On Some Tractable Cases of Logical Filtering

T. K. Satish Kumar and Stuart Russell
Computer Science Division
University of California, Berkeley
{tksk, russell} @eecs.berkeley.edu

Abstract

Filtering denotes any method whereby an agent updates its
belief state—its knowledge of the state of the world—from
a sequence of actions and observations. In logical filter-
ing, the belief state is a logical formula describing the pos-
sible world states. Efficient algorithms for logical filtering
bear important implications on reasoning tasks such as plan-
ning and diagnosis. In this paper, we will identify classes
of transition constraints that are amenable to compact and
indefinite filtering—presenting efficient algorithms wherever
necessary. We will first show that connected row-convex
(CRC) constraints are amenable to efficient filtering when
path-consistency is enforced in appropriate steps. We will
then extend this theory to provide a filtering algorithm based
on repeatedly enforcing path-consistency and embedding the
domain values of the related variables in tree structures to
guarantee global consistency. Finally, we will identify and
comment on the problem of multi-agent localization as a po-
tential application of the theory developed in the paper (under
some reasonable assumptions).

Introduction

When an agent operates in a partially observable environ-
ment, it must maintain a representation of its knowledge
about the world. Filtering denotes any method whereby an
agent updates its belief state—its knowledge of the state of
the world—from a sequence of actions and observations. In
stochastic models, for example, the Kalman filter (Kalman
1960) maintains a multivariate Gaussian belief state over n
system variables, assuming linear Gaussian transition and
observation models. In each step of the Kalman filter, the
cost of updating the belief state is O(n?), and the space re-
quirement for maintaining the belief state is O(n?). Since
these costs do not depend on the length of the observation
sequence, a Kalman filter can run indefinitely. In logical
domains, however, the belief state is best represented as a
logical formula describing the possible world states; and ef-
ficient logical filtering refers to the task of having to main-
tain a compact representation of the belief state even when
we have to deal with a potentially unbounded sequence of
actions and observations.

Copyright (© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In the most general version of the logical filtering prob-
lem, the initial state may be only partially known; the tran-
sition model (which allows for actions by the agent) may be
nondeterministic; and the observation model may be non-
deterministic and partial—i.e., the agent may not be able
to observe the actual state. Filtering is closely related to
the computational problems arising in many important con-
texts: including planning, diagnosis, game playing, etc. In
planning, for example, maintaining a compact representa-
tion of the reachability information (as in a planning graph)
is known to be a crucial factor in the success of many re-
cent planners—whether or not they deal with nondetermin-
ism in the actions and/or the initial state (for examples, see
(Nguyen and Kambhampati 2000), (Bryce and Kambham-
pati 2005) and (Cushing and Bryce 2005)). Very similar is-
sues are also addressed in filtering when nondeterminism is
allowed in the initial state, transition model, and the obser-
vation model; and in general, any tractable cases of the filter-
ing problem would bear important implications on our abil-
ity to efficiently deal with situations where we are required
to maintain a compact representation of the belief state (see
(Amir and Russell 2003)).

The computational costs associated with a filtering algo-
rithm include: (1) the time needed to update the belief state,
and (2) the space required to represent it. These complexi-
ties depend on: (a) the nature of the uncertainty in the initial
state, (b) the nature of the transition model (which describes
how the system evolves over time), (c) the nature of the ob-
servation model (which describes the way in which the envi-
ronment generates observations), and (d) the family of rep-
resentations used to represent the belief state (see (Amir and
Russell 2003)). It is well known that even when we restrict
ourselves to propositional logic, the general filtering prob-
lem is hard; the hardness caused mainly because of the need
to represent an exponentially large number of possible world
states.

In this paper, we will deal with the filtering problem by
abstracting it into a temporally extended constraint satisfac-
tion problem (CSP); in particular, we will identify classes
of transition constraints (and observation models) that are
amenable to compact and indefinite filtering—presenting ef-
ficient algorithms wherever necessary. We will first show
that CRC constraints are amenable to efficient filtering when
path-consistency is enforced in appropriate steps. We will

ALGORITHM: PATH-CONSISTENCY
INPUT: A binary constraint network (X', D,C).
OUTPUT: A path-consistent network.
(1) Repeat until no constraint is changed:
(@ Fork=1,2...N:
(@) Fori,j=1,2...N:
(A) Rij = Rij n Hij (le > Dy, Rk])
END ALGORITHM

Figure 1: Shows the basic algorithm for enforcing path-
consistency in a binary constraint network. Here, II indi-
cates the projection operation, and > indicates the join op-
eration (similar to that in database theory).

X2
X1 d21 d22 X3
d,| 0 0 X X, dyy dy dys
dp| 1 | 0 2 dy 0 [1 [1]
dol 0 [1 dp 0 [1 [o]
x1 x3
X,

Figure 2: Shows an example of a CSP where the domains
of the variables are ordered, and the binary constraints are
represented as (0,1)-matrices. The ordered domains of the
variables X7, Xo and X3 are respectively (di1,d12,d13),
(do1, d22) and (ds1, ds2, d33) respectively (shown in the fig-
ure). For clarity, only two of the constraints are shown in
their matrix representations.

then extend this theory to provide a filtering algorithm based
on repeatedly enforcing path-consistency and embedding
the domain values of the related variables in tree structures
to guarantee global consistency. (In turn, we will comment
on generalizing this theory to perform filtering via an iter-
ative enforcement of increasing levels of local consistency
followed by appropriate geometric embeddings of the do-
main values of the related variables to guarantee global con-
sistency.) Finally, we will identify and comment on the
problem of multi-agent localization as a potential applica-
tion of the theory developed in the paper (under some rea-
sonable assumptions).

Preliminaries and Definitions

A CSP is defined by a triplet (X,D,C), where X =
{X1,X5... XN} is a set of variables, and C =
{C1,C5...Cy} is a set of constraints on subsets of them.
Each variable X is associated with a discrete-valued do-
main D; € D, and each constraint C; is a pair {S;, R;)
defined on a subset of variables S; C X, called the scope
of C;. R; C Dg, (Ds, = Xjes;D;) denotes all compati-
ble tuples of Dg, allowed by the constraint. A solution to a
CSP is an assignment of values to all the variables from their
respective domains such that all the constraints are satisfied.

Xy =v,

X,=v,

X3=V,
Search Tree
Ordered Domain of X,

—

Xy=v, dy dy dy dy g
,».;'/ =y, | | —

YU

—
—

&
XXX x
Lt

—
W — | —

Figure 3: The left side of the figure shows a partial search
tree associated with solving a CSP. The figure illustrates the
instant of time when we have successfully instantiated a few
of the variables (say X; to v, Xo to ve, X3 to v3 and Xy
to v4), and we are searching for a consistent extension to the
next variable (say X5). The right side of the figure shows the
domain elements of X5 that are consistent with the values
assigned to the previously instantiated variables (X; = v,
X9 = v9, X3 = v3 and X4 = v4); tick marks indicate con-
sistent combinations, and blanks indicate inconsistent com-
binations. We consider the case when the tick marks appear
consecutively in each row (assuming an ordering on the do-
main values of X5).

A network of binary constraints is arc-consistent if and
only if for all variables X; and X, and for every instantia-
tion of X, there exists an instantiation of X; such that R;; is
satisfied. Similarly, a network of binary constraints is path-
consistent if and only if for all variables X;, X; and X}, and
for every instantiation of X; and X that satisfies the direct
relation I?;;, there exists an instantiation of X, such that I2;;,
and Ry; are also satisfied. Conceptually, algorithms that en-
force path-consistency work by iteratively “tightening” the
binary constraints as shown in Figure 1.

The best known algorithm that implements the procedure
in Figure 1 exploiting low-level consistency maintenance is
presented in (Mohr and Henderson 1986), and has a time
complexity of O(N3K3) (where K is the size of the largest
domain). This algorithm is optimal, since even verifying
path-consistency has the same lower bound. When binary
relations are represented as matrices, path-consistency al-
gorithms employ the three basic operations of composition,
intersection and transposition. The (0,1)-matrix representa-
tion of a relation R;; (denoted MR, ;) between variables X;
and X; consists of | D;| rows and |D;| columns when order-
ings on the domains of X; and X; are imposed. The ‘1’s
and ‘0’s in the matrix respectively indicate the allowed and
disallowed tuples.! Figure 2 presents an example of a CSP
with matrix notations for the constraints.

CRC Constraints

A binary relation I?;; represented as a (0,1)-matrix, is row-
convex if and only if, in each row, all of the ‘1’s are con-
secutive. It has been shown in (Van Beek and Dechter

'An extension of this representation mechanism to non-binary
constraints is also straightforward.

i
-

o
o

Figure 4: Illustrates the crucial role of row-convexity in
path-consistent networks. The consecutive set of tick marks
(consistent combinations) are represented as line segments.
The left hand side shows that if there does not exist a point
of overlap (indicated by a vertical line L) in a set of line seg-
ments, then the real reason for that is that some two of the
line segments do not overlap (B and D do not intersect in
the figure). The right hand side shows that if every two line
segments overlap, then there is a common intersection point
(indicated by line L). Put together, row-convexity implies
global consistency in path-consistent networks.

c, ¢ ¢c ¢ G c, ¢ ¢ ¢ G
o lo o |1 [1 o oo 1[4
1 /1 oo o 1 /o 1]o0o |o
o o [1 |1 [+ o |1 [o |1 [1
o |1 1110 o |1 111 o
0o Jo[1]o]o o |1]o]lo]o

Figure 5: Illustrates the fact that a (0,1)-matrix can be row-
convex under one ordering of the columns of the matrix (left
hand side), but not necessarily so under another ordering
(right hand side).

1995) that if there exist domain orderings for the variables
X1, X5... X in a path-consistent network of binary con-
straints such that all the relations (constraints) can be made
row-convex, then the network is globally consistent. (A
globally consistent network has the property that a solu-
tion can be found in a backtrack-free manner.) Figure 3
roughly illustrates the underlying reasons for this claim. At
any given point of time, suppose we have instantiated £ — 1
variables X1, X5 ... Xj_1, and suppose we are on the verge
of instantiating the variable Xj;. Having achieved path-
consistency, and having chosen domain orderings for all the
variables such that row-convexity is established, we notice
that every instantiation X; = v; (1 < j < k — 1) induces
a continuous range of domain values (of X}) that are con-
sistent with X; = v; (1 < j < k — 1). Because of this
convexity, the lack of a consistent extension for variable X}
implies that some two instantiations must have induced non-
overlapping intervals (see Figure 4), and this conflict must
have therefore also been detected while establishing path-
consistency (variables Xy and X in Figure 3). Hence, if no
inconsistency is detected while enforcing path-consistency
(and if row-convexity holds), the network is guaranteed to
be globally consistent.

The orderings on the domain values of all the variables
is critical to establishing row-convexity in path-consistent
networks. For a single Boolean matrix (representing a con-

X1 x2 X3

d11 d12 d13 d21 d22 d23 d31 d32 d33
X [T T TR R |
1d r oo MY Y10 |!
1 1 1 1 1 1 1
1 1 1 1 1 1
dp |y 0|1 |o | Hoe]1]o|t to|1]|o]!
1 1 1 1 1 1
do | JL 0ot]l 1o 1]t to]1]1]!
X, ! P P \
1 1 1
dy | M1 o[tV 1 oot 1]1]o0]!
dp | "1 1o fr o1 o v /1] 1]0 |1
1 1 1 1 1 1
dy | "1 o1t |1t oo |1]t /o]0 1]
1 1 1 1 1 1
X; 1 1o T 1
dy | "1 oo |t 1|1 ot /1]0]| 0!
1 1 1 1 1 1
dp | V1 [1 [1[0 o1 [1o 1o 1]o0]1
1 1 1 1 1 1
dg |1l o o[1]t afofo| 1]t 1]o]o] 1]
| S———— L L !

Figure 6: Illustrates how the algorithm in (Booth and Lueker
1976) can be applied to automatically find the domain or-
derings of all the variables so as to establish row-convexity
in path-consistent networks (if such orderings exist). To
find the domain ordering for variable X;, we first stack up
the matrix representations of all the constraints in which
X, participates; we then apply the algorithm in (Booth and
Lueker 1976) to find a permutation of the columns to achieve
row-convexity in the stacked-up matrix (indicated by dotted
boundaries for each variable).

straint), Figure 5 illustrates how row-convexity is apparent
under one ordering (permutation) of the columns of the ma-
trix, but not under another. However, in order to find the
required domain orderings, we can make use of the follow-
ing well-known result (Booth and Lueker 1976). Given an
m X n Boolean matrix, we can find a permutation of the n
columns so that all the ‘1’s appear consecutively in any row
(if such a permutation exists) in O(m+n+ f) time. Here, f
is the total number of ‘1’s in the matrix, and is O(mn). The
algorithm for doing this employs PQ-trees, and a detailed
description of it can be found in (Booth and Lueker 1976).
To find the domain orderings for all the variables so as to
establish row-convexity in a path-consistent network (if it is
possible to do so), we can therefore run the above algorithm
once for each variable with the domain values of that vari-
able representing the columns, and the different values of all
other variables representing the rows (see Figure 6 and (Van
Beek and Dechter 1995)).

Although row-convexity implies global consistency in
path-consistent networks, the very process of achieving
path-consistency may destroy it. (This means that row-
convexity of the original set of constraints does not neces-
sarily imply global consistency.) In particular, two problems
arise while enforcing path-consistency on row-convex con-
straints. First, when a row-convex constraint is composed
of disjoint blocks of ‘1’s, its composition with another row-
convex constraint may not be row-convex. Second, even if
disjoint blocks are forbidden, intersection may create empty
rows and columns (rows or columns that have only ‘0’s in
them) that lead to disjoint blocks. The following examples
illustrate these problems (see (Deville et al. 1999)).

X X

- == lolo

oo o= o
o ele e e
oo = oo
o ele|= o
o |= O o =
a|a|alolo
o= |alolo
=R(=RE (=N

o o |= = [=

Figure 7: Illustrates the difference between row-convex and
CRC constraints. The constraint on the left hand side is
CRC because after deleting all the empty rows and columns
(fourth column), the ‘1’s appear contiguously in every row
and every column; and moreover, the bands of ‘1’s in con-
secutive rows touch (or overlap with) each other. The con-
straint on the right hand side is not CRC (although it is row-
convex), because the bands of ‘1’s in the second and third
rows do not touch each other.

1 1 11 1
11).(10 >_< 1>
0 1 0 0 1
1 11 1 0 0 1 00
<001>ﬂ<100>:<000>
0 0 1 1 11 0 0 1

CRC constraints avoid both the above problems by im-
posing a few additional restrictions. A (0,1)-matrix is CRC
if, after removing empty rows and columns, it is row-
convex and connected (i.e. the positions of the ‘1’s in any
two consecutive rows intersect, or are consecutive). A bi-
nary relation R;; constitutes a CRC constraint if both Mg,
and M}gij are CRC. Unlike row-convex constraints, CRC
constraints are closed under composition, intersection and
transposition—the three basic operations employed by al-
gorithms that enforce path-consistency—hence establishing
path-consistency over CRC constraints is sufficient to ensure
global consistency (see (Deville et al. 1999)). An instan-
tiation of the generic path-consistency algorithm, that fur-
ther exploits the structure of CRC constraints, has a running
time complexity of O(N3K?) and a space complexity of
O(N?%K) (see (Deville et al. 1999)). Here, N is the number
of variables, and K is the size of the largest domain. (After
path-consistency is achieved, a solution can be found in a
backtrack-free manner in O(N?) time.) Figure 7 provides
examples of row-convex and CRC constraints.

0 1 1
0 1 0
1 0 0

N
SO =

Filtering with CRC Constraints

In a logical filtering scenario (see Figure 8), we essen-
tially have to address the following combinatorial problem
(a more formal definition of the logical filtering problem
appears in (Amir and Russell 2003)). We are given a set
of system variables X l(t), Xz(t) ¢ (indexed by time ¢
because we are dealing with dynamical systems), where a
complete assignment to the variables represents a state of
the system at time t. The initial state of the system (at
time 0) is specified in one of several forms, and the system

T=0 T=t T=t+1

Figure 8: Illustrates the combinatorial problem in logical
filtering. X1, X2 ... X, (indexed by time ¢) are the system
variables—values of which define a state of the system (at
time t). Possible transitions of the system from time ¢ to
time ¢+ 1 are defined using constraints between the variables
at time ¢ and time ¢ 4+ 1. Observations on a subset (poten-
tially empty) of the variables are recorded at every point of
time; and the goal is to maintain (at every stage) a compact
representation of the belief state.

evolves from time ¢ to time ¢ 4+ 1 under a specified tran-
sition model. The transition model is specified as a set of

constraints between the variables X 1(t), X 2(1:) ... X\ and the

variables X1(t+1), X;Hl) . .X,(fﬂ), and the observations
are recorded on a subset (potentially empty) of the variables
at every time step. The belief state at time ¢ is the set of

all assignments to the variables Xl(t)7 Xz(t) ... X that can
be extended to a complete assignment (for all the variables
across all time points < t) that is consistent with the ini-
tial state, observations, and the transition constraints (up to
time < t). The goal is to maintain a compact representation
of the belief state (at every time point) under an unbounded
sequence of transitions and observations.

In this section, we will show that efficient logical filtering
is possible when all the constraints are CRC. From the pre-
vious section, we note that given a set of CRC constraints,
enforcing path-consistency ensures global consistency. In
other words, after path-consistency is enforced on a set of
CRC constraints, any consistent instantiation of any subset
of the variables (that satisfies all the direct constraints) can
be extended to a complete solution (that assigns a value to
all the variables and satisfies all the constraints). In turn,
this means that given a set of CRC constraints over the vari-
ables Y1, Y5 ... Yy, the set of assignments to a subset of the
variables Y;, , Y;, ...Y;, that can be extended to a complete
solution are exactly those that satisfy the direct constraints
between Y;,, Y, ... Y;, after path-consistency is achieved.

In the context of logical filtering, if all the constraints are
CRC, then the belief state at time ¢ is exactly the set of all so-
lutions to the direct constraints between X 1(t), XQ(t) xP
(after path-consistency is enforced). Therefore, one simple
algorithm for logical filtering (over CRC constraints) is to
repeatedly enforce path-consistency between the variables

ALGORITHM: CRC-FILTERING

INPUT: variables X, X5...X,, (indexed by time ?)
with respective domains D1, Do . .. D,,; CRC constraints
Cr between the variables Xl(tfl),Xz(tfl)...Xfffl)
(solutions to which represent the belief state at
time ¢ — 1); CRC constraints C; between the vari-

ables Xl(tfl), XQ(tfl) . XYY and the variables
X 1(t), Xz(t) e X,(f) representing possible transitions;
observations Co expressed as CRC constraints.
OUTPUT: constraints C between the variables
X 1(t), Xz(t) .. X" (solutions to which represent
the belief state at time %).
(1) Establish path-consistency between all variables
(x0 xi0 x 0o x P x x Py
using the constraints C; U Cp U Co.
(2) RETURN: the set of direct constraints between the
variables X" x{" . x{").
END ALGORITHM

Figure 9: Shows the algorithm for filtering CRC constraints.
We assume that path-consistency over CRC constraints is
enforced efficiently using the algorithm in (Deville et al.
1999). We also note that the set of direct constraints referred
to in step (2) is the set of all binary (CRC) constraints be-
tween variables in Xl(t)7 Xz(t) .
is achieved.

. X,(lt) after path-consistency

in successive time steps, and record only the direct con-
straints between the variables at the current time step. Fig-
ure 9 presents this algorithm for logical filtering when all the
relevant constraints are CRC.

We note that every time path-consistency is achieved
between the variables Xl(t_l),Xz(t_l) . ..X,(f_l) and
Xl(t),XQ(t)...Xff) using the constraints C;y U Cr U Co
(see Figure 9), only the resulting direct constraints between
the variables X ft),XQ(t) . X are retained to represent

the belief state at time ¢. In the next time step, the same

process is repeated for the variables Xl(t),XQ(t)...X,(f)

and Xl(tﬂ), XQ(tH) .. X7(f+1). At this stage (time ¢ + 1),
it looks as if path-consistency must be achieved over all
the variables across all time steps < t + 1 (including
Xl(tfl),Xz(tfl) . .X,Stil)) for justifying the retention of
only the CRC constraints over X1(t+1), X2(t+1) X8 g0
represent the belief state at time ¢ + 1. However, the Marko-
vian nature of the evolution of the system helps us in proving
the soundness of the procedure in Figure 9 (that consid-
ers establishing path-consistency only over the variables
in X x x\ and xY x{Y L x [y,
In particular, establishing path-consistency between
the variables at time ¢ — 1 and time ¢ ensures that
any consistent assignment of values to the variables

X l(t), Xz(t) .. X can also be consistently extended to an

assignment for all the previous variables; and moreover,
when path-consistency is achieved between the variables

T=t-1 T=t T=t+1

Figure 10: Presents a diagram to support some of the claims
made in this section (when we are dealing with the problem
of filtering CRC constraints). Establishing path-consistency
between the variables at time ¢ — 1 and time ¢, and then
between the variables at time ¢ and time ¢ + 1, ensures—by
the Markovian property—that a consistent assignment to the
variables at time ¢ 4 1 has a consistent extension to all the
previous variables.

X N

i
0 1 0 0 0
1 1 0 0 0
0 1 1 1 1
0 0 1 1 0
0 0 1 0 0

Figure 11: Shows that a CRC constraint restricted to any
continuous range of values of any participating variable in-
duces a CRC constraint in turn. The line segments indicate
the restriction of the domains of the variables X; and X
to continuous ranges of values, and the rectangle with dark
edges indicates the induced CRC constraint.

xP x xP and XY x D x0T i can
only constrain the set of consistent assignments to the vari-
ables Xl(t), XQ(t) . .Xff); and any consistent assignment to

the variables Xl(tH), Xétﬂ) o X,(fﬂ) can be consistently

extended to X 1(t), Xz(t) L xP Pt together, any consistent

assignment to the variables X1(t+1), XéHl) XS (that
satisfies the direct constraints) can also be consistently
extended to all the previous variables (see Figure 10).

We will now look at ways in which the initial state, tran-
sition model and the observations can be specified so that all
the resulting constraints turn out to be CRC.

Initial State: Uncertainty in the initial state can be han-
dled when the possible initial states are expressed as the
set of all solutions to a set of CRC constraints over
X1(0)7X2(0) X As a trivial consequence, if there is
no uncertainty in the initial state, this definite state (say
X{O) = vy, XQ(O) = vy.. 'X7(10) = v,) can be expressed as

a set of CRC constraints where every binary CRC constraint
between X i(o) and X 7(-0) has only one allowed combination:

Xi(o) = v; and X J(O) = v;. Further, if uncertainty is in the
form of k different initial states that cannot be expressed as
solutions to a set of CRC constraints (and if all the other
constraints are CRC), then the resulting filtering problem is
equivalent to k different filtering problems each with a dif-
ferent (but fixed) initial state.

Transition Model: The transition model speaks about how
a system evolves over time (perhaps under the influence of
actions taken by the agent). A set of transition constraints

between the variables X 1(t), XQ(t) ... X" and the variables

Xl(tH), XQ(tH) LLxiy specifies whether a transition is
possible from state s at time ¢ (expressed as an assign-
ment to the variables Xl(t) XQ(t)...Xff)) to state s’ at

3

time ¢ + 1 (expressed as an assignment to the variables

X1(t+1), X;Hl) . .Xr(fﬂ)). CRC constraints can be used
to express the necessary transitions in some useful domains
(see later section for an example).
Observations: In the simplest case where observations are
expressed as values for certain variables, the resulting con-
straints are certainly CRC (see Figure 11). However, we can
allow for a much richer representation of observations; in
particular, if uncertainty in the observations is expressed as
continuous ranges of possible domain values to certain vari-
ables, then the induced constraints would still remain CRC
(see Figure 11).

We note that at any time ¢, the set of possible states of
the system is represented as the set of all solutions to the di-

rect CRC constraints over the variables X 1(t), XQ(t) xW.
Since there are at most O(n?) such constraints, the repre-
sentation is compact (and indefinitely so because it is inde-
pendent of t). We also note that the time required to update
the belief state is O(n>K?) and the space required to spec-
ify the belief state is O(n?K?) (where K is the size of the
largest domain). These complexities are directly analogous
to that of Kalman filtering for linear Gaussian models.

Our approach differs from approaches that maintain the
belief state at time ¢ as a set of complete assignments to
the system variables X l(t), Xz(t) . .Xff). In particular, ap-
proaches of the latter kind quickly run into the worst case
scenario of having to represent an exponential number of
states achievable at time t. Our approach, however, repre-
sents these exponential number of states achievable at time
t as the set of all solutions to a set of only O(n?) CRC con-
straints (if all the constraints in the system are CRC). Fur-
ther, most reasoning tasks on this representation are easy;
in particular, it is easy to verify whether a state (specified as

an assignment to the variables X 1(t), X z(t) - Xflt)) is achiev-
able at time £ (i.e., satisfies all the direct CRC constraints be-
tween the variables Xl(t), XQ(t) . X,(f)), and it is also easy

to obtain a candidate state at time ¢ by efficiently solving the

CRC constraints between the variables Xl(t), XQ(t) LxP
(simple randomized algorithms for solving CRC constraints
can be found in (Kumar 2005b)). Finally, our approach also
differs from approaches that try to maintain the belief state at

Figure 12: Illustrates the fact that in a tree structure, if a
set of subtrees do not have a common node, then there exist
some two subtrees that do not overlap with each other (the
subtrees within lighter enclosures in the figure). Conversely,
if every two subtrees have at least one node in common, then
there exists a node that is common to all the subtrees. (The
enclosed areas in the figure indicate subtrees.)

ALGORITHM: TREE-EMBEDDING
INPUT: variables 7, Z5 . . . Z with respective domains
Fy, Fy ... Fy; binary constraints C1, Cs . .. Cyy (the bi-
nary constraint between Z; and Z; is denoted by Cj;).
OUTPUT: tree structures 7; (¢ = 1,2...N) on the do-
main values of each variable.
(1) For every variable Z;:
(a) Construct complete graph G on the domain
values f1, fa... f‘Fi‘ e F;of Z;:
(b) For the undirected edge (f,, f») assign a weight
= |{(Zj, 1)) NS Fj N Oij(fa, 1)) N C’ij(fb,v)}|.
(¢) Construct T; = the maximum spanning tree of G.
(2) RETURN: 71,15 ... Ty.
END ALGORITHM

Figure 13: A simple polynomial time algorithm for con-
structing a tree T; (if such a tree exists) over a set of domain
values F; of the variable Z; such that for any value of any
other variable, the set of values in F; that are consistent with
it constitutes a single subtree in 7.

time ¢ using ellipsoids or bounding hyperplanes (E1 Ghaoui
and Calafiore 1999). In particular, there are very simple
cases where the solutions to a set of CRC constraints can-
not be represented compactly using geometrically closed re-
gions (e.g. RDTPs (Kumar 2005a)).

Filtering with Path-Consistency

In this section, we will extend the theory developed in
the previous section (for filtering CRC constraints) to per-
form filtering in the more general context of tree-convexity
(Zhang and Freuder 2004). In particular, we will provide
a filtering algorithm based on repeatedly enforcing path-
consistency and embedding the domain values of the related
variables in tree structures (with certain properties) to be
able to guarantee global consistency.

From the previous section, we know that path-consistency
implies global consistency when there exist orderings on
the domain values of all the variables that establish row-

Figure 14: Illustrates the working of the algorithm in Figure
13. The left side of the figure shows the binary constraints
between X and every other variable in the form of Boolean
matrices. The right side of the figure shows the maximum
spanning tree for the complete graph constructed over the
domain values of X;.

convexity of all the constraints. A key observation that was
exploited in justifying this claim is that given a set of line
segments, if every two line segments overlap, then there is
a common intersection point (see Figure 4). An extension
of this observation is that trees exhibit a similar behavior
(see Figure 12). That is, if there does not exist a node that
is common to all the subtrees of a tree (from a given col-
lection of subtrees), then there exist some two subtrees that
do not overlap. Conversely, if every two subtrees have at
least one node in common, then there exists a node that is
common to all the subtrees. In the context of filtering, this
means that in going from time ¢ — 1 to time ¢ (after path-
consistency is achieved), if we can embed the domain val-
ues D of every variable X € {Xl(t_l), X;t_l) . Xflt_l)}u
{Xft), Xz(t) . Xff)} in a tree structure 7" such that for any
value of any other variable, the set of values in D that are
consistent with it constitutes a single subtree in 7', then such
an embedding provides a certificate for global consistency.?

Figure 15 provides an algorithm (generalizing that of Fig-
ure 9) for filtering binary constraints by repeatedly enforcing
path-consistency (at appropriate steps) and testing its suffi-
ciency for ensuring global consistency. (As before, if global
consistency is true, then the belief state at time ¢ is given by
the set of direct binary constraints between the variables in
X l(t), Xz(t) . .X,St) after path-consistency is achieved.) Fig-
ure 13 provides a simple polynomial time algorithm for au-
tomatically constructing the required tree embeddings (if
they exist) of the domain values of all the variables to verify
whether a path-consistent network can be made tree-convex

“Note that the tree structure for a variable at time ¢ can be dif-
ferent from that at time ¢ + 1 because the tree structures are used
only to provide certificates of global consistency.

ALGORITHM: FILTERING-WITH-PC
INPUT: variables X, X5...X,, (indexed by time t)
with respective domains Dj, Dy ...D,; constraints
Cr between the variables Xl(tfl), Xz(tfl) D ¢ S
(solutions to which represent the belief state at time
t — 1); binary constraints Cp between the vari-
ables Xl(tfl), Xétil) XYY and the variables
Xl(t), XQ(t) e Xr(f) representing possible transitions;
observations expressed as constraints Co.
OUTPUT: constraints C between the variables
Xl(t), XQ(t) X (solutions to which represent
the belief state at time ¢).
(1) Establish path-consistency between all variables
(x0 x0 x 0y ox) x P x Py
using the constraints C; U Cr U Co.
(2) Embed the domain values of all the variables
xD x Y x 8 and XU x80 x P in
tree structures using the algorithm in Figure 13.
@3)Ifforany X € {x{"V x{ x{Y}u
{Xft), Xz(t) ¢ }, and any value of any other
variable, the set of domain values of X consistent with
it constitutes a single subtree:
(a) RETURN: the set of direct constraints between
the variables X", X" ... x{1.
(4) Else RETURN: failure.
END ALGORITHM

Figure 15: Shows the algorithm for filtering binary con-
straints using path-consistency. The success of the algorithm
depends crucially on whether we can embed the domain val-
ues of the variables in appropriate tree structures.

in order to provide a certificate of global consistency. Our
algorithm is a very simple adaptation of an algorithm pre-
sented in (Conitzer et al. 2004) in the context of solving
combinatorial auctions; and is (in some sense) a generaliza-
tion of the algorithm in (Booth and Lueker 1976) for identi-
fying row-convexity (i.e., the consecutive ones property).

Given a path-consistent network, consider the task of con-
structing a tree 7; (over the domain values in F;) for the
variable Z; such that for any value v of any other variable
Z;, the set of values in F; that are consistent with it con-
stitutes a single subtree in 7;. For every value v of every
other variable Z;, we construct the set .S z;0 © Fj of val-
ues in F; that are consistent with it. Now, given a set of
such subsets S1, .53 . .. Sk (one for each value of every other
variable), we construct a weighted undirected graph as fol-
lows. The nodes of the graph correspond to the values in
F;, and an undirected edge between two nodes is assigned a
weight equal to the number of subsets S1, S5 . . . Sj, in which
the corresponding two values occur together. The required
tree T; (if it exists) is then given by the maximum weighted
spanning tree on this graph (which can be computed very
efficiently). A rigorous proof for this claim is presented in
(Conitzer et al. 2004). Figure 14 illustrates the working of
this algorithm (see Figure 13).

ALGORITHM: FILTERING-WITH-LC

INPUT: variables X, X5...X,, (indexed by time ?)
with respective domains Dj,Dsy...D,; constraints
Cr between the variables Xl(tfl),Xz(tfl)...Xfffl)
(solutions to which represent the belief state at
time t — 1); constraints Cp between the vari-

ables Xl(tfl),XQ(tfl)...X,(f*l) and the variables

X 1(t), Xz(t) e X,(f) representing possible transitions;
observations expressed as constraints Co.
OUTPUT: constraints C between the variables
X 1(t), Xz(t) .. X" (solutions to which represent
the belief state at time %).
(1) Fork=3...n:

(a) Establish k-consistency between all variables

x0 x 0 x Y ana x0 x0 x P

using the constraints C; U Cr U Co.

(b) Construct geometric embeddings of the domain

values of all the variables Xl(tfl), Xz(tfl) e X,(ffl)

and Xl(t), XQ(t) X o provide a certificate of
global consistency.
(c) If such embeddings exist:
(i) RETURN: the set of direct constraints between
the variables X", X" ... x{.
(d)Else k =k + 1.
END ALGORITHM

Figure 16: Shows the algorithm for filtering a set of con-
straints by enforcing increasing levels of local consistency.
At each stage (level of local consistency), we check whether
geometric embeddings of the domain values of all the vari-
ables exist so as to provide a certificate for global consis-
tency.

Filtering with Local Consistency

In this section, we will comment on the possible extension
of the theory developed in the previous section to perform
filtering in the general case. Figure 16 presents the algo-
rithm for doing this. The key idea is the observation that,
in general, we need to enforce n-consistency between the
variables X"V x {1 x{"Yand x x{" . x{
to update the belief state from stage ¢ — 1 to stage ¢; how-
ever, if increasing levels of local consistency are achieved
progressively, and k-consistency (for some k significantly
less than n) can be shown to imply global consistency, then
no further work needs to be done—hence saving the ef-
fort of having to achieve n-consistency. (We note that es-
tablishing k-consistency (n-consistency) requires computa-
tional resources proportional to K* (K™) where K is the
size of the largest domain.)

A fundamental combinatorial problem arising in the
above scheme is related to identifying the conditions under
which we can prove that k-consistency implies global con-
sistency. The ideas of row- and tree-convexity, for example,
were used for £ = 3. For higher &, two important questions
need to be answered: “What kind of a geometric embedding
of the domain values of all the variables ensures global con-

sistency?”’and “How do we efficiently find such embeddings
when they exist?” (i.e. “What is the algorithm analogous to
that in Figure 13?”). We surmise that, in general, the prob-
lem is related to embedding the domain values of variables
in clique trees—although how to construct them automati-
cally is a largely open question.?

Example: Multi-Agent Localization in a CRC
Region
In this section, we will present an application of the the-
ory developed in this paper. The scenario involves multiple
agents (robots) that have to collaborate in achieving a certain
task, and in the process have to localize in a certain region by
communicating with each other and making limited obser-
vations of their current states. Figure 17 and Figure 18 help
to illustrate this scenario. There are NV agents aj,as...an,
with the position of agent a; described by a pair of coordi-

nates (:vl(-t) ; yft)) at any time ¢. (For simplicity, we assume a
grid world instead of allowing x! and y! to be continuous.)
An agent a; can make a strategic move at time ¢ to achieve
a new position at time ¢ + 1. The agent keeps track of
its displacements; and in particular, it approximately mea-
sures the distance it has moved, and the angle along which

it did so at any time ¢. From this, the agent might infer that
Lgt) < x§t+1) . xl(t) < Ul(t) and Lét) < y§t+1) gt < U2(t)

(for some constants Lgt), Ul(t), Lét) and Uz(t)). Agents a;
and a; can also communicate approximate mutual distances

and orientations with each other to infer Lét) < xgt) — xg-t) <

U?Et) and Ly) < yZ@ —ylgt) < Uit) (for some constants Lgt),

U?Et), Lff) and Uf)). As shown in Figure 17(c), all these
kinds of constraints are CRC. Moreover, the constraint that
the coordinates of any agent must be within the boundaries
of the region in which it is trying to localize is also a CRC
constraint if we assume that the geometry of the region is
CRC. (Many realistic domains, such as football fields, qual-
ify as CRC regions.)

Finally, the presence of landmarks helps agents in local-
ization; but may or may not create CRC constraints that are
useful for filtering. Figure 18 discusses some of these cases.
If there is a landmark H, and if an agent is near it (enabling
it to localize in a small rectangular region around it), then the
resulting information constitutes a CRC region (constraint);
moreover, when there are two such landmarks that look
alike, the resulting disjunctive information also constitutes
a CRC constraint (see Figure 18(a)). Sometimes, even the
absence of a nearby landmark can help an agent in localiza-
tion (removing the shaded area near the landmark H results
in a CRC region in Figure 18(b)), but not always (removing
the shaded area near the landmark K does not result in a
CRC region in Figure 18(b)). Finally, when there are mul-
tiple landmarks of the same kind, the resulting constraining
region may not always be CRC (the union of the shaded ar-
eas representing regions of localization with respect to each
landmark is not CRC in Figure 18(c)).

3This is different from constructing clique trees over the vari-
ables as in standard dynamic programming-based approaches.

_______:‘;~.

(@) (b) (©)

Figure 17: Diagrams to illustrate the scenario of multi-agent localization in a CRC region. (a) shows the possible style in which
an agent a; keeps track of its displacements; at any stage, it approximately measures the distance it has moved, and the angle
along which it moved. (b) shows a CRC region and the possible style of communication between two agents a; and ag; the two
agents can communicate approximate distances and relative orientations with each other. (c) shows that any constraint of the

form L <Y — X < U is a CRC constraint (dotted lines indicate the feasible region).

(@) (b) (©

Figure 18: Illustrates the role of landmarks in the scenario of Figure 17. (a) shows that if there is a landmark H, and if an
agent is near it (enabling it to localize in a small rectangular region around it), then the resulting information constitutes a
CRC region (constraint); moreover, when there are two such landmarks that look alike, the resulting disjunctive information
also constitutes a CRC constraint. (b) shows that, sometimes, even the absence of a nearby landmark can help an agent in
localization (removing the shaded area near the landmark H results in a CRC region), but not always (removing the shaded area
near the landmark K does not result in a CRC region). (c) shows that when there are multiple landmarks of the same kind, the
resulting constraining region may not always be CRC (the union of the shaded areas representing regions of localization with

respect to each landmark is not CRC).

Related Work, Conclusions, Future Work and
Acknowledgements

Early work on filtering in the logical context includes the
following: (Fikes et al. 1972), (Lin and Reiter 1997) (cases
when actions have deterministic effects), (Liberatore 1997)
(cases when the initial state is not fully known, or when ac-
tions have nondeterministic effects). Traditionally, compu-
tational approaches for filtering have taken one of three ap-
proaches: (1) enumerate the world states possible in every
belief state and update each of those states separately, to-
gether generating the updated belief state (see (Ferraris and
Giunchiglia 2000) and (Cimatti and Roveri 2000)), (2) list
the sequence of actions and observations, and prove queries
on the updated belief state (see (Reiter 2001) and (Sande-
wall 1994)), or (3) approximate the belief state representa-
tion (Son and Baral 2001). The first two approaches cannot
be used when there are too many possible worlds, or when
the sequence of actions is long. The third approach too poses

the problem of giving rise to potentially unsafe situations.
Filtering algorithms for actions that permute the state space,
or when the belief state is represented using prime implicates
(and under some assumptions), are presented in (Amir and
Russell 2003). First-order logical filtering is also analyzed in
(Shirazi and Amir 2005), and the projection problem (in the
presence of context-dependent actions and incomplete first-
order knowledge) is studied in (Liu and Levesque 2005).

In this paper, we identified classes of transition constraints
that are amenable to compact and indefinite filtering—
presenting efficient algorithms wherever necessary. We first
showed that CRC constraints are amenable to efficient filter-
ing when path-consistency is enforced in appropriate steps.
We then extended this theory to provide a filtering algorithm
based on repeatedly enforcing path-consistency and embed-
ding the domain values of the related variables in tree struc-
tures to guarantee global consistency. (In turn, we alluded
to possibly generalizing this theory to perform filtering via
repeated enforcement of levels of local consistency followed

by appropriate geometric embeddings of the domain values
of the related variables to guarantee global consistency.) Fi-
nally, we identified and commented on the problem of multi-
agent localization as a potential application of the theory de-
veloped in the paper (under some reasonable assumptions).

As part of our future work, we are interested in a more
elaborate theory for characterizing tractable cases of logi-
cal filtering—whether or not they are related to geometric
embeddings. We are also interested in dealing with CRC
constraints in continuous domains (as in the case of multi-
agent localization) using graphical representations such as
distance graphs (Kumar 2005a).

Some of the above references to related work and some
of the introductory material in this paper are borrowed from
(Amir and Russell 2003).

References

Amir E. and Russell S. 2003. Logical Filtering. Proceed-
ings of IJCAI’2003.

Booth K. S. and Lueker G. S. 1976. Testing for the Consec-
utive Ones Property, Interval Graphs, and Graph Planarity
Using PQ-tree Algorithms. Journal of Computer and Sys-
tem Sciences, 13:335-379, 1976.

Bryce D. and Kambhampati S. 2005. Cost Sensitive Reach-
ability Heuristics for Handling State Uncertainty. Proceed-
ings of UAI’2005.

Cimatti A. and Roveri M. 2000. Conformant Planning via
Symbolic Model Checking. JAIR, 13:305-338, 2000.

Conitzer V., Derryberry J. and Sandholm T. 2004. Combi-
natorial Auctions with Structured Item Graphs. Proceed-
ings of AAAI’2004.

Cushing W. and Bryce D. 2005. State Agnostic Planning

Graphs (and Their Application to Belief Space Planning).
Proceedings of AAAI’2005.

Deville Y., Barette O. and Van Hentenryck P. 1999. Con-
straint Satisfaction over Connected Row-Convex Con-
straints. Artificial Intelligence, 109:243-271.

El Ghaoui L. and Calafiore G. 1999. Confidence Ellipsoids
for Uncertain Linear Equations with Structure. Proc. Conf.
Decision and Control, December 1999,

Ferraris P. and Giunchiglia E. 2000. Planning as Sat-
isfiability in Nondeterministic Domains. Proceedings of
AAAI’2000.

Fikes R., Hart P. and Nilsson N. 1972. Learning and Exe-
cuting Generalized Robot Plans. AlJ, 3:251-288, 1972.

Kalman R. E. 1960. A New Approach to Linear Filtering
and Prediction Problems. Trans. of ASME J. of Basic En-
gineering, 82(Ser. D):35—45, 1960.

Kumar T. K. S. 2005a. On the Tractability of Restricted
Disjunctive Temporal Problems. Proceedings of the Fif-
teenth International Conference on Automated Planning
and Scheduling (ICAPS’2005).

Kumar T. K. S. 2005b. On the Tractability of Smooth
Constraint Satisfaction Problems. Proceedings of the Sev-
enth International Conference on Integration of AI and OR

Techniques in Constraint Programming for Combinatorial
Optimization Problems (CP-AI-OR’2005).

Liberatore P. 1997. The Complexity of the Language A.
ETAI 1:13-38, 1997.

Lin F. and Reiter R. 1997. How to Progress a Database.
AlJ, 92:131-167, 1997.

Liu Y. and Levesque H. 2005. Tractable Reasoning with
Incomplete First-Order Knowledge in Dynamic Systems
with Context-Dependent Actions. Proceedings of 1J-
CAI’2005.

Mohr R. and Henderson T. C. 1986. Arc and Path Consis-
tency Revisited. Artificial Intelligence, 28:225-233.
Nguyen X. and Kambhampati S. 2000. Extracting Effec-
tive and Admissible Heuristics from the Planning Graph.
Proceedings of AAAI’2000.

Reiter R. 2001. Knowledge in Action. MIT Press, 2001.
Sandewall E. 1994. Features and Fluents. Oxford, 1994.

Shirazi A. and Amir E. 2005. First-Order Logical Filtering.
Proceedings of IJCAI’2005.

Son T. C. and Baral C. 2001. Formalizing Sensing Actions:
A Transition Function Based Approach. AlJ, 125.

Van Beek P. and Dechter R. 1995. On the Minimality and
Global Consistency of Row-Convex Constraint Networks.
Journal of the ACM, Volume 42, Issue 3, Pages: 543-561.
Zhang Y. and Freuder E. C. 2004. Tractable Tree Convex
Constraint Networks. Proceedings of AAAI’2004.

