Markov Chain Monte Carlo Data Association for
General Multiple Target Tracking Problems

Songhwai Oh, Stuart Russell, Shankar Sastry

Abstract—In this paper, we consider the general multiple based on this view is the multiple hypothesis tracker (MHT)
target tracking problem in which an unknown number of  [15]. In MHT, each hypothesis associates past observations
targets appears and disappears at random times and the goal \yjih 5 target and, as a new set of observations arrives, a new

is to find the tracks of targets from noisy observations. We t of hvooth is f df th . hvpoth
propose an efficient real-time algorithm that solves the data Set of hypotheses IS formed from the previous hypotheses.

association problem and is capable of initiating and terminat- Each hypothesis is scored by its posterior and the algorithm
ing a varying number of tracks. We take the data-oriented, returns a hypothesis with the highest score as a solution.
combinatorial optimization approach to the data association MHT is categorized as a deferred logic [14] in which the

problem but avoid the enumeration of tracks by applying a  gacision about forming a new track or removing an existing

sampling method called Markov chain Monte Carlo (MCMC). track is delaved until h ob i lected
The MCMC data association algorithm can be considered as a rack I1s delayed untl enough observations are coliected.

deferred logic since its decision about forming a track is based Hence, MHT is capable of initiating and terminating a
on the current and past observations. But, at the same time, it varying number of tracks and suitable for surveillance
can be considered as an approximation to the optimal Bayesian gpplications in which an autonomous tracker is required.
filter. The algorithm shows remarkable performance compared However, the construction of new hypotheses requires an

to the greedy algorithm and the multiple hypothesis tracker . — .
(MHT) under the extreme conditions, such as a large number enumeration of all possibilities and the size of hypotheses

of targets in a dense environment, low detection probabilities, 9rows exponentially. The initial implementation and later

and a large number of false alarms. extensions proposed several heuristics, such as pruning,
gating, clustering andV-scan-back logic, to reduce the
I. INTRODUCTION complexity of the problem [15], [8]. However, the heuristics

The multiple target tracking plays an important role indre used at the expense of the optimality and the algorithm
many areas of engineering such as surveillance, compufé! still suffer in a dense environment. Furthermore, the
vision, and signal processing [1], [4]. Under the mosfunning time at each step of the algorithm cannot be
general setup, a varying number of indistinguishable targe9unded easily, making it difficult to be deployed in a
is moving around in a region with continuous motions and€al-time surveillance system. As a method of pruning, an
the positions of moving targets are sampled at randogfficient method of finding:-best hypotheses based on the
intervals. The measurements about the positions are noigjgorithm by Murty [10] is developed in [5].
with detection probability less than one, and there is a A different approach to the data association problem is
noise background of spurious position reports, i.e., fals@€ joint probabilistic data association filter (JPDAF) [1].
alarms. Targets arise at random in space and time. Ea¢RDAF is a suboptimal single-stage approximation to the
target persists independently for a random length of tim@Ptimal Bayesian filter. Given a fixed number of targets,
and ceases to exist. A track of a target is defined as a patRDAF enumerates all possible associations between the
in space-time traveled by the target. The essence of tlatestset of observations and the known tracks and clutter
multiple target tracking problem is to find tracks from thednd computes each association weight. For each association,
noisy observations and it requires solutions to both datfe conditional expectation of the state of a target is
association and state estimation problems [16]. estimated by a filtering algorithm. Then, the state of a target

The data association problem in multiple target trackin{f estimated by summing over the conditional expectations
is described as a problem of finding a partition of observa¥eighted by association weights. JPDAF is a sequential
tions such that each element of a partition is a collectiof@cker in which the associations between the known targets
of observations generated by a single target or clutténd the latest observations are made sequentially and the
[16]. However, due to the noises in state transitions an@SSociations made in the past are not reversible [14]. Since
observations, we cannot expect to find the exact solutiofnlY the current set of observations is considered, JPDAF
This data-oriented view of data association has been appli€@nnot initiate or terminate tracks. Also JPDAF assumes
and extended by many authors [9], [17], [15], [8], [5],2 fixed number of targets and requires a good initial state

[14]. The most successful multiple target tracking algorithnﬁor each target. '_I'here are restricted extensions to JPDAF to
allow the formation of a new track (see [4] and references
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initiate or terminate tracks. Recently, a Bayesian modetargets in a dense environment, low detection probabilities,

based approach for tracking an unknown number of targeésd a large number of false alarms.

which can initiate and terminate tracks is presented in [11]. The remainder of this paper is structured as follows. We
The sequential trackers are more efficient than deferrddrmally state the (discrete-time) general multiple target

logic trackers such as MHT but they are prone to makg&acking problem in Section Il. In Section Ill, we present

erroneous associations [14]. In addition, it is inferred that general purpose MCMCDA algorithm for multiple target

the exact calculation at each stage is NP-hard [3] since tleacking. The algorithm is applied in simulation to extreme

related problem of finding the permanent of a 0-1 matrisituations and its performance is compared with the greedy

is #P-complete [19]. In [6], a single-stage data associatiamgorithm and MHT in Section IV.

problem is considered and a leave-one-out heuristic is

developed to avoid the enumeration of all possible asso- |l GENERAL MULTIPLE TARGET TRACKING

ciations. Later, the approach is extended to a multi-stage Problem

data association problem using Markov chain Monte Carlo Let T ¢ 7+ be the duration of surveillance. L&t

(MCMC) [13]. _ ) . be the unknown number of objects moving around the
The data association problem of multiple target traCk'ngurveillance regiorR for some durationt, t#] c [1,7]
i )

formulated under the data-oriented view is also I'<n0W rk=1,... K.LetV be the volume ofR. Each object
to be NP-hard [14]. Hence, we cannot expect to find a

) o o Arises at a random position 7 attF, moves independently
optimal solution in polynomial time unles® = NP.

L e aroundR until ¢} and disappears. At each time, an existing
An optimization approach to data association has bequget persists with probabilityl — p,) and disppears with

applied as a 0-1 integer programming problem [9] and 3robability p,. The number of objects arising at each time

a multidimensional assignment problem [14]. In both cas€$ ar 2 has a Poisson distribution with a parametasV’)

one needs to find a feasible set of tracks from all possib|g} . o X is the birth rate of new objects per unit time,
tracks to prevent the exponential explosion and compuig, it volume. The initial position of a new object is
the cost of each feasible track, such as the negative | iformly distributed overR.

likelihood. Then the optimization routine finds a subset Let 7* : RY — R be the discrete-time dynamics of the
from the feasible tracks such that the combined costs ABiect k, whered is the dimension of the state variable,

hm|n|mt|zed \{vhlle sznsfymtg thetconsr:r?mts, |.((aj., eaich ttrac nd letz* € R be the state of the objedt at time ¢ for
as at most one observation at each time and no two tracks 1,2,..., K. The objectk moves according to

share the same observation. The gating method similar to
the ones described in [17], [15] is used to find a feasible 2} , = F¥(zf) +wf  fort=tF,. . tf —1
set of tracks. However, in a dense environment, the size of . J ) ] )
the feasible tracks can be very large and the complexiyere wy’ € R® are white noise processes. The noisy
of the optimization routine increases dramatically, since th@PServation about the state of the object is measured with
number of parameters in the optimization routine depend@€ detection probabilityg which is less than unity. There
on the number of feasible tracks. are also false alarms and the number of false alarms has a
The main contribution of this paper is the developmenff©iSson distribution with a parametex;V’) where); is the
of an efficient real-time algorithm that solves the datd2/S€ alarm rate per unit time, per unit volume. gtbe
association problem and is capable of initiating and tet® number of observations at timewhich includes both
minating a varying number of tracks. We take the data1®'SY observgnons qnd false.alarms. Lgte R™ be the
oriented, combinatorial optimization approach to the datith observation at time for j = 1,...,n;, wherem is
association problem but avoid the enumeration of tracks H{}€ dimensionality of each observation vector. Each object
applying a sampling method called Markov chain Momégenerates a unique o(E)servatlon at each sampllng time if it
Carlo (MCMC). The immediate benefit of using MCMC is'S detected. Leti’ : R® — R™ be the observation model.
the low memory requirement. The MCMC data associatiohNen the observations are generated as follows:
(MCMCDA) algorithm can be considered as a deferred . { Hi(zk) + ! if j-th observation is from¥

)

logic since its decision about forming a track is based on yi =
the current and past observations. But, at the same time, ‘
it can be considered as an approximation to the optimathere v7 € R™ are white noise processes amg ~
Bayesian filter if it is used to approximate the associatiobnif(R) is a random process for false alarms. Notice that,
probabilities or expectations such as the average link travefth probability 1 — pq, the object is not detected and we
time as done in [13]. So, from the Bayesian point of viewgcall this a missing observation. We assume that targets are
the algorithm can be considered as a generalization ofdistinguishable in this paper. But, if observations include
[13] to handle an unknown number of objects, missingarget type or attribute information, the state variable can
observations and false alarms. MCMCDA shows remarkablee extended to include target type information.
performance compared to the greedy algorithm and MHT Under the data-oriented approach, the multiple target
under the extreme conditions such as a large number whcking problem is to partition the observations such that

U otherwise,



the posterior is maximized, i.e., the maximum a posterioGontain at least two observations since we cannot distinguish
(MAP) estimate. Under the Bayesian approach, if we are track with a single observation from a false alarm. Once
given a function defined oft, the collection of all partitions a partitionw € Q is chosen, the tracks,,...,7x € w and

of observations (see below for its definition), we seek tha set of false alarms, € w are completely determined.
expected value of the function given the observations. Theence, for each track, we can estimate the states of an
MAP estimate found under the data-oriented approach mapject independently since each object moves independently
not be robust in the Bayesian sense. But it is sometimém the other objects. For each tracke w, we apply the
more convenient when estimating parameters whose dimeikalman filter to estimate the states(r) and covariances
sion is dependent on the number of tracks, such as the stafgg7), where B;(7) = CP,(7)CT + R is the conditional

of targets. Since the size of = (:c%T, . ,x{(T)T depends observation covariance at tintefor the trackr.

on the number of trackd(, the estimation ofr; without Let e; be the number of targets from time-1 anda; be
fixing the number of tracks is not meaningful. Hence, undethe number of new targets at timel et z; be the number of

the Bayesian approach, if a single set of state estimationtargets terminated at timeandc, = e; — z;. Let d; be the
required, we might first estimate the most likely number ofiumber of detections at timeandu, = e; — z: +a; —d; be
targets and then estimate the expected values of states gith@ number of undetected targets. Finally, fet= n: — d;

the estimated number of targets. be the number of false alarms. It can be shown that the

B. Probabilistic Model posterior ofcw is:

' . . T d ,
Let us first specify the dynamic and measurement models. P(@[Y) = £ TT,_; pi* (1 — p2)°p§* (1 — pa)“s At A"
Here we use the usual linear system model but the method x [ [, ¢\ (-} Hﬁfl/\f(f(tiﬂ)mm(ﬂ, By, (1)),
can be easily extended to non-linear models coupled with a (2)
non-linear regression algorithm. If an object is obserked where Z is a normalizing constant and/(-|x, X) is the
times atty, to, ..., {1, its dynamic and measurement modelgsaussian density function with megn and covariance
can be expressed as: matrix . Now under the data-oriented, combinatorial op-
. R o timization approach, our goal is to find a partition of
Tty = Altin —t)z + Gt —twy, (1) observations such tha@t(w|Y) is maximized.
Yt, = C.]?ti + vy, for i = 1,..., k,

wherew,, andv;, are white Gaussian noises with zero mean |ll. MCMC DATA ASSOCIATION ALGORITHM

and covarianc€) and 2, respectivelyA(-), G(-), andC are In this section, we develop an MCMC sampler to solve
matrices with appropriate sizes. The entries of the matriﬁhe mu|t|p|e target tracking prob'em. So|ving Comp|ex prob_
A(ti+1—t;) andG(t;41—t;) are determined by the sampling |lems by sampling methods such as Markov chain Monte
interval ¢;1, — t; for eachi. For clarity, the subsequence carlo (MCMC) has become more tractable, due to the
notation for the time index is suppressed for now. kgt jhcreased computational power. MCMC-based algorithms

be the expected value of, giveny,,...,y;—1; F; be the play a significant role in many fields such as physics,
covariance ofz; given yi,...,y_1; @ be the expected statistics, economics, and engineering [2]. In some cases,
value ofz; giveny,...,y;; and P, be the covariance of McCMC is the only known general algorithm which finds
Ty gVeNnyy, ..., Yr. a good approximate solution to a complex problem in

Lety, ={y; :j=1,....m} andY = U,y 3%  polynomial time [7]. MCMC techniques have been applied
Let (2 be a collection of partitions df such that, for € 2, to the complex probability distribution integration problems,

1) w={m,7m,..., 7 }; counting problems such as #P-complete problems, and
2) Ueom =Y andr; N7; = 0 for i # j; combinatorial optimization problems [7], [2]. The MCMC
3) 7o is a set of false alarms; approach applied to the combinatorial optimization prob-
4) Ny <lfork=1,...,Kandt=1,...,T;and lems is generally known as simulated annealing.

5) || >1fork=1,... . K. The set2 becomes a state space of the MCMC sampler

Here, K is the number of tracks for the given partitionand we sample fronf) such that its stationary distribution
w € Q. We call 7, a track when there is no confusionis P(w|Y). If we are at statev € ), we propose.’ € Q
although the actual track is the set of estimated statdésllowing the proposal distributiog(w,w’). The move is
from the observations;,. However, we assume there is aaccepted with an acceptance probabilityw, ') where
deterministic function that returns a set of estimated states / /

: . AR . , . PW'Y)q(w' w)
given a set of observations, so no distinction is required. We A(w,w") = min (1, ,> ,
denote byry(¢) the observation at timethat is assigned to PwlY)q(w,w")
the trackr,. Notice thatr (t) can be empty if it is a missing otherwise the sampler staysuatso that the detailed balance
observation. The fourth requirement says that a track cas satisfied. If we make sure that the chain is irreducible
have at most one observation at each time, but, in the cased aperiodic, then the chain converges to its stationary
of multiple sensors, we can easily relax this requirement tdistribution. The sampler consists of five types of moves.
allow multiple observations per track. A track is assumed tdhey are

®)



1) birth/death move pair; new conditions are added to the definition @fso each

2) split/merge move pair; elementw € ) satisfies these two additional assumptions.
3) extension/reduction move pair; We now introduce a data structure which is used to
4) track update move; and propose a new partition’ in Algorithm 1. We define a
5) track switch move. neighborhood tree of observations as

We index each move by an integer such that= 1 for a ; i ) _

birth move,m = 2 for a death move and so on. The move La(y!) = {yrra € yeva s Iyt —ytrall < d- 0}

m is chosen randomly from the distributigix (m) where  ford=1,...,d,j=1,...,n, andt =1,...,T — 1. Here

K is the number of tracks of the current partition When H . || is the usual Euclidean distance. This neighborhood

there is no track, we can only propose a birth move, so weee groups temporally separated observations based on their
setéy(m = 1) = 1 and0 for all other moves. When there distances. The parameter allows missing observations.

is only a single target, we cannot propose a merge or tragke use of this neighborhood tree makes the algorithm
switch move, sc&i(m = 4) = & (m = 8) = 0. For other more scalable since distant observations will be considered
values of K andm, we assume (m) > 0. The MCMC  separately and makes the computations of the proposal dis-
data association (MCMCDA) algorithm is described intribution easier. It is similar to the clustering technique used
Algorithm 1. The inputs are the set of all observationsn MHT but Ly(-) is fixed for a given set of observations

Y, the number of samples., and the initial statevinii. Y.

At each step of the algorithmy is the current state of We now describe each move of the sampler in detail.
the Markov chain. The acceptance probabilityw,w’) is  First, let¢(d) be a distribution of a random variabfetaking

defined in (3) where the posterior (2) is used. values from{1,2,...,d}. We assume the current state of
the chain isw = W’ Uw! € Q, wherew® = {7} and
1 o
Algorithm 1 (MCMC Data Association (MCMCDA)): wo= {Tl’ T ’TK}' The proposed partltlon_ls denoted _by
Input: Y, nme, winit w' =wUw € Q. Note the abuse of notation below with
Output: & = argmaxp(w(n)|Y) indexing of time, i.e., when we say(t;), t; means the time
w — wint at which a target corresponding to the tracks observed
ni . oar
for n=11t nmec 7 times.
sample m from &g (-) )
propose ' based on m and w (described below) A. Birth and Death Moves
[ fi unif[o, 1 . .
f}am{}i AU(WTAT) nir(o. 1] For a birth move, we increase the number of tracks from
w—w K to K’ = K +1 and select; uniformly at random (u.a.r.)
end from {1,...,T — 1} as an appearance time of a new track.
w(n) — w . .
end Let 7k, be the track of this new object. Then we choose

dy from the distribution. Let LY = {y/, : La, (v,) #
' _ _ 0,97, & m(t1),j = 1,...,n,k = 1,...,K}. L} is
In Algorithm 1, we use MCMC to find a solution to a a set of observations a such that, for anyy < Lll,
combinatorial optimization problem. So it can be considereg does not belong to other tracks apdhas at least one
as simulated annealing at a constant temperature. No burndgscendant irL, (y). We chooserg: (1) u.a.r. fromL} .
samples are used since we are simply looking for a partition 1} is empty, the move is rejected since the move is
which maximizes the posterior. In addition, the memonnot reversible. Once the initial observation is chosen, we
requirement of the algorithm is at its bare minimum. Insteaghen choose the subsequent observations for the track
of keeping al{w(n)};1¢, we can simply keep the partition For ; = 2,3, ..., we choosel; from ¢ and chooserk(t;)
with the maximum posterior. If the algorithm is usedu.a.r. fromLg, (75 (t; 1))\ {m%(ti1+d;) :k=1,..., K}
to estimateEp(,y)f(w) for some bounded functiorf, unless this set is empty. But, for= 3,4, ..., the processe
we will need burn-in samples and need to maintain thef adding observations tex. terminates with probability
sufficient statistics for the desired expectation. v, where0 < v < 1. If |7x/| < 1, the move is rejected. We
In order to make the algorithm more efficient, we makehen propose this modified partition whesé = w'U{7}
two additional assumptions: (1) the maximal directionahndw’® = {70\ 7x}. For a death move, we simply chodse
speed of any target iR is less thar; and (2) the number of y.a.r. from{1,..., K} and delete th&-th track and propose
consecutive missing observations of any track is less ¢hanga new partition where/* = w!\ {7} andw”® = {7y U7 }.
The first assumption is reasonable in a surveillance scenario
since, in many cases, the maximal speed of a vehicle & Split and Merge Moves
generally known based on its type and terrain conditions. For a split move, we seleet(¢,.) u.a.r. from{r(t;) :

The second assumption is a user defined parameter andrit| > 4,i = 2,...,|m%| — 2,k =1,..., K}. Then we split
can be used as one of the criteria to distinguish an event thfe track 7, into 7,, and 75, such thatr,, = {7s(¢;) :
a new object’s appearance from an event of a continuatian= 1,...,r} and 7y, = {7,(¢;) : i = r + 1,...,|7|}.

of an existing object. We will now assume that these twd@he modified track partition becomesg! = (w! \ {r,})U



{75, } U {rs,} and the false alarm partition® is updated
accordingly. For a merge move, we consider the set

M = {(Tk'l (tf)77_k2(t1)) : Tk'Q(tl) € Ltl*tf(Tkl(tf))v
f = |Tk1| for k1 # k’g,l < kl,kQ < K}

We select a paifrs, (t7), 7s,(t1)) u.a.r. fromM. The tracks
are combined into a single track = 7, U 7,,. Then we
propose a new partition whegg! = (w!\ ({rs, }U{7s,}))U
{75} andw’® with appropriate rearrangements.

C. Extension and Reduction Moves

In a track extension move, we select a track.a.r. from
K available tracks iw. We reassign observations forafter
the disappearance tintg| as done in the track birth move.
For a track reduction move, we select a track.a.r. from
K available tracks inv andr u.a.r. from{2,... |r| — 1}.
We shorten the track to {r(¢1),...,7(¢:)} by removing
the observations assigned toafter the timet,. ;.

D. Track Update Move

In a track update move, we select a traclki.a.r. from
K available tracks inw. Then we pickr u.a.r. from
{1,2,...,|7]} and reassign observations fogfter the time
t, as done in the track birth move.

E. Track Switch Move

for all k, the chain can move from’ to w and fromw to
w’. Hence, the chain is irreducible. ]

The Markov chain designed by Algorithm 1 is irreducible
(Theorem 1) and aperiodic since there is always a positive
probability of staying at the current state in the track update
move. In addition, the transitions described in Algorithm 1
satisfy the detailed balance. Hence, by the ergodic theorem,
the chain converges to its stationary distribution. Notice that
the other moves are designed to improve the performance
of the algorithm.

Algorithm 2 (Greedy Multiple Target Tracking):
Input: Y, o(threshold function )
Output: w=wUw!

wl — 0
for t=11t T-1
repeat
wr — 0 _ _ .
Ge—{(y,yl):1<s—t<dandy},yl ¢r€cw'}
foreach  (yi,yl) in G

Tt < . h
estimate an initial state from (vi yd)
T(t1) —yi and T(t2) — yi

T 8

while  r < T

for d=1to d
B—{yeLyn(r):ygrecw'}
if B#0

Tt(r + d) — argminge g |y — Trya(7e) |l

For a track switch move, we select a pair of observa- break
tions (7%, (tp), Tk, (t4)) from two different tracks such that, end
end
Ty (tp+1) € La(Th,(tq)) and 7x,(tg41) € La (7h, (tp)), re—r+d
whered = t,41 —tg, d' =ty —t, and0 < d,d’ < d. end

Then we let
Tky = {T/ﬁ (t1)7 sy Thy (tl))v Tko (tq-‘rl)) sy Thy (f\TkQ\)}
Tky = {Tk2 (t1)7 cees Tho (tq)a Tk (tp-‘rl)a sy Thy (t\Tkl \)}
Theorem 1:Suppose tha < p;, pg < 1 and Ay, As > 0.

If {(d) >0, forall d e {1,...,d}, then the Markov chain
designed by Algorithm 1 is irreducible.

it p(re]Y) > o(|7e])
wi —wt U{re}
end
end
wl — w! U {argmax,cw, p(7|Y)}
until  wy #0
end

wO — {Y \ (UTGwIT)}

Proof: The birth and death moves are sufficient to

illustrate the irreducibility of the chain. Sin€e< p,,pq < 1
andXp, At > 0, P(w]Y') > 0 for allw € Q. Take an arbitrary
partitionw € Q, sayw = {79, 71,...,7k }. Now consider
the partitionw’ € Q, such thaty’ = {7{}, i.e.,w’ assigns all
observations as false alarms. Singés arbitrary, the chain
is irreducible if the chain can move fro@ to w and fromw
to w’. For the move from.’ to w, considerK consecutive
birth moves:iwy = W', w1 = {5\ n}, 71}, ., wg =
{\{UE 7}, 7, ..., Tk} = w. Sincew € Q, all tracks

71, are legal, i.e.7;, satisfies the constraints described in Sec—A((;)

tion II-B and, fori = 1,..., || =1, 7% (ti+1) € La(7(t:))
for1 <d=t;,, —t; <d. Thus,w, € Q for all k. Because
¢(d) > 0 and all trackst, are legal, the probability of
proposingT, at wi_1 by the birth move is positive and
q(wg,wr+1) > 0. For the move fromw to «’, consider
K consecutive death movesy = w,wx_1,...,wy = w'.
The probability of removing the track, atw; by the death
move is positive and (w1, wy) > 0. SinceP(w|Y) >0

IV. SIMULATION RESULTS

For the simulations we consider the surveillance over a
rectangular region on a plar®g, = [0, L] x [0, L] C R%. The
state vector ist = [x,y, 4,97 where(z,y) is a position
on R along the usuat andy axes andz, ¢) is a velocity
vector. The linear system model (1) is used whelie an
interval between observations and

1 077
0 1
0 0
0 0

The covariance matrices afg¢ = diag(100, 100) and R =
diag(25, 25).

The complexity of the multiple target tracking problems
can be measured by several metrics: (1) the intensity of
the false alarm rateys; (2) the detection probabilityy;

(3) the number of tracké(; and (4) the density of tracks.
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Fig. 1. NCA (left), ICAR (middle), and the estimated number of tracks (right) as functions of a number of tracks

The problem gets more challenging with increasiihg 1500 ‘
decreasingpq, increasing K, and increasing density of Efﬂéﬁi
tracks. The number of tracks itself may not make thi - i
problem more difficult if they are scattered apart. But the /
difficulty arises when there are many tracks that are movin 1000] 1
closely and crossing each other. This is when the ambigui
of data association is greater. Hence, we only consid
situations in which tracks move very closely so we cal
control the density of tracks by the number of tracks. W 500/
study the performance of the MCMCDA algorithm agains
the greedy tracker (see Algorithm 2) and MHT by varying
the parameters listed above. g
Based on our model described above, we have genera G T w0 s e 70 e 80 100
different scenarios. In particular, in all cases, except for th tmmreree 9
online tracking, a half of new objects appears from the left Fig. 2. Average running time vs. number of tracks
bottom quadrant ofR and the other half of new objects .
appears from the right bottom quadrant. The actual initid!CA measures the ratio between the number of correct
positions are chosen randomly from each quadrant. Th@psociations and the number of associations in the true
all move diagonally so each group of tracks crosses tHeartition while ICAR measures the number of incorrect
other group in the middle oR. Also targets move very associations per correct association. We measure the per-
close to each other and there are also crossovers witHgfmance of each algorithm by NCA, ICAR, the estimated
each group. The situations we have used for simulatiof$!mber of tracks and the running time of the algorithm.
below include very extreme cases and, in our opinion, such Both MCMCDA and greedy algorithms are written in
complex situations have not appeared in the multiple targ€tt+ with Matlab interfaces. We have used the C++ imple-
tracking literatures. mentation of MHT from [5]*, which implements pruning,
Since the number of targets is not fixed, it is difficult todating, clustering/N-scan-back logic and-best hypothe-
compare algorithms using a standard criterion such as tg€S- The parameters for MHT are fine-tuned so that it
residual mean square error. Hence, we introduce two ne#ves similar performance when there are 10 targets: the
metrics to measure the effectiveness of each data associatfBaximum number of hypotheses in a group is 1000, the

algorithm. Letw* be the true partition with which the test maximum track tree depth is 5, and the maximum Maha-
case was generated. For € Q, we represent the set of lanobis distance is 5.9. All simulations are run on a PC with

Running Time (sec)
“,

all associations inw as SAw) = {(r,t],t7,,) : i = @2.6-GHz Intel processor.
1,...,]7] = 1,7 € w}, wheret is the time at which the

track = is observedi times. Let CAw) = {(r,t,s) € A. Experiment | (Number of Tracks)

SAw) : 7(t) = 7(t), 7(s) = 7*(s), 7 € w*} be the set of In this experiment, we var¥ from 5 to 100 (the actual

correct associations in relative tow*. The two new metrics Vvalues of K are 5, 10, 20, 30, 40, 50, 75 and 100). The

we will be using are the normalized correct associationgther parameters are held fixe®: = [0, 1000] x [0, 1000],

(NCA) and incorrect-to-correct association ratio (ICAR): 7' =10, iV =1, ¥ = 130 unit lengths per unit time. The
ICA(W)| main focus of this experiment is to test the performance

NCA(w) = ——r~—5 (4) of data association of MCMCDA against other algorithms

[SA(W*)] so the tracks are detected at all times, however, we have
[SA(w)| — [CA(W)|

ICAR(w) = CAW)| . (5)

http://www.ee.ucl.ac.uk/ “icox/



TABLE |

setpg = .9 for the prior calculation. We have also set PERFORMANCE OFONLINE MCMCDA TRACKER

d = 1. Since all tracks are observed, the number of

. . . RUNNING TIMES (RT) IN SECONDS
observations increases as the number of tracks increases.
For each value ofi, we randomly generated five tests. Number of samples
The results for MCMCDA are the average values over 1,000 5,000

. PR ; K | NCATICAR [ RT | NCA [ ICAR [ RT
10 repeated runs and the initial state is initialized with o0 o5 5T o5 98 "3t >8

the greedy algorithm and 10,000 samples are used. The 500 94 06 [ 09 97 | 05 | 41
average NCAs, ICARs and the estimated numbers of tracks 300 | .92 07 | 11| 97 05 | 55
for three different algorithms are shown in Fig. 1. The

running times of three algorithms are shown in Fig. 2 (thgopapility is low or the false alarm rate is high due to the
running time of M_CMCDA includes the initialization step). neyristics such as pruning andscan-back techniques used
Although the maximum number of hypotheses of 1000 pg, reduce the complexity. The heuristics are required parts
group is a large number, with increasing number of trackgt MHT in practice. Without the pruning and¥-scan-back
the performance of M.HT deteriorates as the optimality ifogic, the problem complexity grows exponentially fast even
compromised by pruning. But both greedy and MCMCDAqr 5 small problem. In practice, MHT with heuristics works
keep good performance throughout. In addition, the runninge| when there is a few number of hypotheses which carry
times of both greedy and MCMCDA are significantly lesghe most of weights. When the detection probability is low
than that of MHT. or the false alarm rate is high, there are many hypotheses
with low weights and there is no small set of dominating
_ ) hypotheses, so MHT cannot perform well. In addition, when
Now the settings are the same as Experiment | but Wge detection probability is high, MHT again suffers from
vary the false alarm rates while the number of tracks i |arge number of observations. Another noticeable benefit
fixed at X' = 10. The test cases for this experiment argy the MCMCDA algorithm is that its running time can
prepared as follows. We first generated five different randoigy regulated by the number of samples and the number of
scenarios each with 10 tracks. Then, we applied differepfyservations but the running time of MHT depends on the

false alarm rates to generate test cases. The false alarm rd§fplexity of the problem instance and is not predictable
are varied from\sV = 1to AV = 100 with an increment of i, advance.

10. 10,000 samples are used for MCMCDA and the results
for MCMCDA are the average values over 10 repeated runB. Online MCMCDA Multiple Target Tracker
The average NCAs, ICARs and the estimated numbers of The extension of MCMCDA to an online, real-time
tracks for three different algorithms at different false a|arnﬁracking is a trivial task. As we have seen from the previous
rates are shown in Fig. 3. It shows remarkable performan@e(periments, MCMCDA works well even whéh is small.
of MCMCDA at very high false alarm rates while the otherHence, we implement a sliding window of size using
two algorithms perform poorly. The greedy algorithm scoreg|gorithm 1. At each time, we use the previous estimate
higher in NCA than MCMCDA but poorly in ICAR. In to initialize MCMCDA and run MCMCDA on the obser-
addition, it reports spurious tracks at high false alarm rategations belonging to the current window. A total of three
Notice that MHT does not make any correct associations gist cases are generated: (case 1) 100 tracks, (case 2) 200
high false alarm rates)V' > 80, so ICARs for MHT at tracks and (case 3) 300 tracks. The surveillance duration
AtV > 80 are not reported. is increased tdl' = 1000 and the surveillance region is
. . . now R = [0, 10000] x [0, 10000]. The other parameters are:

C. Experiment Il (Detection Probability) AV =10, pg = 9, d = 3, 5 = 230 and we = 10. The

In this experiment we vary the detection probabilityobjects appear and disappear at random in time and space
pa from .3 to .9 with an increment of .1 while keeping so the number of tracks changes in time. These test cases
the other parameters as the previous experiments excegpresent instances of the general (discrete-time) multiple
K =10, ¥V = 1, T = 15 andd = 5. Now the target tracking problem. The average NCAs and ICARs
tracks are not observed all the time. For each value @jer the sliding window and the average execution time per
pa, five test cases are randomly generated and the averaggulation time are shown in Table I. Notice that MCMCDA

NCAs, ICARs and the estimated numbers of tracks argchieves excellent performance in all cases with less than
shown in Fig. 4. For MCMCDA, we present two caseSpne second of execution time.

MCMC(15K) with 15,000 samples and MCMC(150K) with

150,000 samples. It shows that MCMCDA outperforms at V. CONCLUSIONS

low detection probabilities. At high detection probability The general (discrete-time) multiple target tracking prob-

region, MHT scores higher than MCMCDA but it reports alem is described and an MCMCDA algorithm is proposed.

higher number of tracks, meaning that it fragments track€Dur MCMCDA tracker, a data association algorithm ca-
Although, in theory, MHT gives an optimal solution in pable of initiating and terminating a varying number of

the sense of MAP, it performs poorly when the detectiotracks, is flexible and easy to incorporate any domain

B. Experiment Il (False Alarms)
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Fig. 4. NCA (left), ICAR (middle), and the estimated number of tracks (right) as functions of detection probability

specific knowledge to make it more efficient. Instead of
searching over the whole solution space, the MCMC algo-
rithm randomly searches over the space where the posteri&sr]
is concentrated. Our simulation results show remarkable
performance of the MCMCDA algorithm under the extreme (]
conditions such as a large number of targets in a dense en-
vironment, low detection probabilities, and a large numbqto)
of false alarms. We have shown that the algorithm can be
extended as an online, real-time algorithm with excellerﬁl]
performance.
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