
Online Bagging and Boosting
Nikunj C. Oza and Stuart RussellComputer S
ien
e DivisionUniversity of CaliforniaBerkeley, CA 94720-1776foza,russellg�
s.berkeley.eduAbstra
tBagging and boosting are well-known ensem-ble learning methods. They
ombine multi-ple learned base models with the aim of im-proving generalization performan
e. To date,they have been used primarily in bat
h mode,and no e�e
tive online versions have beenproposed. We present simple online baggingand boosting algorithms that we
laim per-form as well as their bat
h
ounterparts.1 Introdu
tionTraditional supervised learning algorithms
lassifyexamples1 based on a single model su
h as a de
isiontree or neural network. Ensemble learning algorithms,of whi
h there are many varieties,
ombine the predi
-tions of multiple base models, ea
h of whi
h is learnedusing a traditional algorithm. Bagging [3℄ and Boost-ing [8℄ are well-known ensemble learning algorithmsthat have been shown to be very e�e
tive in improv-ing generalization performan
e
ompared to individ-ual base models [1℄. Theoreti
al analysis of boosting'sperforman
e supports these results [9℄.In this paper, we develop online versions of these algo-rithms. Online learning algorithms pro
ess ea
h train-ing instan
e on
e \on arrival" without the need forstorage and repro
essing, and maintain a
urrent hy-pothesis that re
e
ts all the training instan
es seenso far. Su
h algorithms have advantages over typi-
al bat
h algorithms in situations where data arrive
ontinuously. They are also useful with very largedata sets on se
ondary storage, for whi
h the multi-ple passes required by most bat
h algorithms are pro-hibitively expensive.1In this paper, we only deal with the
lassi�
ationproblem.

Bat
h ensemble algorithms typi
ally use a bat
h learn-ing algorithm, whi
h we shall
all Lb, to generate ea
hbase model. The �rst requirement of an online en-semble algorithm is an online learning algorithm forbase models, whi
h we shall
all Lo. Online variantsof many learning algorithms are available. A losslessonline algorithm is one whose output hypothesis for agiven training set is identi
al to that of the
orrespond-ing bat
h algorithm. Lossless online algorithms areavailable for de
ision trees [14℄, Naive Bayes models,and nearest-neighbor
lassi�ers, among others. We uselossless online algorithms for de
ision trees and NaiveBayes models in our experiments.Produ
ing online versions of bagging and boosting alsorequires a way to mirror their spe
i�
 te
hniques forgenerating multiple distin
t base models. The diÆ-
ulty is that both algorithms appear to require fore-knowledge of the size of the training set, whi
h is un-available (or meaningless) in the online
ontext. Forexample, bagging works by resampling the originaltraining set of size N to produ
e M bootstrap train-ing sets of size N , ea
h of whi
h is used to train a basemodel. Our online version trains M base models on-line. It simulates the bootstrap pro
ess by sending K
opies of ea
h new example to update ea
h base model,where K is a suitable Poisson random variable. Thissimple tri
k yields learning behavior similar to that ofbat
h bagging. We des
ribe the online bagging algo-rithm and give theoreti
al results in Se
tion 2; empir-i
al results are provided in Se
tion 4.Boosting is a somewhat more
omplex pro
ess thatgenerates a series of base models h1; : : : ; hM . Ea
hbase model hm is learned from a weighted training setwhose weights are determined by the
lassi�
ation er-rors of the pre
eding model hm�1. Spe
i�
ally, theexamples mis
lassi�ed by hm�1 are given more weightin the training set for hm, su
h that the weights ofall the mis
lassi�ed examples
onstitute half the totalweight of the training set. As with bagging, this typeof \normalization" appears to require foreknowledge

of the
omplete training set. Again, we use a Poissonsampling pro
ess to approximate the reweighting al-gorithm. The online boosting algorithm is des
ribedin detail in Se
tion 3. Empiri
al results are given inSe
tion 4.The topi
 of online bagging and boosting has re
eivedvery little attention in the literature. In [5℄, an ensem-ble of three neural networks was trained using boost-ing in an online fashion; the method proposed thereinoften dis
ards substantial amounts of data in the pro-
ess of drawing the desired distribution of data for itsbase models. More re
ently, a \blo
ked" online boost-ing algorithm has been proposed [4℄ that trains severalbase models using
onse
utive subsets of training ex-amples of some �xed size; this pro
ess also dis
ards afra
tion of the data re
eived. Neither of these algo-rithms is dire
tly
omparable to our approa
h, whi
hfo
uses on reprodu
ing the advantages of bagging andboosting in an online setting. In [7℄, an online bag-ging algorithm is proposed; it attempts to simulatethe bootstrap pro
ess by sending ea
h new trainingexample to update ea
h base model with some prob-ability that the user �xes in advan
e. In experimentswith various su
h probabilities, their online bagging al-gorithm never performed better than a single de
isiontree. The same paper also proposes an online boostingalgorithm that is an online version of Ar
-x4 [3℄, i.e.,ea
h example is given weight 1 + m4 to update ea
hbase model, where m is the number of previous basemodels that
urrently mis
lassify that example. Thealgorithm was applied to the bran
h predi
tion prob-lem from
omputer ar
hite
ture. The results suggestthat, given limited memory, a boosted ensemble witha greater number of smaller de
ision trees is generallysuperior to one with fewer large trees.Potentially interesting parallels
an be drawn betweenour approa
h and the Winnow [11℄ and Weighted Ma-jority [12℄ algorithms. These algorithms use a �xedset of base models that are trained online and
om-bined using weights that depend on the training setperforman
e of ea
h base model. Their performan
e
an be shown to be almost as good as that of thebest
omponent model for any training sequen
e. Onthe other hand, ensemble algorithms generally performbetter than all of their
omponent models. Comparingthem to online bagging or boosting, we see that theysend identi
al training sequen
es to ea
h base model;hen
e, base model diversity, whi
h is known to aidensemble performan
e [13℄, must be built in a priorirather than emerging from the data itself. One
animagine hybrid approa
hes; it may also be the
asethat amortized analysis te
hniques
an be applied toour algorithms.

2 Online BaggingGiven a training dataset of size N , standard bat
hbagging
reates M base models,2 ea
h trained on abootstrap sample of sizeN
reated by drawing randomsamples with repla
ement from the original trainingset. In the following pseudo
ode, T is the originaltraining set of N examples and M is the number ofbase models to be learned.:Bagging(T ,M)� For ea
h m 2 f1; 2; : : : ;Mg,{ Tm = Sample With Repla
ement(T;N){ hm = Lb(Tm)� Return fh1; h2; : : : ; hMgEa
h base model's training set
ontains ea
h of theoriginal training examples K times whereP (K = k) = �Nk�� 1N �k �1� 1N�N�kwhi
h is the binomial distribution. As N ! 1, thedistribution of K tends to a Poisson(1) distribution:K � exp(�1)k! . This suggests that we
an perform bag-ging online as follows: as ea
h training example is pre-sented to our algorithm, for ea
h base model,
hoosethe example K � Poisson(1) times and update thebase model a

ordingly. In the pseudo
ode below, his the set of M base models learned so far and d is thelatest training example to arrive.OnlineBagging(h; d)For ea
h base model hm, (m 2 f1; 2; : : : ;Mg) inthe ensemble,� Set k a

ording to Poisson(1).� Do k timeshm = Lo(hm; d)New instan
es are
lassi�ed the same way in onlineand bat
h bagging|by unweighted voting of the Mbase models.Online bagging is a good approximation to bat
h bag-ging to the extent that their base model learning algo-rithms produ
e similar hypotheses when trained withsimilar distributions of training examples. We �rstprove that if the same original training set is suppliedto the two bagging algorithms, then the distributions2The number of base models is normally
hosen by trialand error but sometimes a validation set is used [6℄.

over the training sets supplied to the base models inbat
h and online bagging
onverge as the size of thatoriginal training set grows to in�nity.De�ne �mb to be a ve
tor of length N where the ithelement represents the number of times that the ithoriginal training example is in
luded in the bootstraptraining set of the mth base model under bat
h bag-ging. Sampling with repla
ement in the bat
h baggingalgorithm is done by performing N trials where ea
htrial yields one of the N training examples, all of whi
hhave equal probability 1N of being drawn. Therefore,�mb � Multinomial(N; 1N), where all the training ex-amples have equal \su

ess probability" 1N . De�ne�mo to be the online bagging version of �mb . We men-tioned earlier that, under online bagging, ea
h train-ing example is
hosen a number of times a

ording toa Poisson(1) distribution. Sin
e there are N trainingexamples, there are N su
h trials; therefore, the totalnumber of examples drawn has a Poisson(N) distribu-tion. Be
ause ea
h example has an equal probabilityof being drawn, we
an re
ast sampling in the onlinebagging algorithm as performing N 0 � Poisson(N)trials where ea
h trial yields one of the N trainingexamples, all of whi
h have equal probability 1N of be-ing drawn. Therefore, �o � PNt=0 P (Poisson(N) =t)Multinomial(t; 1N).Theorem As N !1, P (�b)
onverges in distributionto P (�o).Proof The probability generating fun
tion [10℄ forthe bat
h bagging algorithm's sampling distribution,Multinomial(N; 1N), isGMult(N; 1N)(x1; : : : ; xN) = � 1N (x1 + : : :+ xN)�N :The generating fun
tion for a Multinomial(1; 1N) dis-tribution isGMult(1; 1N)(x1; : : : ; xN) = 1N (x1 + : : :+ xN):The generating fun
tion for a Poisson(N) distribu-tion is GPoi(N)(s) = exp(N(s � 1). Online bag-ging's sampling algorithm involves performing N 0Multinomial(1; 1N) trials; therefore, the generatingfun
tion for online bagging's sampling distribution isGPoi(N)(GMult(1; 1N)(x1; : : : ; xN)) =exp�N� 1N (x1 + : : :+ xN)� 1��:Furthermore, it is a standard result [10℄ thatlimN!1GMult(N; 1N)(x1; : : : ; xN) =limN!1�1 + �x1 + : : :+ xN �NN �N� =exp�N� 1N (x1 + : : :+ xN)� 1��:

The
onvergen
e of the generating fun
tions impliesthe
onvergen
e of the probabilities for every possible �ve
tor; therefore, the two sampling methods
onvergein distribution.�De�ne Resample(�; T) to be a fun
tion that takes asinput the original training set T and a ve
tor � whi
hhas the same length as T and whose ith element is thenumber of times that the ith training example from Tis in
luded in the bootstrap training set. This fun
-tion returns the a
tual bootstrap training set indu
edby � and T . We assume that the N examples in T aredrawn randomly and independently from a �xed distri-bution. The sampling distributions of bat
h and onlinebagging indu
e distributions over the base hypothesesP�bLb(Resample(�b; T)) and P�oLo(Resample(�o; T)),respe
tively. A bat
h-bagged ensemble
onsists ofM independent and identi
ally distributed (i.i.d.)draws from P�bLb(Resample(�b; T)). An online-bagged ensemble
onsists of M i.i.d. draws fromP�oLo(Resample(�o; T)). We would like to show thatP�oLo(Resample(�o; T)) ! P�bLb(Resample(�b; T)).Clearly, this is not true for all learning algorithms Lband Lo. Suppose that Lo and Lb return some null hy-pothesis unless the training set has exa
tly N exam-ples: Lb is always given N examples, but as N ! 1,the probability that Lo re
eives N examples tends to0. Intuitively, we need a learning algorithm that is\well-behaved," in the sense that, as N ! 1, havinga few more or few less examples in the bootstrappedtraining set should not make a signi�
ant di�eren
e inthe learning algorithm's output.Lo
al learning algorithms su
h as K-Nearest-Neighborare
learly well-behaved in this sense. A K-NearestNeighbor base model returns a
lassi�
ation for a newtest example x based on the K nearest neighborswithin its bootstrap training set. It
an be shown eas-ily that the distribution over the K nearest neighborsfor bat
h bagging
onverges to that of online baggingas N !1.Simple
ontingen
y-table learning is also well-behaved.For every
lass
, we have P (C =
jx) = P (x;
)=P (x),Sin
e the denominator is the same for all
, we
an just
onsider P (x;
) for the purpose of
lassi�
ation. De-�ne px;
 to be the fra
tion of examples within T of theform (x;
), i.e., having attribute values x and
lass
.Bat
h bagging draws bootstrap training sets a

ordingto �b �Multinomial(N; 1N), whi
h means it performsN i.i.d. trials in whi
h the probability of
hoosing anexample (x;
) is px;
; therefore, P�b(x;
) = px;
. On-line bagging draws bootstrap training sets a

ordingto �o �PNt=0 P (Poisson(N) = t)Multinomial(t; 1N),whi
h involves performing t i.i.d. trials in whi
h theprobability of
hoosing an example (x;
) is px;
; there-

AdaBoost(f(x1; y1); : : : ; (xN ; yN)g; Lb;M)� Initialize D1(n) = 1=N for all n 2 f1; 2; : : : ; Ng.� Do for m = 1; 2; : : : ;M :{ 1. Call Lb with the distribution Dm.{ 2. Get ba
k a hypothesis hm : X ! Y .{ 3. Cal
ulate the error of hm : �m =Pn:hm(xn)6=yn Dm(n). If �m > 1=2 then setM = m� 1 and abort this loop.{ 4. Set �m = �m1��m .{ 5. Update distribution Dm:Dm+1(n) = Dm(n)Zm �� �m if hm(xn) = yn1 otherwisewhere Zm is a normalization
onstant
hosenso that Dm+1 is a probability distribution.� Output the �nal hypothesis: hfin(x) =argmaxy2Y Pm:hm(x)=y log 1�m :Figure 1: AdaBoost.M1 algorithm from [8℄fore, P�o(x;
) =NXt=0 P (Poisson(N) = t)P�2Mult(t; 1N)(x;
) = px;
:Sin
e P�b(x;
) = P�o(x;
) for all examples (x;
), theexpe
ted
ounts in ea
h entry of the
ontingen
y tablesare the same under online and bat
h bagging; there-fore, the
lassi�
ations of new examples have the sameexpe
tation under online and bat
h bagging.We are working on des
ribing a larger set of learningalgorithms that are well-behaved.3 Online BoostingOur online boosting algorithm is designed to
or-respond to the bat
h boosting algorithm, Ad-aBoost.M1 [8℄. We give the pseudo
ode for AdaBoostin Figure 1, where the inputs are a set of trainingexamples f(x1; y1); : : : ; (xN ; yN)g, base learning algo-rithm Lb, and the number of base modelsM to be gen-erated. As explained earlier, AdaBoost.M1 generatesa sequen
e of base models h1; : : : ; hM using weightedtraining sets su
h that the training examples mis
las-si�ed by model hm�1 are given half the total weightfor model hm and the
orre
tly
lassi�ed examples aregiven the remaining half of the weight.In our online boosting algorithm pseudo
ode (Fig-ure 2), hM is the set of M base models learned so

OnlineBoosting(hM ; OnlineBase; d)� Set the example's \weight" �d = 1.� For ea
h base model hm, (m 2 f1; 2; : : : ;Mg) inthe ensemble,{ 1. Set k a

ording to Poisson(�d).{ 2. Do k timeshm = OnlineBase(hm; d){ 3. If hm(d) is the
orre
t label,� then� �s
m � �s
m + �d� �d � �d � N2�s
m �� else� �swm � �swm + �d� �d � �d � N2�swm �To
lassify new examples:� For ea
h m 2 f1; 2; : : : ;MgCal
ulate �m = �swm�s
m+�swm and �m = �m1��m� Return h(x) = argmax
2CPm:hm(x)=y log 1�m .Figure 2: Online Boosting Algorithmfar, d is the latest training example to arrive, andOnlineBase is the in
remental learning algorithm thattakes a
urrent hypothesis and training example as in-put and returns an updated hypothesis. Our onlineboosting algorithm is similar to our online bagging al-gorithm ex
ept that when a base model mis
lassi�esa training example, the Poisson distribution parame-ter (�) asso
iated with that example is in
reased whenpresented to the next base model; otherwise it is de-
reased. For example, in Figure 3, in the upper left
orner (point \a" in the diagram) is the �rst trainingexample. This example updates the �rst base modelbut is still mis
lassi�ed after training, so its weightis in
reased (the re
tangle \b" used to represent it istaller). This example with its higher weight updatesthe se
ond base model and then
orre
tly
lassi�es it,so its weight de
reases (re
tangle \
"). Just as in Ad-aBoost, our algorithm gives the examples mis
lassi�edby one stage half the total weight in the next stage;the
orre
tly
lassi�ed examples are given the remain-ing half of the weight.3 We
an see this by examiningthe adjustments to �d shown in Figure 2 item 3 asfollows. Suppose that �s
m is the sum of the � valuesfor the examples that were
lassi�ed
orre
tly by thebase model at stage m and �swm is the same sum for3We dis
uss a
aveat to this point at the end of thisse
tion.

a b c

Weighted

Combination

Training
Examples

. . .

Figure 3: Illustration of online boosting in progress. Ea
h row represents one example being passed in sequen
e toall the base models for updating; time runs down the diagram. Ea
h base model (depi
ted as a tree) is generatedby updating the base model above it with the next weighted training example. Ea
h re
tangle represents atraining example|the height of the re
tangle represents its weight.in
orre
tly
lassi�ed examples. For the next stage ofboosting, we want these two sums to be s
aled to thesame value, just as in AdaBoost;4 therefore, we wantto �nd the fa
tors f
m and fwm that s
ale �s
m and �swmto half the total weight, respe
tively. The sum of allAdaBoost weights is one; therefore, the sum of all the�s for our online algorithm is N , whi
h is the numberof examples seen so far. Therefore, we get:�s
mf
m = N2 =) f
m = N2�s
m�swm fwm = N2 =) fwm = N2�swm :Note that we expe
t that �s
m > N=2 and �swm < N=2and, therefore, that f
m < 1 and fwm > 1, whi
h means4In AdaBoost terminology, the examples' weights woulda
tually be �d=N , but sin
e our algorithm works with the� values, we treat them as weights.

that the weights of
orre
tly
lassi�ed examples willde
rease, and the weights of in
orre
tly
lassi�ed ex-amples will in
rease, as desired.One area of
on
ern is that, in AdaBoost, an exam-ple's weight is adjusted based on the performan
e ofa base model on the entire training set while in on-line boosting, the weight adjustment is based on thebase model's performan
e only on the examples seenearlier. To see why this may be an issue,
onsider run-ning AdaBoost and online boosting on a training setof size 10000. In AdaBoost, the �rst base model h1 isgenerated from all 10000 examples before being testedon, say, the tenth training example. In online boost-ing, h1 is generated from only the �rst ten examplesbefore being tested on the tenth example. Clearly, wemay expe
t the two h1's to be very di�erent; therefore,h2 in AdaBoost and h2 in online boosting may be pre-sented with di�erent weights for the tenth example.This may, in turn, lead to very di�erent weights for

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 200 400 600 800 1000 1200 1400

F
ra

ct
io

n
C

or
re

ct

Number of Examples

Decision Tree
Bagging

Online Bagging
AdaBoost

Online Boosting

Figure 4: Learning
urves for Car-Evaluation datasetthe tenth example when presented to h3 in ea
h algo-rithm, and so on. Intuitively, we want online boostingto get a good mix of training examples so that thenormalized error of ea
h base model in online boost-ing qui
kly
onverges to what it is in AdaBoost. Themore rapidly this
onvergen
e o

urs, the more similarthe weight adjustments will be and the more similartheir performan
es will be.4 Experimental ResultsIn this se
tion, we dis
uss some experiments thatdemonstrate that our online algorithms perform morelike their bat
h
ounterparts as the number of train-ing examples in
reases. We have implemented onlinebagging and online boosting with de
ision trees andNaive Bayes
lassi�ers as the base models. For de-
ision trees, we have reimplemented the lossless ITIonline algorithm [14℄; bat
h and online Naive Bayesalgorithms are essentially identi
al.To illustrate the
onvergen
e of bat
h and online learn-ing, we experimented with the Car Evaluation datasetfrom the UCI Ma
hine Learning Repository [2℄. Thedataset has 1728 examples, of whi
h we retained 346(20%) as a test set and used 200, 400, 600, 800, 1000,1200, and all the remaining 1382 examples as trainingsets. We ran ea
h algorithm (ex
ept de
ision trees) tentimes with ea
h number of training examples to a
-
ount for the randomness in the ensemble algorithms.The results are shown in Figure 4.The �gure shows bat
h and online bagging with de-
ision trees performing identi
ally (and always signif-i
antly better than a single de
ision tree). AdaBoostalso performs signi�
antly better than a single de
i-sion tree for all numbers of examples. Online boost-ing struggles at �rst but performs
omparably to Ad-aBoost and signi�
antly better than single de
ision

trees for the maximum number of examples. Notethat online boosting's performan
e steadily be
omes
loser to that of AdaBoost as the number of examplesgrows, as one expe
ts from an online algorithm when
ompared to its bat
h version.We tested our algorithms on several UCI datasets [2℄with varying sizes and numbers of attributes (see Ta-ble 1). The a

ura
ies of our algorithms are given inTable 2 and Table 3 in in
reasing order of dataset size.Boldfa
e entries represent
ases when the ensemble al-gorithm signi�
antly (t-test, � = 0:05) outperformeda single model while itali
ized entries represent
aseswhen the ensemble algorithm signi�
antly underper-formed relative to a single model. The bat
h algo-rithm a

ura
ies are averages over ten runs of �ve-fold
ross-validation. We tested our online algorithmswith �ve random orders of ea
h training set generatedfor the bat
h algorithms. (Order matters for onlineboosting, even with a lossless learning algorithm.) Wetested bagging and boosting with de
ision trees onlyon some of the smaller datasets be
ause the ITI algo-rithm proved too expensive with larger ones. Even forthe very small Promoters dataset, the AdaBoost algo-rithm ran in around 30 se
onds while online boostingneeded about 15 hours. This
ompares to around 1se
ond for online boosting with Naive Bayes.With de
ision trees, online boosting performed signi�-
antly worse than AdaBoost on the Promoters dataset,signi�
antly better on Balan
e, and
omparably onthe remaining datasets. Bagging and online baggingperformed noti
eably better than single de
ision treeson all ex
ept the Breast Can
er dataset. With NaiveBayes, bagging and online bagging never performednoti
eably better than Naive Bayes, whi
h we ex-pe
ted be
ause of the stability of Naive Bayes [3℄.Boosting and online boosting performed
omparablyto ea
h other on all but the relatively small Promot-ers dataset and their performan
es relative to a sin-gle Naive Bayes
lassi�er
onsistently improved as thesizes of the datasets grew. On the Balan
e and Soy-bean datasets, the boosting algorithms performed sig-ni�
antly worse than Naive Bayes. On the Breast Can-
er dataset, AdaBoost performed signi�
antly worseand online boosting performed marginally worse. Onthe Car Evaluation and Chess datasets, AdaBoost andonline boosting performed signi�
antly better thanNaive Bayes. On the Nursery dataset, AdaBoost per-formed signi�
antly better and online boosting per-formed marginally better.5 Con
lusionsThe paper has des
ribed online versions of the popu-lar bagging and boosting algorithms and has shown,

Table 1: Sizes of the UCI datasets used in our experiments.Data Set Training Test Inputs ClassesSet SetPromoters 86 20 57 2Balan
e 500 125 4 3Soybean-Large 307 376 35 19WI. Breast Can
er 559 140 9 2German Credit 800 200 20 2Car Evaluation 1382 346 6 4Chess 2556 640 36 2Mushroom 6499 1625 22 2Nursery 10368 2592 8 5Table 2: Results (fra
tion
orre
t): bat
h and online algorithms (with De
ision Trees) on UCI DatasetsDataset De
ision Tree Bagging Online Bagging AdaBoost Online BoostingPromoters 0.75 0.82 0.845 0.935 0.77Balan
e 0.792 0.8128 0.8032 0.7408 0.7664WI Breast Can
er 0.9786 0.9714 0.9714 0.9729 0.9679Car Evaluation 0.9537 0.9673 0.9679 0.9664 0.9639through experiment, that these online versions typi-
ally perform
omparably to their bat
h
ounterparts.The algorithms have low overhead and are quite suit-able for pra
ti
al appli
ations. Our
urrent empiri
alwork fo
uses on testing with large,
ontinuously arriv-ing data streams. We have also shown that bat
h andonline bagging are identi
al for large datasets providedthat the base learning algorithm is well-behaved in a
ertain sense. Theoreti
al tasks in
lude
hara
teriz-ing more tightly the
lass of learning algorithms forwhi
h
onvergen
e between online and o�ine bagging
an be proved and developing an analyti
al frameworkfor online boosting. We are also investigating the
aseof lossy online learning and its e�e
t on ensemble per-forman
e.A
knowledgements We would like to thank LeoBreiman, Bin Yu, Mi
hael Jordan, Joe Hellerstein, andKagan Tumer for useful dis
ussions on this work. Partof this work was done while the �rst author was atNASA Ames Resear
h Center.Referen
es[1℄ Eri
 Bauer and Ron Kohavi. An empiri
al
omparisonof voting
lassi�
ation algorithms: Bagging, boost-ing, and variants. Ma
hine Learning, 36:105{139, Sep.1999.[2℄ C. Blake, E. Keogh, and C.J. Merz. UCI repos-itory of ma
hine learning databases, 1999. (URL:http://www.i
s.u
i.edu/�mlearn/MLRepository.html).

[3℄ L. Breiman. Bias, varian
e and ar
ing
lassi�ers.Te
hni
al Report 460, Department of Statisti
s, Uni-versity of California, Berkeley, 1996.[4℄ L. Breiman. Pasting small votes for
lassi�
ation inlarge databases and on-line. Ma
hine Learning, 36:85{103, 1999.[5℄ H. Dru
ker, R. S
hapire, and P. Simard. Improvingperforman
e in neural networks using a boosting algo-rithm. In S.J. Hanson, J. D. Cowan, and C. L. Giles,editors, Advan
es in Neural Information Pro
essingSystems-5, pages 42{49. Morgan Kaufmann, 1993.[6℄ Harris Dru
ker. Boosting using neural networks. InA. J. C. Sharkey, editor, Combining Arti�
ial Neu-ral Nets: Ensemble and Modular Multi-Net Systems,pages 51{77. Springer-Verlag, London, 1999.[7℄ Alan Fern and Robert Givan. Online ensemble learn-ing: An empiri
al study. In Pro
eedings of the Seven-teenth International Conferen
e on Ma
hine Learning,pages 279{286. Morgan Kaufmann, 2000.[8℄ Y. Freund and R. S
hapire. Experiments with a newboosting algorithm. In Pro
eedings of the ThirteenthInternational Conferen
e on Ma
hine Learning, pages148{156, Bari, Italy, 1996. Morgan Kaufmann.[9℄ Yoav Freund and Robert E. S
hapire. A de
ision-theoreti
 generalization of on-line learning and an ap-pli
ation to boosting. Journal of Computer and Sys-tem S
ien
es, 55(1):119{139, 1997.[10℄ G. R. Grimmett and D. R. Stirzaker. Probability andRandom Pro
esses. Oxford S
ien
e Publi
ations, NewYork, 1992.

Table 3: Results (fra
tion
orre
t): bat
h and online algorithms (with Naive Bayes) on UCI DatasetsDataset Naive Bayes Bagging Online Bagging AdaBoost Online BoostingPromoters 0.8774 0.8354 0.8401 0.8455 0.7483Balan
e 0.9072 0.9062 0.9067 0.8686 0.8747Soybean-Large 0.7497 0.7487 0.7471 0.7184 0.7315WI Breast Can
er 0.9679 0.9698 0.9692 0.9501 0.9533German Credit 0.7410 0.7437 0.7437 0.7318 0.7110Car Evaluation 0.8569 0.8532 0.8547 0.9017 0.8967Chess 0.8757 0.8759 0.8749 0.9517 0.9476Mushroom 0.9966 0.9966 0.9966 0.9999 0.9987Nursery 0.9061 0.9029 0.9027 0.9163 0.9118[11℄ N. Littlestone. Learning qui
kly when irrelevant at-tributes abound: A new linear-threshold algorithm.Ma
hine Learning, 2:285{318, 1988.[12℄ N. Littlestone and M. Warmuth. The weightedmajority algorithm. Information and Computation,108:212{261, 1994.[13℄ Kagan Tumer. Linear and Order Statisti
s Combinersfor Reliable Pattern Classi�
ation. PhD thesis, TheUniversity of Texas, Austin, TX, May 1996.[14℄ P.E. Utgo�, N.C. Berkman, and J.A. Clouse. De
i-sion tree indu
tion based on eÆ
ient tree restru
tur-ing. Ma
hine Learning, 29(1):5{44, 1997.

