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Abstract— In this paper, we consider the general multiple
target tracking problem in which an unknown number of
targets appears and disappears at random times and the goal
is to find the tracks of targets from noisy observations. We
propose an efficient real-time algorithm that solves the data
association problem and is capable of initiating and terminat-
ing a varying number of tracks. We take the data-oriented,
combinatorial optimization approach to the data association
problem but avoid the enumeration of tracks by applying a
sampling method called Markov chain Monte Carlo (MCMC).
The MCMC data association algorithm can be considered as a
deferred logic since its decision about forming a track is based
on the current and past observations. But, at the same time, it
can be considered as an approximation to the optimal Bayesian
filter. The algorithm shows remarkable performance compared
to the greedy algorithm and the multiple hypothesis tracker
(MHT) under the extreme conditions, such as a large number
of targets in a dense environment, low detection probabilities,
and a large number of false alarms.

I. INTRODUCTION

The multiple target tracking plays an important role in
many areas of engineering such as surveillance, computer
vision, and signal processing [1], [4]. Under the most
general setup, a varying number of indistinguishable targets
is moving around in a region with continuous motions and
the positions of moving targets are sampled at random
intervals. The measurements about the positions are noisy,
with detection probability less than one, and there is a
noise background of spurious position reports, i.e., false
alarms. Targets arise at random in space and time. Each
target persists independently for a random length of time
and ceases to exist. A track of a target is defined as a path
in space-time traveled by the target. The essence of the
multiple target tracking problem is to find tracks from the
noisy observations and it requires solutions to both data
association and state estimation problems [16].

The data association problem in multiple target tracking
is described as a problem of finding a partition of observa-
tions such that each element of a partition is a collection
of observations generated by a single target or clutter
[16]. However, due to the noises in state transitions and
observations, we cannot expect to find the exact solution.
This data-oriented view of data association has been applied
and extended by many authors [9], [17], [15], [8], [5],
[14]. The most successful multiple target tracking algorithm
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based on this view is the multiple hypothesis tracker (MHT)
[15]. In MHT, each hypothesis associates past observations
with a target and, as a new set of observations arrives, a new
set of hypotheses is formed from the previous hypotheses.
Each hypothesis is scored by its posterior and the algorithm
returns a hypothesis with the highest score as a solution.
MHT is categorized as a deferred logic [14] in which the
decision about forming a new track or removing an existing
track is delayed until enough observations are collected.
Hence, MHT is capable of initiating and terminating a
varying number of tracks and suitable for surveillance
applications in which an autonomous tracker is required.
However, the construction of new hypotheses requires an
enumeration of all possibilities and the size of hypotheses
grows exponentially. The initial implementation and later
extensions proposed several heuristics, such as pruning,
gating, clustering andN -scan-back logic, to reduce the
complexity of the problem [15], [8]. However, the heuristics
are used at the expense of the optimality and the algorithm
can still suffer in a dense environment. Furthermore, the
running time at each step of the algorithm cannot be
bounded easily, making it difficult to be deployed in a
real-time surveillance system. As a method of pruning, an
efficient method of findingk-best hypotheses based on the
algorithm by Murty [10] is developed in [5].

A different approach to the data association problem is
the joint probabilistic data association filter (JPDAF) [1].
JPDAF is a suboptimal single-stage approximation to the
optimal Bayesian filter. Given a fixed number of targets,
JPDAF enumerates all possible associations between the
latest set of observations and the known tracks and clutter
and computes each association weight. For each association,
the conditional expectation of the state of a target is
estimated by a filtering algorithm. Then, the state of a target
is estimated by summing over the conditional expectations
weighted by association weights. JPDAF is a sequential
tracker in which the associations between the known targets
and the latest observations are made sequentially and the
associations made in the past are not reversible [14]. Since
only the current set of observations is considered, JPDAF
cannot initiate or terminate tracks. Also JPDAF assumes
a fixed number of targets and requires a good initial state
for each target. There are restricted extensions to JPDAF to
allow the formation of a new track (see [4] and references
within). Other multiple target tracking algorithms include
the multisensor multitarget mixture reduction (MTMR) [12]
and the probabilistic multi-hypothesis tracker (PMHT) [18].
But they also assume a fixed number of targets and cannot



initiate or terminate tracks. Recently, a Bayesian model-
based approach for tracking an unknown number of targets
which can initiate and terminate tracks is presented in [11].

The sequential trackers are more efficient than deferred
logic trackers such as MHT but they are prone to make
erroneous associations [14]. In addition, it is inferred that
the exact calculation at each stage is NP-hard [3] since the
related problem of finding the permanent of a 0-1 matrix
is #P-complete [19]. In [6], a single-stage data association
problem is considered and a leave-one-out heuristic is
developed to avoid the enumeration of all possible asso-
ciations. Later, the approach is extended to a multi-stage
data association problem using Markov chain Monte Carlo
(MCMC) [13].

The data association problem of multiple target tracking
formulated under the data-oriented view is also known
to be NP-hard [14]. Hence, we cannot expect to find an
optimal solution in polynomial time unlessP = NP .
An optimization approach to data association has been
applied as a 0-1 integer programming problem [9] and as
a multidimensional assignment problem [14]. In both cases
one needs to find a feasible set of tracks from all possible
tracks to prevent the exponential explosion and compute
the cost of each feasible track, such as the negative log
likelihood. Then the optimization routine finds a subset
from the feasible tracks such that the combined costs are
minimized while satisfying the constraints, i.e., each track
has at most one observation at each time and no two tracks
share the same observation. The gating method similar to
the ones described in [17], [15] is used to find a feasible
set of tracks. However, in a dense environment, the size of
the feasible tracks can be very large and the complexity
of the optimization routine increases dramatically, since the
number of parameters in the optimization routine depends
on the number of feasible tracks.

The main contribution of this paper is the development
of an efficient real-time algorithm that solves the data
association problem and is capable of initiating and ter-
minating a varying number of tracks. We take the data-
oriented, combinatorial optimization approach to the data
association problem but avoid the enumeration of tracks by
applying a sampling method called Markov chain Monte
Carlo (MCMC). The immediate benefit of using MCMC is
the low memory requirement. The MCMC data association
(MCMCDA) algorithm can be considered as a deferred
logic since its decision about forming a track is based on
the current and past observations. But, at the same time,
it can be considered as an approximation to the optimal
Bayesian filter if it is used to approximate the association
probabilities or expectations such as the average link travel
time as done in [13]. So, from the Bayesian point of view,
the algorithm can be considered as a generalization of
[13] to handle an unknown number of objects, missing
observations and false alarms. MCMCDA shows remarkable
performance compared to the greedy algorithm and MHT
under the extreme conditions such as a large number of

targets in a dense environment, low detection probabilities,
and a large number of false alarms.

The remainder of this paper is structured as follows. We
formally state the (discrete-time) general multiple target
tracking problem in Section II. In Section III, we present
a general purpose MCMCDA algorithm for multiple target
tracking. The algorithm is applied in simulation to extreme
situations and its performance is compared with the greedy
algorithm and MHT in Section IV.

II. GENERAL MULTIPLE TARGET TRACKING

A. Problem

Let T ∈ Z+ be the duration of surveillance. LetK
be the unknown number of objects moving around the
surveillance regionR for some duration[tki , tkf ] ⊂ [1, T ]
for k = 1, . . . ,K. Let V be the volume ofR. Each object
arises at a random position inR at tki , moves independently
aroundR until tkf and disappears. At each time, an existing
target persists with probability(1− pz) and disppears with
probability pz. The number of objects arising at each time
overR has a Poisson distribution with a parameter(λbV )
where λb is the birth rate of new objects per unit time,
per unit volume. The initial position of a new object is
uniformly distributed overR.

Let F k : Rd → Rd be the discrete-time dynamics of the
object k, whered is the dimension of the state variable,
and letxk

t ∈ Rd be the state of the objectk at time t for
k = 1, 2, . . . ,K. The objectk moves according to

xk
t+1 = F k(xk

t ) + wk
t for t = tki , . . . , tkf − 1,

where wk
t ∈ Rd are white noise processes. The noisy

observation about the state of the object is measured with
the detection probabilitypd which is less than unity. There
are also false alarms and the number of false alarms has a
Poisson distribution with a parameter(λfV ) whereλf is the
false alarm rate per unit time, per unit volume. Letnt be
the number of observations at timet which includes both
noisy observations and false alarms. Letyj

t ∈ Rm be the
j-th observation at timet for j = 1, . . . , nt, wherem is
the dimensionality of each observation vector. Each object
generates a unique observation at each sampling time if it
is detected. LetHj : Rd → Rm be the observation model.
Then the observations are generated as follows:

yj
t =

{
Hj(xk

t ) + vj
t if j-th observation is fromxk

t

ut otherwise,

where vj
t ∈ Rm are white noise processes andut ∼

Unif(R) is a random process for false alarms. Notice that,
with probability 1 − pd, the object is not detected and we
call this a missing observation. We assume that targets are
indistinguishable in this paper. But, if observations include
target type or attribute information, the state variable can
be extended to include target type information.

Under the data-oriented approach, the multiple target
tracking problem is to partition the observations such that



the posterior is maximized, i.e., the maximum a posteriori
(MAP) estimate. Under the Bayesian approach, if we are
given a function defined onΩ, the collection of all partitions
of observations (see below for its definition), we seek the
expected value of the function given the observations. The
MAP estimate found under the data-oriented approach may
not be robust in the Bayesian sense. But it is sometimes
more convenient when estimating parameters whose dimen-
sion is dependent on the number of tracks, such as the states
of targets. Since the size ofxt = (x1

t
T
, . . . , xK

t
T )T depends

on the number of tracksK, the estimation ofxt without
fixing the number of tracks is not meaningful. Hence, under
the Bayesian approach, if a single set of state estimation is
required, we might first estimate the most likely number of
targets and then estimate the expected values of states given
the estimated number of targets.

B. Probabilistic Model

Let us first specify the dynamic and measurement models.
Here we use the usual linear system model but the method
can be easily extended to non-linear models coupled with a
non-linear regression algorithm. If an object is observedk
times att1, t2, . . . , tk, its dynamic and measurement models
can be expressed as:

xti+1 = A(ti+1 − ti)xti
+ G(ti+1 − ti)wti

yti
= Cxti

+ vti
for i = 1, . . . , k,

(1)

wherewti
andvti

are white Gaussian noises with zero mean
and covarianceQ andR, respectively.A(·), G(·), andC are
matrices with appropriate sizes. The entries of the matrix
A(ti+1−ti) andG(ti+1−ti) are determined by the sampling
interval ti+1 − ti for eachi. For clarity, the subsequence
notation for the time index is suppressed for now. Letx̄t

be the expected value ofxt given y1, . . . , yt−1; P̄t be the
covariance ofxt given y1, . . . , yt−1; x̂t be the expected
value of xt given y1, . . . , yt; and P̂t be the covariance of
xt given y1, . . . , yt.

Let yt = {yj
t : j = 1, . . . , nt} and Y =

⋃
t∈{1,,...,T} yt.

Let Ω be a collection of partitions ofY such that, forω ∈ Ω,
1) ω = {τ0, τ1, . . . , τK};
2)

⋃K
k=0 τk = Y andτi ∩ τj = ∅ for i 6= j;

3) τ0 is a set of false alarms;
4) |τk ∩ yt| ≤ 1 for k = 1, . . . ,K andt = 1, . . . , T ; and
5) |τk| > 1 for k = 1, . . . ,K.

Here, K is the number of tracks for the given partition
ω ∈ Ω. We call τk a track when there is no confusion
although the actual track is the set of estimated states
from the observationsτk. However, we assume there is a
deterministic function that returns a set of estimated states
given a set of observations, so no distinction is required. We
denote byτk(t) the observation at timet that is assigned to
the trackτk. Notice thatτk(t) can be empty if it is a missing
observation. The fourth requirement says that a track can
have at most one observation at each time, but, in the case
of multiple sensors, we can easily relax this requirement to
allow multiple observations per track. A track is assumed to

contain at least two observations since we cannot distinguish
a track with a single observation from a false alarm. Once
a partitionω ∈ Ω is chosen, the tracksτ1, . . . , τK ∈ ω and
a set of false alarmsτ0 ∈ ω are completely determined.
Hence, for each track, we can estimate the states of an
object independently since each object moves independently
from the other objects. For each trackτ ∈ ω, we apply the
Kalman filter to estimate the states̄xt(τ) and covariances
Bt(τ), whereBt(τ) = CP̄t(τ)CT + R is the conditional
observation covariance at timet for the trackτ .

Let et be the number of targets from timet−1 andat be
the number of new targets at timet. Let zt be the number of
targets terminated at timet andct = et − zt. Let dt be the
number of detections at timet andut = et−zt +at−dt be
the number of undetected targets. Finally, letft = nt − dt

be the number of false alarms. It can be shown that the
posterior ofω is:

P (ω|Y ) = 1
Z

∏T
t=1 pzt

z (1− pz)ctpdt

d (1− pd)utλat

b λft

f

×
∏

τ∈ω\{τ0}
∏|τ |−1

i=1 N (τ(ti+1)|x̄ti+1(τ), Bti+1(τ)),
(2)

where Z is a normalizing constant andN (·|µ, Σ) is the
Gaussian density function with meanµ and covariance
matrix Σ. Now under the data-oriented, combinatorial op-
timization approach, our goal is to find a partition of
observations such thatP (ω|Y ) is maximized.

III. MCMC DATA ASSOCIATION ALGORITHM

In this section, we develop an MCMC sampler to solve
the multiple target tracking problem. Solving complex prob-
lems by sampling methods such as Markov chain Monte
Carlo (MCMC) has become more tractable, due to the
increased computational power. MCMC-based algorithms
play a significant role in many fields such as physics,
statistics, economics, and engineering [2]. In some cases,
MCMC is the only known general algorithm which finds
a good approximate solution to a complex problem in
polynomial time [7]. MCMC techniques have been applied
to the complex probability distribution integration problems,
counting problems such as #P-complete problems, and
combinatorial optimization problems [7], [2]. The MCMC
approach applied to the combinatorial optimization prob-
lems is generally known as simulated annealing.

The setΩ becomes a state space of the MCMC sampler
and we sample fromΩ such that its stationary distribution
is P (ω|Y ). If we are at stateω ∈ Ω, we proposeω′ ∈ Ω
following the proposal distributionq(ω, ω′). The move is
accepted with an acceptance probabilityA(ω, ω′) where

A(ω, ω′) = min
(

1,
P (ω′|Y )q(ω′, ω)
P (ω|Y )q(ω, ω′)

)
, (3)

otherwise the sampler stays atω, so that the detailed balance
is satisfied. If we make sure that the chain is irreducible
and aperiodic, then the chain converges to its stationary
distribution. The sampler consists of five types of moves.
They are



1) birth/death move pair;
2) split/merge move pair;
3) extension/reduction move pair;
4) track update move; and
5) track switch move.

We index each move by an integer such thatm = 1 for a
birth move,m = 2 for a death move and so on. The move
m is chosen randomly from the distributionξK(m) where
K is the number of tracks of the current partitionω. When
there is no track, we can only propose a birth move, so we
set ξ0(m = 1) = 1 and0 for all other moves. When there
is only a single target, we cannot propose a merge or track
switch move, soξ1(m = 4) = ξ1(m = 8) = 0. For other
values ofK and m, we assumeξK(m) > 0. The MCMC
data association (MCMCDA) algorithm is described in
Algorithm 1. The inputs are the set of all observations
Y , the number of samplesnmc, and the initial stateωinit .
At each step of the algorithm,ω is the current state of
the Markov chain. The acceptance probabilityA(ω, ω′) is
defined in (3) where the posterior (2) is used.

Algorithm 1 (MCMC Data Association (MCMCDA)):
Input: Y, nmc, ωinit
Output: ω̂ = arg max p(ω(n)|Y )

ω ← ωinit
for n = 1 to nmc

sample m from ξK(·)
propose ω′ based on m and ω (described below)
sample U from Unif[0, 1]
if U < A(ω, ω′)

ω ← ω′

end
ω(n)← ω

end

In Algorithm 1, we use MCMC to find a solution to a
combinatorial optimization problem. So it can be considered
as simulated annealing at a constant temperature. No burn-in
samples are used since we are simply looking for a partition
which maximizes the posterior. In addition, the memory
requirement of the algorithm is at its bare minimum. Instead
of keeping all{ω(n)}nmc

n=1, we can simply keep the partition
with the maximum posterior. If the algorithm is used
to estimateEP (ω|Y )f(ω) for some bounded functionf ,
we will need burn-in samples and need to maintain the
sufficient statistics for the desired expectation.

In order to make the algorithm more efficient, we make
two additional assumptions: (1) the maximal directional
speed of any target inR is less than̄v; and (2) the number of
consecutive missing observations of any track is less thand̄.
The first assumption is reasonable in a surveillance scenario
since, in many cases, the maximal speed of a vehicle is
generally known based on its type and terrain conditions.
The second assumption is a user defined parameter and it
can be used as one of the criteria to distinguish an event of
a new object’s appearance from an event of a continuation
of an existing object. We will now assume that these two

new conditions are added to the definition ofΩ so each
elementω ∈ Ω satisfies these two additional assumptions.

We now introduce a data structure which is used to
propose a new partitionω′ in Algorithm 1. We define a
neighborhood tree of observations as

Ld(y
j
t ) = {yk

t+d ∈ yt+d : ‖yj
t − yk

t+d‖ ≤ d · v̄}

for d = 1, . . . , d̄, j = 1, . . . , nt and t = 1, . . . , T − 1. Here
‖ · ‖ is the usual Euclidean distance. This neighborhood
tree groups temporally separated observations based on their
distances. The parameterd allows missing observations.
The use of this neighborhood tree makes the algorithm
more scalable since distant observations will be considered
separately and makes the computations of the proposal dis-
tribution easier. It is similar to the clustering technique used
in MHT but Ld(·) is fixed for a given set of observations
Y .

We now describe each move of the sampler in detail.
First, letζ(d) be a distribution of a random variabled taking
values from{1, 2, . . . , d̄}. We assume the current state of
the chain isω = ω0 ∪ ω1 ∈ Ω, where ω0 = {τ0} and
ω1 = {τ1, . . . , τK}. The proposed partition is denoted by
ω′ = ω′0 ∪ω′1 ∈ Ω. Note the abuse of notation below with
indexing of time, i.e., when we sayτ(ti), ti means the time
at which a target corresponding to the trackτ is observed
i times.

A. Birth and Death Moves

For a birth move, we increase the number of tracks from
K to K ′ = K +1 and selectt1 uniformly at random (u.a.r.)
from {1, . . . , T − 1} as an appearance time of a new track.
Let τK′ be the track of this new object. Then we choose
d1 from the distributionζ. Let L1

d1
= {yj

t1 : Ld1(y
j
t1) 6=

∅, yj
t1 6∈ τk(t1), j = 1, . . . , nt1 , k = 1, . . . ,K}. L1

d1
is

a set of observations att1 such that, for anyy ∈ L1
d1

,
y does not belong to other tracks andy has at least one
descendant inLd1(y). We chooseτK′(t1) u.a.r. fromL1

d1
.

If L1
d1

is empty, the move is rejected since the move is
not reversible. Once the initial observation is chosen, we
then choose the subsequent observations for the trackτK′ .
For i = 2, 3, . . ., we choosedi from ζ and chooseτK′(ti)
u.a.r. fromLdi

(τK′(ti−1))\{τk(ti−1 +di) : k = 1, . . . ,K}
unless this set is empty. But, fori = 3, 4, . . ., the processe
of adding observations toτK′ terminates with probability
γ, where0 < γ < 1. If |τK′ | ≤ 1, the move is rejected. We
then propose this modified partition whereω′1 = ω1∪{τK′}
andω′0 = {τ0\τK′}. For a death move, we simply choosek
u.a.r. from{1, . . . ,K} and delete thek-th track and propose
a new partition whereω′1 = ω1 \{τk} andω′0 = {τ0∪τk}.

B. Split and Merge Moves

For a split move, we selectτs(tr) u.a.r. from{τk(ti) :
|τk| ≥ 4, i = 2, . . . , |τk| − 2, k = 1, . . . ,K}. Then we split
the track τs into τs1 and τs2 such thatτs1 = {τs(ti) :
i = 1, . . . , r} and τs2 = {τs(ti) : i = r + 1, . . . , |τs|}.
The modified track partition becomesω′1 = (ω1 \ {τs}) ∪



{τs1} ∪ {τs2} and the false alarm partitionω′0 is updated
accordingly. For a merge move, we consider the set

M = {(τk1(tf ), τk2(t1)) : τk2(t1) ∈ Lt1−tf
(τk1(tf )),

f = |τk1 | for k1 6= k2, 1 ≤ k1, k2 ≤ K}.

We select a pair(τs1(tf ), τs2(t1)) u.a.r. fromM . The tracks
are combined into a single trackτs = τs1 ∪ τs2 . Then we
propose a new partition whereω′1 = (ω1\({τs1}∪{τs2}))∪
{τs} andω′0 with appropriate rearrangements.

C. Extension and Reduction Moves

In a track extension move, we select a trackτ u.a.r. from
K available tracks inω. We reassign observations forτ after
the disappearance timet|τ | as done in the track birth move.
For a track reduction move, we select a trackτ u.a.r. from
K available tracks inω andr u.a.r. from{2, . . . , |τ | − 1}.
We shorten the trackτ to {τ(t1), . . . , τ(tr)} by removing
the observations assigned toτ after the timetr+1.

D. Track Update Move

In a track update move, we select a trackτ u.a.r. from
K available tracks inω. Then we pick r u.a.r. from
{1, 2, . . . , |τ |} and reassign observations forτ after the time
tr as done in the track birth move.

E. Track Switch Move

For a track switch move, we select a pair of observa-
tions (τk1(tp), τk2(tq)) from two different tracks such that,
τk1(tp+1) ∈ Ld(τk2(tq)) and τk2(tq+1) ∈ Ld′(τk1(tp)),
whered = tp+1 − tq, d′ = tq+1 − tp and 0 < d, d′ ≤ d̄.
Then we let

τk1 = {τk1(t1), . . . , τk1(tp), τk2(tq+1), . . . , τk2(t|τk2 |)}
τk2 = {τk2(t1), . . . , τk2(tq), τk1(tp+1), . . . , τk1(t|τk1 |)}.

Theorem 1:Suppose that0 < pz, pd < 1 andλb, λf > 0.
If ζ(d) > 0, for all d ∈ {1, . . . , d̄}, then the Markov chain
designed by Algorithm 1 is irreducible.

Proof: The birth and death moves are sufficient to
illustrate the irreducibility of the chain. Since0 < pz, pd < 1
andλb, λf > 0, P (ω|Y ) > 0 for all ω ∈ Ω. Take an arbitrary
partition ω ∈ Ω, sayω = {τ0, τ1, . . . , τK}. Now consider
the partitionω′ ∈ Ω, such thatω′ = {τ ′0}, i.e.,ω′ assigns all
observations as false alarms. Sinceω is arbitrary, the chain
is irreducible if the chain can move fromω′ to ω and fromω
to ω′. For the move fromω′ to ω, considerK consecutive
birth moves:ω0 = ω′, ω1 = {{τ ′0 \ τ1}, τ1}, . . . , ωK =
{{τ ′0 \{∪K

i=1τi}}, τ1, . . . , τK} = ω. Sinceω ∈ Ω, all tracks
τk are legal, i.e.,τk satisfies the constraints described in Sec-
tion II-B and, fori = 1, . . . , |τk|−1, τk(ti+1) ∈ Ld(τk(ti))
for 1 ≤ d = ti+1− ti ≤ d̄. Thus,ωk ∈ Ω for all k. Because
ζ(d) > 0 and all tracksτk are legal, the probability of
proposingτk at ωk−1 by the birth move is positive and
q(ωk, ωk+1) > 0. For the move fromω to ω′, consider
K consecutive death moves:ωK = ω, ωK−1, . . . , ω0 = ω′.
The probability of removing the trackτk at ωk by the death
move is positive andq(ωk+1, ωk) > 0. SinceP (ωk|Y ) > 0

for all k, the chain can move fromω′ to ω and fromω to
ω′. Hence, the chain is irreducible.

The Markov chain designed by Algorithm 1 is irreducible
(Theorem 1) and aperiodic since there is always a positive
probability of staying at the current state in the track update
move. In addition, the transitions described in Algorithm 1
satisfy the detailed balance. Hence, by the ergodic theorem,
the chain converges to its stationary distribution. Notice that
the other moves are designed to improve the performance
of the algorithm.

Algorithm 2 (Greedy Multiple Target Tracking):
Input: Y, σ(threshold function )
Output: ω = ω0 ∪ ω1

ω1 ← ∅
for t = 1 to T − 1

repeat
ωt ← ∅
G← {(yi

t, y
j
s) : 1 ≤ s− t ≤ d̄ andyi

t, y
j
s 6∈ τ ∈ ω1}

foreach (yi
t, y

j
s) in G

τt ← ∅
estimate an initial state from (yi

t, y
j
s)

τt(t1)← yi
t and τt(t2)← yj

s

r ← s
while r < T

for d = 1 to d̄
B ← {y ∈ Ld(τt(r)) : y 6∈ τ ∈ ω1}
if B 6= ∅

τt(r + d)← arg miny∈B ‖y − x̄r+d(τt)‖
break

end
end
r ← r + d

end
if p(τt|Y ) ≥ σ(|τt|)

ωt ← ωt ∪ {τt}
end

end
ω1 ← ω1 ∪ {arg maxτ∈ωt p(τ |Y )}

until ωt 6= ∅
end
ω0 ← {Y \ (∪τ∈ω1τ)}

IV. SIMULATION RESULTS

For the simulations we consider the surveillance over a
rectangular region on a plane,R = [0, L]×[0, L] ⊂ R2. The
state vector isx = [x, y, ẋ, ẏ]T where (x, y) is a position
onR along the usualx andy axes and(ẋ, ẏ) is a velocity
vector. The linear system model (1) is used whereδ is an
interval between observations and

A(δ) =
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The covariance matrices areQ = diag(100, 100) andR =
diag(25, 25).

The complexity of the multiple target tracking problems
can be measured by several metrics: (1) the intensity of
the false alarm rateλf ; (2) the detection probabilitypd;
(3) the number of tracksK; and (4) the density of tracks.



Fig. 1. NCA (left), ICAR (middle), and the estimated number of tracks (right) as functions of a number of tracks

The problem gets more challenging with increasingλf ,
decreasingpd, increasingK, and increasing density of
tracks. The number of tracks itself may not make the
problem more difficult if they are scattered apart. But the
difficulty arises when there are many tracks that are moving
closely and crossing each other. This is when the ambiguity
of data association is greater. Hence, we only consider
situations in which tracks move very closely so we can
control the density of tracks by the number of tracks. We
study the performance of the MCMCDA algorithm against
the greedy tracker (see Algorithm 2) and MHT by varying
the parameters listed above.

Based on our model described above, we have generated
different scenarios. In particular, in all cases, except for the
online tracking, a half of new objects appears from the left
bottom quadrant ofR and the other half of new objects
appears from the right bottom quadrant. The actual initial
positions are chosen randomly from each quadrant. They
all move diagonally so each group of tracks crosses the
other group in the middle ofR. Also targets move very
close to each other and there are also crossovers within
each group. The situations we have used for simulations
below include very extreme cases and, in our opinion, such
complex situations have not appeared in the multiple target
tracking literatures.

Since the number of targets is not fixed, it is difficult to
compare algorithms using a standard criterion such as the
residual mean square error. Hence, we introduce two new
metrics to measure the effectiveness of each data association
algorithm. Letω∗ be the true partition with which the test
case was generated. Forω ∈ Ω, we represent the set of
all associations inω as SA(ω) = {(τ, tτi , tτi+1) : i =
1, . . . , |τ | − 1, τ ∈ ω}, wheretτi is the time at which the
track τ is observedi times. Let CA(ω) = {(τ, t, s) ∈
SA(ω) : τ(t) = τ∗(t), τ(s) = τ∗(s), τ∗ ∈ ω∗} be the set of
correct associations inω relative toω∗. The two new metrics
we will be using are the normalized correct associations
(NCA) and incorrect-to-correct association ratio (ICAR):

NCA(ω) =
|CA(ω)|
|SA(ω∗)|

(4)

ICAR(ω) =
|SA(ω)| − |CA(ω)|

|CA(ω)|
. (5)

Fig. 2. Average running time vs. number of tracks

NCA measures the ratio between the number of correct
associations and the number of associations in the true
partition while ICAR measures the number of incorrect
associations per correct association. We measure the per-
formance of each algorithm by NCA, ICAR, the estimated
number of tracks and the running time of the algorithm.

Both MCMCDA and greedy algorithms are written in
C++ with Matlab interfaces. We have used the C++ imple-
mentation of MHT from [5]1, which implements pruning,
gating, clustering,N -scan-back logic andk-best hypothe-
ses. The parameters for MHT are fine-tuned so that it
gives similar performance when there are 10 targets: the
maximum number of hypotheses in a group is 1000, the
maximum track tree depth is 5, and the maximum Maha-
lanobis distance is 5.9. All simulations are run on a PC with
a 2.6-GHz Intel processor.

A. Experiment I (Number of Tracks)

In this experiment, we varyK from 5 to 100 (the actual
values ofK are 5, 10, 20, 30, 40, 50, 75 and 100). The
other parameters are held fixed:R = [0, 1000]× [0, 1000],
T = 10, λfV = 1, v̄ = 130 unit lengths per unit time. The
main focus of this experiment is to test the performance
of data association of MCMCDA against other algorithms
so the tracks are detected at all times, however, we have

1http://www.ee.ucl.ac.uk/ ˜icox/



set pd = .9 for the prior calculation. We have also set
d̄ = 1. Since all tracks are observed, the number of
observations increases as the number of tracks increases.
For each value ofK, we randomly generated five tests.
The results for MCMCDA are the average values over
10 repeated runs and the initial state is initialized with
the greedy algorithm and 10,000 samples are used. The
average NCAs, ICARs and the estimated numbers of tracks
for three different algorithms are shown in Fig. 1. The
running times of three algorithms are shown in Fig. 2 (the
running time of MCMCDA includes the initialization step).
Although the maximum number of hypotheses of 1000 per
group is a large number, with increasing number of tracks,
the performance of MHT deteriorates as the optimality is
compromised by pruning. But both greedy and MCMCDA
keep good performance throughout. In addition, the running
times of both greedy and MCMCDA are significantly less
than that of MHT.

B. Experiment II (False Alarms)

Now the settings are the same as Experiment I but we
vary the false alarm rates while the number of tracks is
fixed at K = 10. The test cases for this experiment are
prepared as follows. We first generated five different random
scenarios each with 10 tracks. Then, we applied different
false alarm rates to generate test cases. The false alarm rates
are varied fromλfV = 1 to λfV = 100 with an increment of
10. 10,000 samples are used for MCMCDA and the results
for MCMCDA are the average values over 10 repeated runs.
The average NCAs, ICARs and the estimated numbers of
tracks for three different algorithms at different false alarm
rates are shown in Fig. 3. It shows remarkable performance
of MCMCDA at very high false alarm rates while the other
two algorithms perform poorly. The greedy algorithm scores
higher in NCA than MCMCDA but poorly in ICAR. In
addition, it reports spurious tracks at high false alarm rates.
Notice that MHT does not make any correct associations at
high false alarm rates,λfV ≥ 80, so ICARs for MHT at
λfV ≥ 80 are not reported.

C. Experiment III (Detection Probability)

In this experiment we vary the detection probability
pd from .3 to .9 with an increment of .1 while keeping
the other parameters as the previous experiments except
K = 10, λfV = 1, T = 15 and d̄ = 5. Now the
tracks are not observed all the time. For each value of
pd, five test cases are randomly generated and the average
NCAs, ICARs and the estimated numbers of tracks are
shown in Fig. 4. For MCMCDA, we present two cases:
MCMC(15K) with 15,000 samples and MCMC(150K) with
150,000 samples. It shows that MCMCDA outperforms at
low detection probabilities. At high detection probability
region, MHT scores higher than MCMCDA but it reports a
higher number of tracks, meaning that it fragments tracks.

Although, in theory, MHT gives an optimal solution in
the sense of MAP, it performs poorly when the detection

TABLE I

PERFORMANCE OFONLINE MCMCDA TRACKER

RUNNING TIMES (RT) IN SECONDS

Number of samples
1,000 5,000

K NCA ICAR RT NCA ICAR RT
100 .95 .19 .06 .98 .13 .28
200 .94 .06 .09 .97 .05 .41
300 .92 .07 .11 .97 .05 .55

probability is low or the false alarm rate is high due to the
heuristics such as pruning andN -scan-back techniques used
to reduce the complexity. The heuristics are required parts
of MHT in practice. Without the pruning andN -scan-back
logic, the problem complexity grows exponentially fast even
for a small problem. In practice, MHT with heuristics works
well when there is a few number of hypotheses which carry
the most of weights. When the detection probability is low
or the false alarm rate is high, there are many hypotheses
with low weights and there is no small set of dominating
hypotheses, so MHT cannot perform well. In addition, when
the detection probability is high, MHT again suffers from
a large number of observations. Another noticeable benefit
of the MCMCDA algorithm is that its running time can
be regulated by the number of samples and the number of
observations but the running time of MHT depends on the
complexity of the problem instance and is not predictable
in advance.

D. Online MCMCDA Multiple Target Tracker

The extension of MCMCDA to an online, real-time
tracking is a trivial task. As we have seen from the previous
experiments, MCMCDA works well even whenT is small.
Hence, we implement a sliding window of sizews using
Algorithm 1. At each time, we use the previous estimate
to initialize MCMCDA and run MCMCDA on the obser-
vations belonging to the current window. A total of three
test cases are generated: (case 1) 100 tracks, (case 2) 200
tracks and (case 3) 300 tracks. The surveillance duration
is increased toT = 1000 and the surveillance region is
nowR = [0, 10000]× [0, 10000]. The other parameters are:
λfV = 10, pd = .9, d̄ = 3, v̄ = 230 and ws = 10. The
objects appear and disappear at random in time and space
so the number of tracks changes in time. These test cases
represent instances of the general (discrete-time) multiple
target tracking problem. The average NCAs and ICARs
over the sliding window and the average execution time per
simulation time are shown in Table I. Notice that MCMCDA
achieves excellent performance in all cases with less than
one second of execution time.

V. CONCLUSIONS

The general (discrete-time) multiple target tracking prob-
lem is described and an MCMCDA algorithm is proposed.
Our MCMCDA tracker, a data association algorithm ca-
pable of initiating and terminating a varying number of
tracks, is flexible and easy to incorporate any domain



Fig. 3. NCA (left), ICAR (middle), and the estimated number of tracks (right) as functions of false alarm rate

Fig. 4. NCA (left), ICAR (middle), and the estimated number of tracks (right) as functions of detection probability

specific knowledge to make it more efficient. Instead of
searching over the whole solution space, the MCMC algo-
rithm randomly searches over the space where the posterior
is concentrated. Our simulation results show remarkable
performance of the MCMCDA algorithm under the extreme
conditions such as a large number of targets in a dense en-
vironment, low detection probabilities, and a large number
of false alarms. We have shown that the algorithm can be
extended as an online, real-time algorithm with excellent
performance.
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