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tion not taken is a negative example. 
Unfortunately, the resulting policies 
fail miserably when any perturbation 
puts the aircraft into a state not seen 
during training. Perhaps this is not 
surprising, because the policy has no 
idea how the vehicle works or what the 
pilot is attempting.

In contrast, the authors formulate 
the problem as a Markov decision 
process (MDP), where the transition 
model specifies how the vehicle works, 
the reward function specifies what the 
pilot is trying to do, and the optimal 
policy maximizes the expected sum of 
rewards over the entire trajectory. Ini-
tially, of course, the transition model 
and reward function are unknown, so 
the learning system cannot solve for 
the optimal policy. In the well-estab-
lished setting of reinforcement learning, 
the learning system acts in the world 
and observes outcomes and rewards. 
For many problems, learning a model 
and a reward function requires fewer 
experiences than trying to learn a poli-
cy directly—and experiences are always 
in short supply in robot learning.

Pure tabula rasa reinforcement 
learning is not applicable to helicopter 
aerobatics, however, for two reasons: 
First, in the early stages of learning 
there would be far too many crashes; 
second, the reward function is not 
known even to the experimenters, so 
a reward signal cannot easily be pro-
vided to the learning system. The ap-
prenticeship learning setting adopted 
by the authors avoids both problems 
by learning from expert behaviors.

By observing the helicopter’s tra-
jectory while the expert is flying, the 
learning system can acquire a transi-
tion model that is reasonably accurate 
in the regions of state space that are 
likely to be visited during these ma-
neuvers. The role of prior knowledge is 
crucial here; while the model param-
eters are learned, the model structure 
is determined in advance from general 
knowledge of helicopter dynamics.

The task of learning the reward 
function from expert behavior is called 

In one scene from “The Matrix,” two 
leaders of the human resistance are 
trapped on the roof of a skyscraper. 
The only means of escape is by heli-
copter, which neither can operate. 
The humans quickly call up a “pilot 
program” for helicopter flight, absorb 
the knowledge instantly via a brain-
computer interface, and take off in the 
nick of time.

The following paper by Coates, Ab-
beel, and Ng describes an equally re-
markable feat: learning to fly helicop-
ter aerobatics of superhuman quality 
by watching a few minutes of a human 
expert performance. Before you read 
the paper, we suggest watching the 
videos at http://heli.stanford.edu/.

The authors provide careful de-
scriptions of the problem and of the 
technical innovations required for its 
solution. The paper’s importance lies 
not only in these innovations, but 
also in the way it illustrates the flavor 
of modern artificial intelligence re-
search. AI has grown to encompass, in 
a seamless way, techniques from areas 
such as statistical learning, dynamical 
systems, and control theory, and has 
reintegrated with areas such as robot-
ics, vision, and natural language un-
derstanding that many thought had 
gone their own way. The key to reuni-
fication has been the emergence of 
effective techniques for probabilistic 
reasoning and machine learning. The 
authors illustrate this trend perfectly, 
solving a problem in robotics that had 
resisted traditional control theory 
techniques for many years.

Learning to fly a helicopter means 
learning a policy—a mapping from 
states to control actions. What form 
should the mapping take and what in-
formation should be supplied to the 
learning system? Some early work ad-
opted the idea of observing expert per-
formance to learn to fly a small plane,2 
using supervised learning methods 
and representing policies as decision 
trees. In this approach, each expert 
action is a positive example of the 
function to be learned, while each ac-

“inverse reinforcement learning.” In-
troduced in AI in the late 1990s, this 
actually has a long history in econom-
ics.2 For helicopter aerobatics, the 
reward function specifies what the 
desirable trajectories are, such that 
following them yields high reward, 
and how deviations should be penal-
ized. This information is implicit in 
the expert’s behavior and its variabil-
ity. To account for this variability, the 
authors develop a probabilistic gener-
ative model for trajectories, borrowing 
methods from speech recognition and 
sequence alignment to handle varia-
tions in timing. After learning from 
several expert performances, the re-
ward function actually defines a much 
better trajectory than the expert could 
demonstrate, and the autonomous 
helicopter eventually outperforms its 
human teacher.

The authors’ success in this difficult 
task reflects fundamental progress in 
our field.  While achieving compara-
ble success on other difficult robotic 
tasks is not yet a routine application of 
off-the-shelf methods, the technology 
of apprenticeship learning provides a 
plausible template for progress.	
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