
1 communications of the acm | july 2009 | vol. 52 | no. 7

tion not taken is a negative example.
Unfortunately, the resulting policies
fail miserably when any perturbation
puts the aircraft into a state not seen
during training. Perhaps this is not
surprising, because the policy has no
idea how the vehicle works or what the
pilot is attempting.

In contrast, the authors formulate
the problem as a Markov decision
process (MDP), where the transition
model specifies how the vehicle works,
the reward function specifies what the
pilot is trying to do, and the optimal
policy maximizes the expected sum of
rewards over the entire trajectory. Ini-
tially, of course, the transition model
and reward function are unknown, so
the learning system cannot solve for
the optimal policy. In the well-estab-
lished setting of reinforcement learning,
the learning system acts in the world
and observes outcomes and rewards.
For many problems, learning a model
and a reward function requires fewer
experiences than trying to learn a poli-
cy directly—and experiences are always
in short supply in robot learning.

Pure tabula rasa reinforcement
learning is not applicable to helicopter
aerobatics, however, for two reasons:
First, in the early stages of learning
there would be far too many crashes;
second, the reward function is not
known even to the experimenters, so
a reward signal cannot easily be pro-
vided to the learning system. The ap-
prenticeship learning setting adopted
by the authors avoids both problems
by learning from expert behaviors.

By observing the helicopter’s tra-
jectory while the expert is flying, the
learning system can acquire a transi-
tion model that is reasonably accurate
in the regions of state space that are
likely to be visited during these ma-
neuvers. The role of prior knowledge is
crucial here; while the model param-
eters are learned, the model structure
is determined in advance from general
knowledge of helicopter dynamics.

The task of learning the reward
function from expert behavior is called

In one scene from “The Matrix,” two
leaders of the human resistance are
trapped on the roof of a skyscraper.
The only means of escape is by heli-
copter, which neither can operate.
The humans quickly call up a “pilot
program” for helicopter flight, absorb
the knowledge instantly via a brain-
computer interface, and take off in the
nick of time.

The following paper by Coates, Ab-
beel, and Ng describes an equally re-
markable feat: learning to fly helicop-
ter aerobatics of superhuman quality
by watching a few minutes of a human
expert performance. Before you read
the paper, we suggest watching the
videos at http://heli.stanford.edu/.

The authors provide careful de-
scriptions of the problem and of the
technical innovations required for its
solution. The paper’s importance lies
not only in these innovations, but
also in the way it illustrates the flavor
of modern artificial intelligence re-
search. AI has grown to encompass, in
a seamless way, techniques from areas
such as statistical learning, dynamical
systems, and control theory, and has
reintegrated with areas such as robot-
ics, vision, and natural language un-
derstanding that many thought had
gone their own way. The key to reuni-
fication has been the emergence of
effective techniques for probabilistic
reasoning and machine learning. The
authors illustrate this trend perfectly,
solving a problem in robotics that had
resisted traditional control theory
techniques for many years.

Learning to fly a helicopter means
learning a policy—a mapping from
states to control actions. What form
should the mapping take and what in-
formation should be supplied to the
learning system? Some early work ad-
opted the idea of observing expert per-
formance to learn to fly a small plane,2
using supervised learning methods
and representing policies as decision
trees. In this approach, each expert
action is a positive example of the
function to be learned, while each ac-

“inverse reinforcement learning.” In-
troduced in AI in the late 1990s, this
actually has a long history in econom-
ics.2 For helicopter aerobatics, the
reward function specifies what the
desirable trajectories are, such that
following them yields high reward,
and how deviations should be penal-
ized. This information is implicit in
the expert’s behavior and its variabil-
ity. To account for this variability, the
authors develop a probabilistic gener-
ative model for trajectories, borrowing
methods from speech recognition and
sequence alignment to handle varia-
tions in timing. After learning from
several expert performances, the re-
ward function actually defines a much
better trajectory than the expert could
demonstrate, and the autonomous
helicopter eventually outperforms its
human teacher.

The authors’ success in this difficult
task reflects fundamental progress in
our field. While achieving compara-
ble success on other difficult robotic
tasks is not yet a routine application of
off-the-shelf methods, the technology
of apprenticeship learning provides a
plausible template for progress.	

References
1.	 Sammut, C., Hurst, S., Kedzier, D. and Michie, D.

Learning to fly. In Proceedings of the Intern. Conf. on
Machine Learning (1992).

2.	 Sargent, T.J. Estimation of dynamic labor demand
schedules under rational expectations. J. Political
Economy 86 (1978), 1009–1044.

Stuart Russell is a professor of CS, chair of the
Department of Electrical Engineering and Computer
Sciences at the University of California, Berkeley, and co-
chair of Communications’ Research Highlights Board.

Lawrence Saul is an associate professor in the
Department of Computer Science and Engineering at
the University of California, San Diego, and a member of
Communications’ Research Highlights Board.

© 2009 ACM 0001-0782/09/0700 $10.00

Technical Perspective
The Ultimate Pilot Program
By Stuart Russell and Lawrence Saul

research highlights

doi:10.1145/1538788.1538811

crawford
Cross-Out

crawford
Replacement Text
is something missing here?

