ︸
k

(x)) . . .)).

Let ⌈x⌉ denote the smallest integer greater than or equal to x, and let ⌊x⌋ denote the greatest
integer less than or equal to x. We use {0, 1}n to denote the set of n-bits binary strings. Let δx

denote the Dirac measure: δx(A) =

{
1, x ∈ A

0, x /∈ A
and we use 1(·) to denote the indicator function.

Let [n] denote the set {1, 2, . . . , n} and let N = {0, 1, 2, . . .} denote the set of all natural numbers.

2 Preliminaries

2.1 Markov Decision Process

An episodic Markov Decision Process (MDP) is defined by the tuple M = (S,A, H,T, r) where
S is the state space, A is the action set, H is the number of time steps in each episode, T is the
transition kernel from S ×A to ∆(S) and r = {rh}Hh=1 is the reward function. When T(·|s, a) = δs′ ,
i.e., T is deterministic, we also write T(s, a) = s′. In each episode, the agent starts at a fixed initial
state s1 and at each time step h ∈ [H] it takes action ah, receives reward rh(sh, ah) and transits to
sh+1 ∼ T(·|sh, ah). Typically, we assume rh(sh, ah) ∈ [0, 1].

A policy π is a length-H sequence of functions π = {πh : S 7→ ∆(A)}Hh=1. Given a policy π,
we define the value function V π

h (s) as the expected cumulative reward under policy π starting from
sh = s (we abbreviate V ∗ := V ∗

0):

V π
h (s) := E

[
H∑
t=h

rt(st, at)

∣∣∣∣∣ sh = s, π

]

and we define the Q-function Qπ
h(s, a) as the the expected cumulative reward taking action a in

state sh = s and then following π (we abbreviate Q∗ := Q∗
0):

Qπ
h(s, a) := E

[
H∑
t=h

rt(st, at)

∣∣∣∣∣ sh = s, ah = a, π

]
.

The Bellman operator Th applied to Q-function Qh+1 is defined as follow

Th(Qh+1)(s, a) := rh(s, a) + Es′∼T(·|s,a)[max
a′

Qh+1(s
′, a′)].

There exists an optimal policy π∗ that gives the optimal value function for all states, i.e. V π∗
h (s) =

supπ V
π
h (s) for all h ∈ [H] and s ∈ S (see, e.g., Agarwal et al. (2019)). For notation simplicity, we

abbreviate V π∗ as V ∗ and correspondingly Qπ∗ as Q∗. Therefore Q∗ satisfies the following Bellman
optimality equations for all s ∈ S, a ∈ A and h ∈ [H]:

Q∗
h(s, a) = Th(Q∗

h+1)(s, a).

2.2 Function approximation

In value-based (model-free) function approximation, the learner is given a function class F = F1 ×
· · · × FH , where Fh ⊂ {f : S × A 7→ [0, H]} is a set of candidate functions to approximate the
optimal Q-function Q∗.

4

In model-based function approximation, the learner is given a function class F = F1×· · ·×FH ,
where Fh ⊂ {f : S × A 7→ ∆(S)} is a set of candidate functions to approximate the underlying
transition function T. Additionally, the learner might also be given a function class R = R1 ×
· · · × RH where Rh ⊂ {f : S × A 7→ [0, 1]} is a set of candidate functions to approximate the
reward function r. Typically, the reward function would be much easier to learn than the transition
function.

To learn a function with a large representation complexity, one usually needs a function class
with a large complexity to ensure that the ground-truth function is (approximately) realized in the
given class. A larger complexity (e.g., log size, log covering number, etc.) of the function class
would incur a larger sample complexity. Our main result shows that it is common that an MDP
has a transition kernel and reward function with low representation complexity while the optimal
Q-function has a much larger representation complexity. This implies that model-based algorithms
might enjoy better sample complexity than value-based (model-free) algorithms.

2.3 Circuit complexity

To provide a rigorous and fundamental framework for representation complexity, in this paper, we
use circuit complexity to measure the representation complexity.

Circuit complexity has been extensively explored in depth. In this section, we introduce concepts
related to our results. One can refer to Arora and Barak (2009); Vollmer (1999) for more details.

Definition 1 (Boolean circuits, adapted from Definition 6.1, (Arora and Barak, 2009)). For every
m,n ∈ Z+, a Boolean circuit C with n inputs and m outputs is a directed acyclic graph with n
sources and m sinks (both ordered). All non-source vertices are called gates and are labeled with one
of ∧ (AND), ∨ (OR) or ¬ (NOT). For each gate, its fan-in is the number of incoming edges, and
its fan-out is the number of outcoming edges. The size of C is the number of vertices in it. The
depth of C is the length of the longest directed path in it. A circuit family is a sequence {Cn}n∈Z+

of Boolean circuits where Cn has n inputs.
If C is a Boolean circuit, and x = (x1, . . . , xn) ∈ {0, 1}n is its input, then the output of C on x,

denoted by C(x), is defined in the following way: for every vertex v of C, a value val(v) is assigned
to v such that val(v) is given recursively by applying v’s logical operation on the values of the vertices
pointed to v; the output C(x) is a m-bits binary string y = (y1, . . . , ym), where yi is the value of the
i-th sink.

Definition 2 (Circuit computation). A circuit family is a sequence C = (C1, C2, . . . , Cn, . . .), where
for every n ∈ Z+, Cn is a Boolean circuit with n inputs. Let fn be the function computed by Cn .
Then we say that C computes the function f : {0, 1}∗ → {0, 1}∗, which is defined by

f(w) := C|w|(w), ∀w ∈ {0, 1}∗

where |w| is the bit length of w. More generally, we say that a function f : N → N can be computed
by C if f can be computed by C where the inputs and the outputs are represented by binary numbers.

Definition 3 ((k,m)-DNF). A (k,m)-DNF is a disjunction of conjuncts, i.e., a formula of the
form

n∨
i=1

 ki∧
j=1

Xi,j


where ki ≤ k for every i ∈ [n],

∑n
i=1 ki ≤ m, and Xi,j is either a primitive Boolean variable or the

negation of a primitive Boolean variable.

5

Definition 4 (AC0). AC0 is the class of all boolean functions f : {0, 1}∗ → {0, 1}∗ for which there
is a circuit family with unbounded fan-in, nO(1) size, and constant depth that computes f .

In this paper, we study representation complexity within the class of constant-depth circuits.
Our results depend on two “hard” functions, parity and majority functions, which require exponential
size circuits to compute and thus are not in AC0. Below, we formally define these two functions
respectively.

Definition 5 (Parity). For every n ∈ Z+, the n-variable parity function PARITYn : {0, 1}n → {0, 1}
is defined by PARITYn(x1, . . . , xn) =

∑n
i=1 xi mod 2. The parity function PARITY : {0, 1}∗ →

{0, 1} is defined by

PARITY(w) := PARITY|w|(w), ∀w ∈ {0, 1}∗.

Proposition 2.1 ((Furst et al., 1984)). PARITY /∈ AC0.

3 Theoretical Results

We show our main results in this section that there exists a broad class of MDPs that demonstrates a
separation between the representation complexity of the ground-truth model and that of the value
function. This reveals one of the important reasons that model-based algorithms usually enjoy
better sample efficiency than value-based (model-free) algorithms.

The previous work Dong et al. (2020b) also conveyed similar messages. However, they only
study a very special MDP while we study a more general class of MDPs. Moreover, Dong et al.
(2020b) measures the representation complexity of functions by the number of pieces for a piecewise
linear function, which is not rigorous and not applicable to more general functions.

To study the representation complexity of MDPs under a more rigorous and fundamental frame-
work, we introduce circuit complexity to facilitate the study of representation complexity. In this
work, we focus on circuits with constant-depth. We first show a warm-up example in Section 3.1,
and then extend our results to a broader class of MDPs in Section 3.2.

3.1 Warm up example

In this section we show a simple MDP that demonstrates a separation between the circuit complexity
of the model function and that of the value function.

Definition 6 (Parity MDP). An n-bits parity MDP is defined as follows: the state space is {0, 1}n,
the action space is {(i, j) : i, j ∈ [n]}, and the planning horizon is H = n. Let the reward function

be defined by: r(s, a) =

{
1, s = 0n

0, otherwise
. Let the transition function be defined as follows: for each

state s and action a = (i, j), transit with probability 1 to s′ where s′ is given by flipping the i-th and
j-th bits of s.

Both T and r can be computed by a circuit with polynomial-size and constant depth. Indeed,
consider the following circuit:

Creward(s) = s1 ∧ s2 ∧ · · · ∧ sn.

It can be verified that Creward = r and it has size n. For the model transition function, we consider
the binary representation of the action: for each a = (i, j), let (a1, . . . , ab) denote the binary

6

s1 a1 ab ab+1 a2b… …

1 (1 =
b

∑
i=1

2b−iai)

⊕

⊕

sn a1 ab ab+1 a2b… …

1 (n =
b

∑
i=1

2b−iai) 1 (n =
b

∑
i=1

2b−iab+i)

⊕

⊕

…
1 (1 =

b

∑
i=1

2b−iab+i)

Outputs: …

Inputs:

s′￼1 s′￼n

Figure 1: Constant-depth circuit of the model transition function in parity MDP. An empty node
is directly assigned the value of the node pointing to it.

representation of i and let (ab+1, . . . , a2b) denote the binary representation of j, where b = ⌈log(n+
1)⌉. Then define the following circuit:

Cmodel(s, a) = (sk ⊕ δk(a1, . . . , ab)⊕ δk(ab+1, . . . , a2b))
n
k=1

where ⊕ is the XOR gate and δk(x1, . . . , xb) = 1

(
k =

∑b
i=1 2

b−i · xi
)
. We visualize this circuit

in Figure 1. Since the XOR gate and the gate δk can all be implemented by binary circuits with
polynomial size and constant depth (notice that a ⊕ b = (¬a ∨ b) ∧ (a ∨ ¬b) and δk(x1, . . . , xb) =
(x1∨k1)∨· · ·∨(xb∨kb) where k1k2 · · · kb is the binary representation of k), Cmodel also has polynomial
size and constant depth.

However, the optimal Q-function Q∗ can not be computed by a circuit with polynomial size and
constant depth. Indeed, it suffices to see that the value function V ∗ can not be computed by a
circuit with polynomial size and constant depth. To see this, notice that 1(V ∗ > 0) is the parity
function, since if there are even numbers of 1’s in (s1, . . . , sn), then there always exists a sequence
of actions to transit to the reward state; otherwise, the number of 1’s remains odd and will never
become 0n. Suppose for the sake of contradiction that there exists a circuit Cvalue with polynomial
size and constant depth that computes V ∗, then the circuit

CPARITY(s, a) = Cvalue(s, a)1 ∨ Cvalue(s, a)2 ∨ · · · ∨ Cvalue(s, a)n

computes the parity function for s and belongs to the class AC0. This contradicts Proposition 2.1.

3.2 A broader family of MDPs

In this section, we present our main results, i.e., there exists a general class of MDP, of which
nearly all instances of MDP have low representation complexity for the transition model and reward
function but suffer an exponential representation complexity for the optimal Q-function.

7

s1 s2 . . . sb−1 sb sb+1 sb+2 . . . sb+n−1 sb+n

Control Bits Representation Bits

Figure 2: Illustration of state for majority MDPs.

We consider a general class of MDPs called ‘majority MDP’, where the states are comprised of
representation bits that reflect the situation in the underlying environment and control bits that
determine the transition of the representation bits. We first give the definition of majority MDP
and then provide intuitive explanations.

Definition 7 (Control function). We say that a map f from {0, 1}b to itself is a control function
over {0, 1}b, if f(1b) = 1b, and{

f (k)(0b) : k = 1, 2, . . . , 2b − 1
}
= {0, 1}b\{0b}.

Definition 8 (Majority MDP). An n-bits majority MDP with reward state sreward ∈ {0, 1}n,
control function f : {0, 1}⌈log(n+1)⌉ → {0, 1}⌈log(n+1)⌉, and condition C : {0, 1}n → {0, 1} is defined
by the following:

• The state space is given by {0, 1}n+b where b = ⌈log(n + 1)⌉. For convenience, we assume
n = 2b − 1. Each state is comprised of two subparts s = (s[c], s[r]), where s[c] = (s1, . . . , sb) ∈
{0, 1}b is called the control bits, and s[r] = (sb+1, . . . , sb+n) ∈ {0, 1}n is called the representa-
tion bits (see Figure 2);

• The action space is {0, 1}; The planning horizon is H = 2b + n;

• The reward function is defined by: r(s, a) =

{
1, s[r] = sreward, s[c] = 1b

0, otherwise
;

• The transition function T is defined as follows: define the flipping function g : {0, 1}n× [n] →
{0, 1}n by g(s, i) = (s1, . . . ,¬si, . . . , sn), then T is given by:

T(s, a) =


(
s[c], g(s[r],

∑b
j=1 2

b−j · sj)
)
, a = 1, C(s[r]) = 1

(f(s[c]), s[r]) , otherwise

that is, if a = 1 and C(s[r]) = 1, then transit to s′ = (s[c], g(s[r], i)) where i =
∑b

j=1 2
b−j · sj2

and gi(s[r]) is given by flipping the i-th bits of s[r] (keep the control bits while flip the i-
th coordinate of the representation bits); otherwise transit to s′ = (f(s[c]), s[r]) (keep the
representation bits and apply the control function f to the control bits).

When C ≡ 1, we call such an MDP unconditioned.

Although many other MDPs lie outside of the Majority MDP class, most are too random to
become meaningful (for example, the MDP where the reward state is in a o(n)-sized connected
component). Thus, instead of studying a more general class of MDPs, we consider one representative
class of MDPs and separate three fundamental notions in RL: control, representation, and condition.
We elaborate on these aspects in the following remark.

2That is, s[c] as a binary number equals i.

8

Remark 1 (Control function and control bits). In Majority MDPs, the control bits start at 0b and
traverse all b-bits binary strings before ending at 1b. This means that the agent can can flip every
entry of the representation bits, and therefore, the agent is able to change the representation bits to
any n-bits binary string within 2b + n time steps in unconditional settings.

The control function is able to express any ordering of b-bits strings (starting from 0b and ending
with 1b) in which the control bits are taken. With this expressive power, the framework of Majority
MDP simplifies the action space to fundamental case of A = {0, 1}.

Remark 2 (Representation bits). In general, the states of any MDP (even for MDP with continuous
state space) are stored in computer systems in finitely many bits. Therefore, we allocate n bits in
the representation bits to encapsulate and delineate the various states within an MDP.

Remark 3 (Condition function). The condition function simulates and expresses the rules of tran-
sition in an MDP. In many real-world applications, the decisions made by an agent only take effect
(and therefore cause state transition) under certain underlying conditions, or only enable transitions
to certain states that satisfy the conditions: for example, an marketing maneuver made by a company
will only make an influence if it observes the advertisement law and regulations; a move of a piece
chess must follow the chess rules; a treatment decision can only affect some of the measurements
taken on an individual; a resource allocation is subject to budget constraints; etc.

Finally, the following two theorems show the separation result of circuit complexity between
the model and the optimal Q-function for Majority MDP in both unconditional and conditional
settings.

Theorem 1 (Separation result of majority MDP, unconditioned setting). For any reward state
sreward ∈ {0, 1}n and any control function f : {0, 1}b → {0, 1}b, the unconditioned n-bits majority
MDP with reward state sreward, control function f has the following properties:

• The reward function and the transition function can be computed by circuits with polynomial
(in n) size and constant depth.

• The optimal Q-function (at time step t = 0) cannot be computed by a circuit with polynomial
size and constant depth.

Theorem 2 (Separation result of majority MDP, conditioned setting). Fix m < n/2. Let ρ
be uniform distribution over (O(1),m)-DNFs of n Boolean variables. Then for any reward state
sreward ∈ {0, 1}n and any control function f : {0, 1}b → {0, 1}b, with probability at least 1− e−Ω(m),
the n-bits majority MDP with reward state sreward, control function f , and condition C sampled
from ρ, has the following properties:

• The reward function and the transition function can be computed by circuits with polynomial
(in n) size and constant depth.

• The optimal Q-function (at time step t = 0) cannot be computed by a circuit with polynomial
size and constant depth.

The proof of Theorem 1 and Theorem 2 are deferred to Appendix B.3 and Appendix B.2. In
short, they imply that T, r ∈ AC0 and Q∗ /∈ AC0. In fact, we show that the value functions
cannot be computed by a circuit with polynomial size and constant depth. Due to the relationship
Q∗(s, a) = r(s, a) + V ∗(T(s, a)), we will treat these two functions synonymously and refer to them
collectively as the "value function."

9

4 Experiments

Theorems 1 and 2 indicate that there exists a broad class of MDPs in which the transition functions
and the reward functions have much lower circuit complexity than the optimal Q-functions (actually
also value functions according to our proof for Majority MDPs). This observation, therefore, implies
that value functions might be harder to approximate than transition functions and the reward
functions, and gives rise to the following question:

In general MDPs, are the value functions harder to approximate than transition functions and the
reward functions?

In this section, we seek to answer this question via experiments on common simulated environments.
Specifically, we fix d,m ∈ Z+, and let F denote the class of d-depth, m-width neural networks (with
input and output dimensions tailored to the context). The quantities of interest are the following
relative approximation errors

emodel = min
P∈F

E[∥P (s, a)− T(s, a)∥2]
E[∥T(s, a)∥2]

ereward = min
R∈F

E[(R(s, a)− r(s, a))2]

E[(r(s, a))2]

eQ-function = min
Q∈F

E[(Q(s, a)−Q∗(s, a))2]

E[(Q∗(s, a))2]

where the expectation is over the distribution of the optimal policy and the mean squared errors
are divided by the second moment so that the scales of different errors will match. Therefore,
emodel, ereward, eQ-function stand for the difficulty for a d-depth, m-width neural networks to approx-
imate the transition function, the reward function, and the Q-function, respectively.

Figure 3: Approximation errors of the optimal Q-functions, reward functions, and transition func-
tions in MuJoCo environments. In each environment, we run 5 independent experiments and report
the mean and standard deviation of the approximation errors.

For common MuJoCo Gym environments (Brockman et al., 2016), including Ant-v4, Hopper-
v4, HalfCheetah-v4, InvertedPendulum-v4, and Walker2d-v4 , we find these objectives by training
d-depth, m-width neural networks to fit the corresponding values over the trajectories generated by

10

an SAC-trained agent. 3 In Figure 3, we visualize4 the approximation errors under d = 2, w = 32.
Among the approximation objectives, the reward functions and the model transition functions are
accessible, and we use Soft-Actor-Critic (Haarnoja et al., 2018) to learn the optimal Q-function. We
observe a consistent phenomenon that the approximation errors of the optimal Q-function, in all
environments, are much greater than the approximation errors of the transition and reward function.
This finding concludes that in the above environments, the optimal Q-functions are more difficult
to approximate than the transition functions and the reward function, which partly consolidate our
hypothesis.

5 Conclusions

In this paper, we find that in a broad class of Markov Decision Processes, the transition function
and the reward function can be computed by constant-depth, polynomial-sized circuits, whereas
the optimal Q-function requires an exponential size for constant-depth circuits to compute. This
separation reveals a rigorous gap in the representation complexity of the Q-function, the reward, and
the transition function. Our experiments further corroborate that this gap is prevalent in common
real-world environments.

Our theory lays the foundation of studying the representation complexity in RL and raises
several open questions:

1. If we randomly sample an MDP, does the separation that the value function /∈ AC0 and the
reward and transition function ∈ AC0 occurs in high probability?

2. For k ≥ 1, are there broad classes of MDPs such that the value function /∈ ACk and the
reward and transition function ∈ ACk?

3. What are the typical circuit complexities of the value function, the reward function, and
transition function?

References

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 2019.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approximation
with policy gradient methods in Markov decision processes. In Conference on Learning Theory,
pages 64–66. PMLR, 2020.

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge Uni-
versity Press, 2009.

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement
learning. Advances in neural information processing systems, 21, 2008.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 263–272. JMLR. org, 2017.
3Our code is available at https://github.com/realgourmet/rep_complexity_rl.
4We used Weights & Biases (Biewald, 2020) for experiment tracking and visualizations to develop insights for this

paper.

11

https://github.com/realgourmet/rep_complexity_rl

Chenglong Bao, Qianxiao Li, Zuowei Shen, Cheng Tai, Lei Wu, and Xueshuang Xiang. Approxi-
mation analysis of convolutional neural networks. work, 65, 2014.

Lukas Biewald. Experiment tracking with weights and biases. Software available from wandb.com,
2:233, 2020.

Ravi B Boppana and Michael Sipser. The complexity of finite functions. In Algorithms and com-
plexity, pages 757–804. Elsevier, 1990.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-efficient
reinforcement learning with stochastic ensemble value expansion. Advances in neural information
processing systems, 31, 2018.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter Abbeel.
Model-based reinforcement learning via meta-policy optimization. In Conference on Robot Learn-
ing, pages 617–629. PMLR, 2018.

Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. Regret bounds for
robust adaptive control of the linear quadratic regulator. Advances in Neural Information Pro-
cessing Systems, 31, 2018.

Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. On the sample complex-
ity of the linear quadratic regulator. Foundations of Computational Mathematics, 20(4):633–679,
2020.

Kefan Dong, Yuping Luo, and Tengyu Ma. On the expressivity of neural networks for deep rein-
forcement learning. In International Conference on Machine Learning (ICML), 2020a.

Kefan Dong, Yuping Luo, Tianhe Yu, Chelsea Finn, and Tengyu Ma. On the expressivity of neural
networks for deep reinforcement learning. In International conference on machine learning, pages
2627–2637. PMLR, 2020b.

Andreas Draeger, Sebastian Engell, and Horst Ranke. Model predictive control using neural net-
works. IEEE Control Systems Magazine, 15(5):61–66, 1995.

Yilun Du and Karthic Narasimhan. Task-agnostic dynamics priors for deep reinforcement learning.
In International Conference on Machine Learning, pages 1696–1705. PMLR, 2019.

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez, and Sergey Levine.
Model-based value estimation for efficient model-free reinforcement learning. arXiv preprint
arXiv:1803.00101, 2018.

Merrick Furst, James B Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time hierar-
chy. Mathematical systems theory, 17(1):13–27, 1984.

12

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pages 1861–1870. PMLR, 2018.

John Hastad. Almost optimal lower bounds for small depth circuits. In Proceedings of the eighteenth
annual ACM symposium on Theory of computing, pages 6–20, 1986.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learn-
ing continuous control policies by stochastic value gradients. Advances in neural information
processing systems, 28, 2015.

Baihe Huang, Kaixuan Huang, Sham Kakade, Jason D Lee, Qi Lei, Runzhe Wang, and Jiaqi Yang.
Going beyond linear rl: Sample efficient neural function approximation. Advances in Neural
Information Processing Systems, 34:8968–8983, 2021.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in neural information processing systems, 32, 2019.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning provably effi-
cient? In Advances in Neural Information Processing Systems, pages 4863–4873, 2018.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. arXiv preprint arXiv:1907.05388, 2019.

SM Kakade. On the sample complexity of reinforcement learning. PhD thesis, University of London,
2003.

Richard Karp. Turing machines that take advice. Enseign. Math., 28:191–209, 1982.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jens Kober, Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. Springer
Tracts in Advanced Robotics, 97:9–67, 2014.

F Thomson Leighton. Introduction to parallel algorithms and architectures: Arrays· trees· hyper-
cubes. Elsevier, 2014.

Sergey Levine and Vladlen Koltun. Guided policy search. In International conference on machine
learning, pages 1–9. PMLR, 2013.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Jianfeng Lu, Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation for
smooth functions. SIAM Journal on Mathematical Analysis, 53(5):5465–5506, 2021.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of
neural networks: A view from the width. Advances in neural information processing systems, 30,
2017.

13

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorith-
mic framework for model-based deep reinforcement learning with theoretical guarantees. arXiv
preprint arXiv:1807.03858, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based re-
inforcement learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1–118,
2023.

Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial
intelligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dy-
namics for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE
international conference on robotics and automation (ICRA), pages 7559–7566. IEEE, 2018.

Anusha Nagabandi, Kurt Konolige, Sergey Levine, and Vikash Kumar. Deep dynamics models for
learning dexterous manipulation. In Conference on Robot Learning, pages 1101–1112. PMLR,
2020.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. Advances in neural
information processing systems, 30, 2017.

Alexandre Piché, Valentin Thomas, Cyril Ibrahim, Yoshua Bengio, and Chris Pal. Probabilistic
planning with sequential monte carlo methods. In International Conference on Learning Repre-
sentations, 2018.

Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt: Learning
robust neural network policies using model ensembles. arXiv preprint arXiv:1610.01283, 2016.

Paria Rashidinejad, Hanlin Zhu, Kunhe Yang, Stuart Russell, and Jiantao Jiao. Optimal conser-
vative offline rl with general function approximation via augmented lagrangian. arXiv preprint
arXiv:2211.00716, 2022.

James B Rawlings. Tutorial overview of model predictive control. IEEE control systems magazine,
20(3):38–52, 2000.

Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a complete basis
with logical addition. Mathematical notes of the Academy of Sciences of the USSR, 41:333–338,
1987. URL https://api.semanticscholar.org/CorpusID:121744639.

Alexander A Razborov. On the method of approximations. In Proceedings of the twenty-first annual
ACM symposium on Theory of computing, pages 167–176, 1989.

14

https://api.semanticscholar.org/CorpusID:121744639

John E Savage. Computational work and time on finite machines. Journal of the ACM (JACM),
19(4):660–674, 1972.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

Claude E Shannon. The synthesis of two-terminal switching circuits. The Bell System Technical
Journal, 28(1):59–98, 1949.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, and Marc Lanctot. Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587):484, 2016.

David Silver, Hado Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-
Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, et al. The predictron: End-to-end
learning and planning. In International Conference on Machine Learning, pages 3191–3199.
PMLR, 2017.

Satinder Singh, Tommi Jaakkola, Michael L Littman, and Csaba Szepesvári. Convergence results
for single-step on-policy reinforcement-learning algorithms. Machine learning, 38:287–308, 2000.

Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity.
In Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages 77–82,
1987.

Roman Smolensky. On representations by low-degree polynomials. In Proceedings of 1993 IEEE
34th Annual Foundations of Computer Science, pages 130–138. IEEE, 1993.

Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. PAC
model-free reinforcement learning. In Proceedings of the 23rd international conference on Machine
learning, pages 881–888, 2006.

Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-based
rl in contextual decision processes: Pac bounds and exponential improvements over model-free
approaches. In Conference on learning theory, pages 2898–2933. PMLR, 2019.

Boris A Trakhtenbrot. A survey of russian approaches to perebor (brute-force searches) algorithms.
Annals of the History of Computing, 6(4):384–400, 1984.

Stephen Tu and Benjamin Recht. The gap between model-based and model-free methods on the
linear quadratic regulator: An asymptotic viewpoint. arXiv preprint arXiv:1812.03565, 2018.

Stephen Tu and Benjamin Recht. The gap between model-based and model-free methods on the
linear quadratic regulator: An asymptotic viewpoint. In Conference on Learning Theory, pages
3036–3083, 2019.

Leslie G Valiant. On non-linear lower bounds in computational complexity. In Proceedings of the
seventh annual ACM symposium on Theory of computing, pages 45–53, 1975.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Heribert Vollmer. Introduction to circuit complexity: a uniform approach. Springer Science &
Business Media, 1999.

15

Ruosong Wang, Ruslan Salakhutdinov, and Lin F Yang. Provably efficient reinforcement learning
with general value function approximation. arXiv preprint arXiv:2005.10804, 2020.

Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy networks. arXiv preprint
arXiv:1906.08649, 2019.

Théophane Weber, Sébastien Racaniere, David P Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, et al.
Imagination-augmented agents for deep reinforcement learning. arXiv preprint arXiv:1707.06203,
2017.

Chao Yu, Jiming Liu, and Shamim Nemati. Reinforcement learning in healthcare: A survey. In
arXiv preprint arXiv:1908.08796, 2020.

Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A survey of autonomous
driving: Common practices and emerging technologies. IEEE access, 8:58443–58469, 2020.

Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement
learning without domain knowledge using value function bounds, 2019.

Wenhao Zhan, Shicong Cen, Baihe Huang, Yuxin Chen, Jason D Lee, and Yuejie Chi. Policy mirror
descent for regularized reinforcement learning: A generalized framework with linear convergence.
SIAM Journal on Optimization, 33(2):1061–1091, 2023.

Hanlin Zhu and Amy Zhang. Provably efficient offline goal-conditioned reinforcement learning with
general function approximation and single-policy concentrability, 2023.

Hanlin Zhu, Paria Rashidinejad, and Jiantao Jiao. Importance weighted actor-critic for optimal
conservative offline reinforcement learning. arXiv preprint arXiv:2301.12714, 2023a.

Hanlin Zhu, Ruosong Wang, and Jason Lee. Provably efficient reinforcement learning via surprise
bound. In International Conference on Artificial Intelligence and Statistics, pages 4006–4032.
PMLR, 2023b.

16

A Supplementary Background on Circuit Complexity

Definition 9 (Majority). For every n ∈ Z+, the n-variable majority function MAJORITYn :
{0, 1}n → {0, 1} is defined by MAJORITYn(x1, . . . , xn) = 1(

∑n
i=1 xi > n/2). The majority function

MAJORITY : {0, 1}∗ → {0, 1} is defined by

MAJORITY(w) := MAJORITY|w|(w), ∀w ∈ {0, 1}∗.

Proposition A.1 ((Razborov, 1987; Smolensky, 1987, 1993)). MAJORITY /∈ AC0.

We also introduce another function that can be represented by polynomial-size constant-depth
circuits, contrary to the above two “hard” functions.

Definition 10 (Addition). For every n ∈ Z+, the length-n integer addition function ADDITIONn :
{0, 1}n × {0, 1}n → {0, 1}n+1 is defined as follows: for any two binary strings a1, a2 ∈ {0, 1}n, the
value ADDITIONn(a1, a2) is the (n+ 1)-bits binary representation of a1 + a2. The integer addition
function ADDITION : {0, 1}∗ → {0, 1}∗ is defined by

ADDITION(w1, w2) := ADDITIONmax{|w1|,|w2|}(w1, w2), ∀w1, w2 ∈ {0, 1}∗.

Proposition A.2 (Proposition 1.15, (Vollmer, 1999)). ADDITION ∈ AC0.

Definition 11 (Maximum). For every n ∈ Z+, the length-n maximum function MAXn : {0, 1}n ×
{0, 1}n → {0, 1}n is defined as follows: for any two binary strings a1, a2 ∈ {0, 1}n, the value
MAXn(a1, a2) is the n-bits binary representation of max{a1, a2}. The maximum function MAX :
{0, 1}∗ → {0, 1}∗ is defined by

MAX(w1, w2) := MAXmax{|w1|,|w2|}(w1, w2), ∀w1, w2 ∈ {0, 1}∗.

Proposition A.3. MAX ∈ AC0.

Proof of Proposition A.3. Fix any n ∈ Z+, and assume w1, w2 ∈ {0, 1}n. Let

k =
n∨

i=1

(w1)i ∧ ¬(w2)i ∧

i−1∧
j=1

¬((w1)j ⊕ (w2)j)

 .

Therefore, k = 1(w1 > w2). Let the i-th bit of output be

((w1)i ∧ k) ∨ ((w2)i ∧ ¬k),

which is exact the i-th bit of max{w1, w2}. This circuit has polynomial size and constant depth,
which completes the proof.

B Proofs of Main Results

B.1 Useful results

We will use the following results frequently in the proofs.

Claim B.1. If C0, C1, . . . , Cn are circuits with polynomial (in n) size and constant depth, where Ci

has ki outputs for each i ∈ [n] and C0 has
∑n

i=1 ki inputs, then the circuit

C0 (C1(x1), . . . , Cn(xn))

also has polynomial (in n) size and constant depth.

17

Claim B.2. The XOR gate can be computed by a circuit with constant size.

Claim B.3. For any integer k = poly(n), the gate δ(x1, . . . , xn) = 1
(
k =

∑n
i=1 2

n−i · xi
)

can be
computed by a circuit with polynomial size and constant depth.

B.2 Proof of Theorem 1

We need the following lemma.

Lemma 1 (Property of value function in unconditioned Majority MDPs). In an unconditioned
n-bits majority MDP with reward state sreward and control function f , the value function V ∗ (at
time step t = 0) over {s ∈ {0, 1}b+n : s[c] = 0b} is given by the following:

V ∗(s) = n−
n∑

i=1

(¬(sb+i ⊕ sreward,i)) + 1.

Proof. To find V ∗(s), it suffices to count the number of time steps an optimal agent takes to reach
the reward state (1b, sreward).

For the control bits to traverse from 0b to 1b, it takes 2b− 1 time steps. Indeed, by Definition 7,
f (i)(0b) ̸= 1b for any i < 2b−1 and f (2b−1)(0b) = 1b (otherwise,

∣∣{f (k)(0b) : k = 1, 2, . . . , 2b − 1
}∣∣ <

2b − 1 and as a result
{
f (k)(0b) : k = 1, 2, . . . , 2b − 1

}
can not traverse {0, 1}b\{0b}). Thus, this

corresponds to at least 2b − 1 time steps in which action a = 0 is played.
For the representation bits, starting from s[r], reaching sreward takes at least

n∑
i=1

(¬(sb+i ⊕ sreward,i))

number of flipping, because each index i such that sb+i ̸= sreward,i needs to be flipped. This
corresponds to at least

∑n
i=1(¬(sb+i ⊕ sreward,i)) time steps in which action a = 1 is played.

In total, the agent needs to take at least 2b +
∑n

i=1(¬(sb+i ⊕ sreward,i)) − 1 times steps before
it can receive positive rewards. Since there are 2b + n time steps in total, it follows that the agent
gets a positive reward in at most n−

∑n
i=1(¬(sb+i ⊕ sreward,i)) + 1 time steps. As a consequence,

V ∗(s) ≤ n−
n∑

i=1

(¬(sb+i ⊕ sreward,i)) + 1

On the other hand, consider the following policy:

π∗(s) =

{
1, if sb+i ̸= sreward,i, where i =

∑b
j=1 2

b−j · sj
0, otherwise.

This policy reaches the reward state in 2b +
∑n

i=1(¬(sb+i ⊕ sreward,i)) − 1 time steps. Indeed, the
control bits takes 2b − 1 times steps to reach 1b. During these time steps, the control bits (as a
binary number) traverses 0, . . . , 2b − 1. Thus for any i ∈ [n] such that sb+i ̸= sreward,i, there exists
a time t such that the control bits at this time t (as a binary number) equals i, and at this time
step, the agent flipped the i-th coordinate of the representation bits by playing action 1. Therefore,
the representation bits takes

∑n
i=1(¬(sb+i ⊕ sreward,i)) times steps to reach sreward. Combining, the

agent arrives the state (0b, sreward) after 2b +
∑n

i=1(¬(sb+i ⊕ sreward,i)) − 1 time steps, and then

18

collects reward 1 in each of the remaining n−
∑n

i=1(¬(sb+i ⊕ sreward,i)) + 1 time steps, resulting in
a value of

V ∗(s) = n−
n∑

i=1

(¬(sb+i ⊕ sreward,i)) + 1.

Lemma 2. Any control function can be computed by a constant depth, polynomial sized (in n)
circuit.

Proof. By Claim 2.13 in Arora and Barak (2009), any Boolean function can be computed by a CNF
formula, i.e., Boolean circuits of the form

n∧
i=1

 ki∨
j=1

Xi,j

 .

As result, the control function can be computed by a depth-2, 2b = poly(n) sized circuit.

Now we return to the proof of Theorem 1.

Proof. First, we show that the model transition function can be computed by circuits with polyno-
mial size and constant depth. Consider the following circuit:

Cmodel(s, a) = (g(s1, . . . , sb, a), (sb+k ⊕ (δk(s1, . . . , sb) ∧ a))nk=1)

where ⊕ is the XOR gate, g : {0, 1}b+1 → {0, 1}b such that g(x1, . . . , xb, a)i = (f(x1, . . . , xb)i∧¬a)∨
(xi ∧ a) for all i ∈ [b], and δk(x1, . . . , xb) = 1(k =

∑b
j=1 2

b−j · xj). We can verify that Cmodel = T.
By Claim B.2, Claim B.3, and Lemma 2, the XOR gate, the control function f , and the gate δk
can all be implemented by binary circuits with polynomial size and constant depth. As a result of
Claim B.1, Cmodel also has polynomial size and constant depth.

Now, the reward function can be computed by the following simple circuit:

Creward(s) = s1 ∧ . . . ∧ sb ∧ (¬(sb+1 ⊕ sreward,1)) ∧ · · · ∧ (¬(sb+n ⊕ sreward,n)).

Finally, we show that the value function can not be computed by a circuit with constant depth and
polynomial size. By Lemma 1, we have

n+ 1− V ∗(s) =

n∑
i=1

(¬(sb+i ⊕ sreward,i)) ∈ {0} ∪ [n] = {0} ∪ [2b − 1],

which can be represented in binary form with b bits. Therefore, the first (most significant) bit of
n+1−V ∗(s) is the majority function of (¬(sb+i ⊕ sreward,i))

n
i=1. If there exists a circuit Cvalue = V ∗

with polynomial size and constant depth, then the circuit defined by

CMAJORITY(x1, . . . , xn) = n+ 1− Cvalue (0b,¬x1 ⊕ sreward,1, . . . ,¬xn ⊕ sreward,n)

outputs the majority function in the first bit. By Proposition A.2, CMAJORITY also has polynomial
size and constant depth, which contradicts Proposition 2. This means that V ∗ can not be computed
by circuits with polynomial size and constant depth. Notice that V ∗(s) = maxa∈AQ∗(s, a) =
max{Q∗(s, 0), Q∗(s, 1)}. By Proposition A.3 and Claim B.1, we conclude that the optimal Q-
function can not be computed by circuits with polynomial size and constant depth.

19

B.3 Proof of Theorem 2

We need the following lemmata.

Lemma 3. With probability at least 1− e−Ω(m), there exists a set A ⊂ [n] such that |A|≥ n/2 and
C(x) = 1 holds for any binary string x ∈ {0, 1}n satisfying xi = sreward,i,∀i /∈ A.

Proof. It suffices to show that C(sreward) = 1 with at least 1 − e−Ω(m). Indeed, in this case, since
m < n/2, C is independent on at least n/2 of the variables x1, . . . , xn. The indices of such variables
form the set A that we are looking for.

To show that C(sreward) = 1 with at least 1− e−Ω(m), we assume WLOG that

C(x1, . . . , xn) =
n∨

i=1

 ki∧
j=1

Xi,j


where Xi,j = xl or Xi,j = ¬xl for some l ∈ [m]. Notice

P

 ki∧
j=1

Xi,j

 = 1

 = 2−ki = Ω(1)

since each Xi,j is sampled i.i.d. from {xl,¬xl}l∈[m] uniformly at random. It follows that

P (C(x1, . . . , xn) = 1) = 1−
n∏

i=1

P

 ki∧
j=1

Xi,j

 = 0


= 1−

n∏
i=1

(1− 2−ki)

≥ 1− e−Ω(m).

Lemma 4 (Property of value function in conditioned Majority MDPs). In an n-bits majority MDP
with reward state sreward, control function f and condition C, if there exists a set A ⊂ [n] such
that |A|= ⌈n/2⌉ = 2b−1 − 1 and C(x) = 1 holds for any binary string x ∈ {0, 1}n satisfying xi =
sreward,i,∀i /∈ A, then the value function V ∗ over {s ∈ {0, 1}b+n : s[c] = 0b, sb+i = sreward,i (∀i /∈ A)}
is given by the following:

V ∗(s) = n−
∑
i∈A

(¬(sb+i ⊕ sreward,i)) + 1.

Proof. To find V ∗(s), it suffices to count the number of actions it takes to reach the reward state
(1b, sreward).

For the control bits to travel from 0b to 1b, it takes 2b − 1 time steps. Indeed, by Definition 7,
f (i)(0b) ̸= 1b for any i < 2b−1 and f (2b−1)(0b) ̸= 1b (otherwise,

∣∣{f (k)(0b) : k = 1, 2, . . . , 2b − 1
}∣∣ <

2b − 1 and as a result
{
f (k)(0b) : k = 1, 2, . . . , 2b − 1

}
can not traverse {0, 1}b\{0b}). Thus, this

corresponds to at least 2b − 1 time steps in which action a = 0 is played.
For the representation bits, starting from s[r], reaching sreward takes at least∑

i∈A
(¬(sb+i ⊕ sreward,i))

20

number of flipping, as each index i such that sb+i ̸= sreward,i needs to be flipped. This corresponds
to at least

∑
i∈A(¬(sb+i ⊕ sreward,i)) time steps in which action a = 1 is played.

In total, the agent needs to take at least 2b +
∑

i∈A(¬(sb+i ⊕ sreward,i))− 1 times steps before it
can receive positive rewards. Since there are 2b +n time step in total, it follows that the agent gets
positive reward in at most n−

∑
i∈A(¬(sb+i ⊕ sreward,i)) + 1 time steps. As a consequence,

V ∗(s) ≤ n−
∑
i∈A

(¬(sb+i ⊕ sreward,i)) + 1

On the other hand, consider the following policy:

π∗(s) =

{
1, if sb+i ̸= sreward,i, where i =

∑b
j=1 2

b−j · sj
0, otherwise.

This policy reaches the reward state in 2b +
∑

i∈A(¬(sb+i ⊕ sreward,i)) − 1 time steps. Indeed, the
control bits takes 2b − 1 times steps to reach 1b. During these time steps, the control bits (as a
binary number) traverses 0, . . . , 2b− 1. Thus for any i ∈ [n] such that sb+i ̸= sreward,i, there exists a
time t such that the control bits at this time t (as a binary number) equals i, and at this time step,
the agent flipped the i-th coordinate of the representation bits by playing action 1 (note that the
flipping operation can always be applied since the condition is always satisfied under the current
policy). Therefore, the representation bits takes

∑
i∈A(¬(sb+i ⊕ sreward,i)) times steps to reach

sreward. Combining, the agent arrives the state (0b, sreward) after 2b +
∑

i∈A(¬(sb+i ⊕ sreward,i))− 1
time steps, and then collects reward 1 in each of the remaining n −

∑
i∈A(¬(sb+i ⊕ sreward,i)) + 1

time steps, resulting in a value of

V ∗(s) = n−
∑
i∈A

(¬(sb+i ⊕ sreward,i)) + 1.

Now we return to the proof of Theorem 2.

Proof. First, we show that the model function can be computed by circuits with polynomial size
and constant depth. Consider the following circuit:

Cmodel(s, a) = (g(s1, . . . , sb), (sb+k ⊕ (δk(s1, . . . , sb) ∧ a ∧ C(s[r])))nk=1)

where ⊕ is the XOR gate, g : {0, 1}b+1 → {0, 1}b such that g(x1, . . . , xb, a)i = (f(x1, . . . , xb)i∧¬a)∨
(xi ∧ a) for all i ∈ [b], and δk(x1, . . . , xb) = 1(k =

∑b
j=1 2

b−j · xj). We can verify that Cmodel = T.
By Claim B.2, Claim B.3, and Lemma 2, the XOR gate, the control function f , the function C(s[r]),
and the gate δk can all be implemented by binary circuits with polynomial size and constant depth.
As a result of Claim B.1, Cmodel also has polynomial size and constant depth.

Now, the reward function can be computed by the following simple circuit:

Creward(s) = s1 ∧ . . . ∧ sb ∧ (¬(sb+1 ⊕ sreward,1)) ∧ · · · ∧ (¬(sb+n ⊕ sreward,n)).

Finally, we show that with high probability, the value function can not be computed by a circuit
with constant depth and polynomial size. By Lemma 3, with probability at least 1− e−Ω(m), there
exists a set A ⊂ [n] such that |A|≥ n/2 and C(x) = 1 holds for any binary string x ∈ {0, 1}n
satisfying xi = sreward,i,∀i /∈ A. We can reduce the size of A by deleting some elements to make

21

|A|= ⌈n/2⌉ = 2b−1 − 1 and the above property still holds. Denote A = {a(1) < · · · < a(L)} where
a : [L] → [n]. Define h : {0, 1}L → {0, 1}b

h ((x1, . . . , xL)) = n+ 1− V ∗ ((0b, s′)) , where s′j =

{
sreward,j , j /∈ A

¬xa−1(j) ⊕ sreward,j , j ∈ A
.

Due to Lemma 4, h (x) can be represented in binary form with (b − 1) bits, and the first (most
significant) bit of h(x) is the majority function of x. If there exists a circuit Cvalue = V ∗ with
polynomial size and constant depth, then the circuit defined by

CMAJORITY(x1, . . . , xL) = n+ 1− Cvalue

(
0b,¬xa−1(1) ⊕ sreward,1, . . . ,¬xa−1(n) ⊕ sreward,n

)
where a−1(i) = i if i /∈ A, outputs h. By Proposition A.2, CMAJORITY also has polynomial size
and constant depth, which contradicts Proposition A.1. This means that V ∗ can not be computed
by circuits with polynomial size and constant depth. Notice that V ∗(s) = maxa∈AQ∗(s, a) =
max{Q∗(s, 0), Q∗(s, 1)}. By Proposition A.3 and Claim B.1, we conclude that the optimal Q-
function can not be computed by circuits with polynomial size and constant depth.

C Experiment Details

Table 1 shows the parameters used in SAC training to learn the optimal Q-function. Table 2 shows
parameters for fitting neural networks to the value, reward, and transition functions.

Hyperparameter Value(s)

Optimizer Adam (Kingma and Ba, 2014)

Learning Rate 0.0003

Batch Size 1000

Number of Epochs 100000

Init_temperature 0.1

Episode length 1000

Discount factor 0.99

number of hidden layers (all networks) 256

number of hidden units per layer 2

target update interval 1

Table 1: Hyperparameters in Soft-Actor-Critic

22

Hyperparameter Value(s)

Optimizer Adam (Kingma and Ba, 2014)

Learning Rate 0.001

Batch Size 32

Number of Epochs 100

Table 2: Hyperparameters of fitting neural networks to the value, reward, and transition functions

23

	1 Introductions
	1.1 Related work
	1.2 Notations

	2 Preliminaries
	2.1 Markov Decision Process
	2.2 Function approximation
	2.3 Circuit complexity

	3 Theoretical Results
	3.1 Warm up example
	3.2 A broader family of MDPs

	4 Experiments
	5 Conclusions
	A Supplementary Background on Circuit Complexity
	B Proofs of Main Results
	B.1 Useful results
	B.2 Proof of Theorem 1
	B.3 Proof of Theorem 2

	C Experiment Details

