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Abstract

Despite the recent advances of deep reinforcement learning
(DRL), agents trained by DRL tend to be brittle and sensitive
to the training environment, especially in the multi-agent sce-
narios. In the multi-agent setting, a DRL agent’s policy can
easily get stuck in a poor local optima w.r.t. its training part-
ners – the learned policy may be only locally optimal to other
agents’ current policies. In this paper, we focus on the problem
of training robust DRL agents with continuous actions in the
multi-agent learning setting so that the trained agents can still
generalize when its opponents’ policies alter. To tackle this
problem, we proposed a new algorithm, MiniMax Multi-agent
Deep Deterministic Policy Gradient (M3DDPG) with the fol-
lowing contributions: (1) we introduce a minimax extension of
the popular multi-agent deep deterministic policy gradient al-
gorithm (MADDPG), for robust policy learning; (2) since the
continuous action space leads to computational intractability
in our minimax learning objective, we propose Multi-Agent Ad-
versarial Learning (MAAL) to efficiently solve our proposed
formulation. We empirically evaluate our M3DDPG algorithm
in four mixed cooperative and competitive multi-agent envi-
ronments and the agents trained by our method significantly
outperforms existing baselines.

1. Introduction
Most real-world problems involve interactions between mul-
tiple agents and the complexity of problem increases sig-
nificantly when the agents co-evolve together. Thanks to
the recent advances of deep reinforcement learing (DRL)
on single agent scenarios, which led to successes in play-
ing Atari game (Mnih et al. 2015), playing go (Silver
et al. 2016) and robotics control (Levine et al. 2016), it
has been a rising trend to adapt single agent DRL algo-
rithms to multi-agent learning scenarios and many works
have shown great successes on a variety of problems, in-
cluding automatic discovery of communication and lan-
guage (Sukhbaatar, Fergus, and others 2016; Mordatch
and Abbeel 2017), multiplayer games (Peng et al. 2017a;
OpenAI 2018), traffic control (Wu et al. 2017) and the analy-
sis of social dilemmas (Leibo et al. 2017).

The critical challenge when adapting classical single agent
DRL algorithms to multi-agent setting is the training instabil-
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ity issue: as training progresses, each agent’s policy is chang-
ing and therefore the environment becomes non-stationary
from the perspective of any individual agent (in a way that is
not explainable by changes in the agent’s own policy). This
non-stationary problem can cause significant problems when
directly applying the single agent DRL algorithms, for exam-
ple, the variance of the policy gradient can be exponentially
large when the number of agents increases (Lowe et al. 2017).
To handle this instability issue, recent works, such as the
counterfactual multi-agent policy gradients (Foerster et al.
2017) and the Multi-Agent Deep Deterministic Policy Gra-
dient (MADDPG) (Lowe et al. 2017), proposed to utilized a
centralized critic within the actor-critic learning framework
to reduce the variance of policy gradient.

Despite the fact that using a centralized critic stabilizes
training, the learned policies can still be brittle and sensi-
tive to its training partners and converge to a poor local
mode. This is particularly severe for competitive environ-
ments: when the opponents alter their policies during testing,
the performance of the learned policies can be drastically
worse (Lazaridou, Peysakhovich, and Baroni 2016). Hence,
a robust policy becomes desirable in multi-agent setting: a
well-trained agent should be able behave well in testing when
competing against opponents even with strategies different
from its training partners.

In this work, we focus on robust multi-agent reinforcement
learning with continuous action spaces and propose a novel
algorithm, MiniMax Multi-agent Deep Deterministic Policy
Gradient (M3DDPG). M3DDPG is a minimax extension1 of
the classical MADDPG algorithm (Lowe et al. 2017). Its core
idea is that during training, we force each agent to behave
well even when its training opponents response in the worst
way.

Our major contributions are summarized as follow:

• We introduce the minimax approach to robust multi-agent
DRL and propose a novel minimax learning objective
based on the MADDPG algorithm;

• In order to efficiently optimize the minimax learning objec-
tive, we propose an end-to-end learning approach, Multi-
agent Adversarial Learning (MAAL), which is inspired by

1In fact, we are dealing with gains, i.e., maximizing each agent’s
accumulative reward, so the “minimax” here is essentially “max-
imin”. We keep the term “minimax” to be consistent with literature.



the adversarial training (Goodfellow, Shlens, and Szegedy
2014) technique2.

• We empirically evaluate our proposed M3DDPG algorithm
on four mixed cooperative and competitive environments
and the agents trained by M3DDPG outperform baseline
policies on all these environments.

In the rest of the paper, we will firstly present related works
in section 2. Notations and standard algorithms are described
in section 3. Our main algorithm, M3DDPG, is introduced in
section 4. Experimental results are in section 5.

2. Related Work
Multi-agent reinforcement learning (Littman 1994) has been
a long-standing field in AI (Hu, Wellman, and others 1998;
Busoniu, Babuska, and De Schutter 2008). Recent works in
DRL use deep neural networks to approximately represent
policy and value functions. Inspired by the success of DRL
in single-agent settings, many DRL-based multi-agent learn-
ing algorithms have been proposed. Forester et al. (2016b)
and He et al. (2016) extended the deep Q-learning to multi-
agent setting; Peng et al. (2017a) proposed a centralized pol-
icy learning algorithm based on actor-critic policy gradient;
Forester et al. (2016a) developed a decentralized multi-agent
policy gradient algorithm with centralized baseline; Lowe et
al. (2017) extended DDPG to multi-agent setting with a cen-
tralized Q function; Wei et al. (2018) and Grau-Moya (2018)
proposed multi-agent variants of the soft-Q-learning algo-
rithm (Haarnoja et al. 2017); Yang et al. (2018) focused on
multi-agent reinforcement learning on a very large population
of agents. Our M3DDPG algorithm is built on top of MAD-
DPG and inherits the decentralized policy and centralized
critic framework.

Minimax is a fundamental concept in game theory and
can be applied to general decision-making under uncertainty,
prescribing a strategy that minimizes the possible loss for
a worst case scenario (Osborne and others 2004). Minimax
was firstly introduced to multi-agent reinforcement learning
as minimax Q-learning by Littman (1994). More recently,
some works combine the minimax framework and the DRL
techniques to find Nash equilibrium in two player zero-sum
games (Foerster et al. 2018; Pérolat et al. 2016; Grau-Moya,
Leibfried, and Bou-Ammar 2018). In our work, we utilize
the minimax idea for the purpose of robust policy learning.

Robust reinforcement learning was originally introduced
by Morimoto et al. (2005) considering the generalization
ability of the learned policy in the single-agent setting. This
problem is also studied recently with deep neural networks,
such as adding random noise to input (Tobin et al. 2017) or
dynamics (Peng et al. 2017b) during training. Besides adding
random noise, some other works implicitly adopt the mini-
max idea by utilizing the “worst noise” (Pinto et al. 2017;
Mandlekar et al. 2017). These works force the learned pol-
icy to work well even under the worst case perturbations
and are typically under the name of “adversarial reinforce-
ment learning”, despite the fact that the original adversarial

2The connection between MAAL and adversarial training will
be discussed in details at the end of section 4.

reinforcement learning problem was introduced in the set-
ting of multi-agent learning (Uther and Veloso 1997). In our
M3DDPG algorithm, we focus on the problem of learning
polices that is robust to opponents with different strategies.

Within the minimax framework, finding the worst case
scenario is a critical component. Lanctot et al. (2017) pro-
posed an iterative approach that alternatively computes the
best response policy while fixes the other. Gao et al. (Gao,
Mueller, and Hayward 2018) replace “mean” in the tempo-
ral difference learning rule with “minimum”. In our work,
we proposed MAAL, which is a general, efficient and fully
end-to-end learning approach. MAAL is motivated by ad-
versarial training (Goodfellow, Shlens, and Szegedy 2014)
and suitable for arbitrary number of agents. The core idea
of MAAL is approximating the minimization in our min-
max objective by a single gradient descent step. The idea of
one-step-gradient approximation was also explored in meta-
learning (Finn, Abbeel, and Levine 2017).

3. Background and Preliminary
In this section, we describe our problem setting and the stan-
dard algorithms. Most of the definitions and notations follow
the original MADDPG paper (Lowe et al. 2017).

Markov Games
We consider a multi-agent extension of Markov decision pro-
cesses (MDPs) called partially observable Markov games
(Littman 1994). A Markov game for N agents is defined by
a set of states S describing the possible configurations of all
agents, a set of actions A1, ...,AN and a set of observations
O1, ...,ON for each agent. To choose actions, each agent
i uses a stochastic policy πππθi : Oi × Ai 7→ [0, 1] param-
eterized by θi, which produces the next state according to
the state transition function T : S × A1 × ... × AN 7→ S.
Each agent i obtains rewards as a function of the state and
agent’s action ri : S × Ai 7→ R, and receives a private
observation correlated with the state oi : S 7→ Oi. The ini-
tial states are determined by a distribution ρ : S 7→ [0, 1].
Each agent i aims to maximize its own total expected return
Ri =

∑T
t=0 γ

trti where γ is a discount factor and T is the
time horizon.

To minimize notation, in the following discussion we will
often omit θ from the subscript of πππ.

Q-Learning and Deep Q-Networks (DQN)
Q-Learning and DQN (Mnih et al. 2015) are popular methods
in reinforcement learning and have been previously applied
to multi-agent settings (Foerster et al. 2016a; Tesauro 2004).
Q-Learning makes use of an action-value function for policy
πππ as Qπππ(s, a) = E[R|st = s, at = a]. This Q function
can be recursively rewritten as Qπππ(s, a) = Es′ [r(s, a) +
γEa′∼πππ[Qπππ(s′, a′)]]. DQN learns the action-value function
Q∗ corresponding to the optimal policy by minimizing the
loss:

L(θ) = Es,a,r,s′ [(Q∗(s, a|θ)− y)2], (1)

where y = r + γmax
a′

Q̄∗(s′, a′).



Q̄ is a target Q function whose parameters are periodically
updated with the most recent θ, which helps stabilize learning.
Another crucial component of stabilizing DQN is the use of
an experience replay buffer D containing tuples (s, a, r, s′).
Q-learning algorithm is most suitable for DRL agents with
discrete action spaces.

Policy Gradient (PG) Algorithms
Policy gradient methods is another popular choice for a va-
riety of RL tasks. Let ρπ denote discounted state visitation
distribution for a policy π. The main idea of PG is to directly
adjust the parameters θ of the policy in order to maximize the
objective J(θ) = Es∼ρπππ,a∼πππθ [R] by taking steps in the direc-
tion of ∇θJ(θ). Using the Q function defined previously, the
gradient of the policy can be written as (Sutton et al. 2000):

∇θJ(θ) = Es∼ρπππ,a∼πππθ [∇θ logπππθ(a|s)Qπππ(s, a)], (2)

where pπππ is the state distribution. The policy gradient theorem
has given rise to several practical algorithms, which often
differ in how they estimate Qπππ . For example, one can simply
use a sample return Rt =

∑T
i=t γ

i−tri, which leads to the
REINFORCE algorithm (Williams 1992). Alternatively, one
could learn an approximation of the true action-value function
Qπππ(s, a) called the critic and leads to a variety of actor-critic
algorithms (Sutton and Barto 1998).

Deterministic Policy Gradient (DPG) Algorithms
DPG algorithms extends the policy gradient algorithm to
deterministic policies µµµθ : S 7→ A (Silver et al. 2014). In
particular, under certain conditions we can write the gradient
of the objective J(θ) = Es∼ρµµµ [R(s, a)] as:

∇θJ(θ) = Es∼D[∇θµµµθ(s)∇aQµµµ(s, a)|a=µµµθ(s)], (3)

where D is the replay buffer. Since this theorem relies on
∇aQµµµ(s, a), it requires the action space A (and thus the
policy µµµ) be continuous.

Deep deterministic policy gradient (DDPG) (Lillicrap et
al. 2015) is a variant of DPG where the policy µµµ and critic
Qµµµ are approximated with deep neural networks. DDPG
is an off-policy algorithm, and samples trajectories from
a replay buffer of experiences that are stored throughout
training. DDPG also makes use of a target network, as in
DQN (Mnih et al. 2015).

Multi-Agent Deep Deterministic Policy Gradient
Directly applying single-agent RL algorithms to the multi-
agent setting by treating other agents as part of the envi-
ronment is problematic as the environment appears non-
stationary from the view of any one agent, violating Markov
assumptions required for convergence. Particularly, this non-
stationary issue is more severe in the case of DRL with neural
networks as function approximators. The core idea of the
MADDPG algorithm (Lowe et al. 2017) is learning a central-
ized Q function for each agent which conditions on global
information to alleviate the non-stationary problem and stabi-
lize training.

More concretely, consider a game with N agents with
policies parameterized by θθθ = {θ1, ..., θN}, and let µµµ =

{µµµ1, ...,µµµN} be the set of all agents’ policies. Then we can
write the gradient of the expected return for agent i with
policy µµµi, J(θi) = E[Ri] as:

∇θiJ(θi) =
Ex,a∼D[∇θiµµµi(oi)∇aiQ

µµµ
i (x, a1, ..., aN )|ai=µµµi(oi)]

,

(4)
Here Qπππi (x, a1, ..., aN ) is a centralized action-value func-
tion that takes as input the actions of all agents, a1, . . . , aN ,
in addition to some state information x (i.e., x =
(o1, ..., oN )) , and outputs the Q-value for agent i. Let
x′ denote the next state from x after taking actions
a1, . . . , aN . The experience replay buffer D contains the tu-
ples (x,x′, a1, . . . , aN , r1, . . . , rN ), recording experiences
of all agents. The centralized action-value function Qµµµi is
updated as:

L(θi) = Ex,a,r,x′ [(Qµ
µµ
i (x, a1, . . . , aN )− y)2], (5)

y = ri + γ Qµ
µµ′

i (x′, a′1, . . . , a
′
N )
∣∣
a′j=µµµ

′
j(oj)

,

where µµµ′ = {µµµθ′1 , ...,µµµθ′N } is the set of target policies with
delayed parameters θ′i.

Note that the centralized Q function is only used during
training. During decentralized execution, each policy µµµθi
only takes local information oi to produce an action.

4. Minimax Multi-Agent Deep Deterministic
Policy Gradient (M3DDPG)

In this section, we introduce our proposed new algorithm,
Minimax Multi-agent Deep Deterministic Policy Gradient
(M3DDPG), which is built on top of the MADDPG algo-
rithm and particularly designed to improve the robustness
of learned policies. Our M3DDPG algorithm contains two
major novel components:

Minimax Optimization Motivated by the minimax concept
in game theory, we introduce minimax optimization into
the learning objective;

Multi-Agent Adversarial Learning The continuous action
space results in computational intractability issue when
optimizing our proposed minimax objective. Hence, we
propose Multi-Agent49 Adversarial Learning (MAAL) to
solve this optimization problem.

Minimax Optimization

In multi-agent RL, the agents’ policies can be very sensitive
to their learning partner’s policy. Particularly in competitive
environments, the learned policies can be brittle when the
opponents alter their strategies. For the purpose of learning
robust policies, we propose to update policies considering
the worst situation: during training, we optimize the accu-
mulative reward for each agent i under the assumption that
all other agents acts adversarially. This yields the minimax



learning objective maxθi JM(θi) where

JM(θi) = Es∼ρµµµ [Ri]

= min
atj 6=i

Es∼ρµµµ
[
T∑
t=0

γt ri(s
t, at1, . . . , a

t
N )
∣∣
ati=µµµ(o

t
i)

]
(6)

= Es0∼ρ

[
min
a0j 6=i

Qµ
µµ
M,i(s

0, a01, . . . , a
0
N )
∣∣
a0i=µµµ(o

0
i )

]
. (7)

Critically, in Eq. 6, state st+1 at time t+ 1 depends not only
on the dynamics ρµµµ and the action µµµi(oti) but also on all the
previous adversarial actions at

′

j 6=i with t′ ≤ t. In Eq. 7, we
derive the modified Q function QµµµM(s, a1, . . . , aN ), which is
naturally centralized and can be rewritten in a recursive form

Qµ
µµ
M,i (s, a1, . . . , aN ) = ri(s, a1, . . . , aN )+

γEs′
[

min
a′j 6=i

Qµ
µµ
M,i (s′, a′1, . . . , a

′
N )
∣∣
a′i=µµµi(s

′)

]
. (8)

Importantly, QµµµM(s, a1, . . . , aN ) conditions on the current
state s as well as the current actions a1, . . . , aN and repre-
sents the current reward plus the discounted worst case future
return starting from the next state, s′. This definition brings
the benefits that we can naturally apply off-policy temporal
difference learning later to derive the update rule for QµµµM.

Note that for each agent i, none of the adversarial actions
depend on its parameter θi, so we can directly apply the deter-
ministic policy gradient theorem to compute∇θiJM(θi) and
use off-policy temporal difference to update the Q function.
Thanks to the centralized Q function in MADDPG (Eq. 4),
which takes in the actions from all the agents, our derivation
naturally applies and is perfectly aligned with the MADDPG
formulation (Eq. 4) by injecting a minimization over other
agents’ actions as follows:

∇θiJM(θi) =

Ex∼D

 ∇θiµµµi(oi)∇aiQµµµM,i(x, a?1, . . . , ai, . . . a?N )
∣∣

ai = µµµi(oi)
a?j 6=i = arg minaj 6=i Q

µµµ
M,i(x, a1, . . . , aN )

 ,

(9)
where D denotes the replay buffer and x denotes the state
information.

Correspondingly, we obtain the new Q function update rule
by adding another minimization to Eq. 5 when computing
the target Q value:

L(θi) = Ex,a,r,x′∼D[(Qµ
µµ
M,i(x, a1, . . . , aN )− y)2], (10)

y = ri + γ Qµ
µµ′

M,i(x
′, a′?1, . . . , a

′
i, . . . , a

′?
N )

a′i = µµµ′i(oi),

a′?j 6=i = arg min
a′j 6=i

Qµ
µµ′

M,i(x
′, a′1, . . . , a

′
N ),

where µµµ′i denotes the target policy of agent i with delayed
parameters θ′i, and Qµµµ

′

M,i denotes the target Q network for
agent i. Combining Eq. 9 and Eq. 10 yields our proposed
minimax learning framework.

Multi-Agent Adversarial Learning

The critical challenge in our proposed minimax learning
framework is how to handle the embedded minimization in
Eq. 9 and Eq. 10. Due to the continuous action space as well
as the non-linearity of Q function, directly optimizing the
minimization problem is computationally intractable. A naive
approximate solution can be performing an inner-loop gradi-
ent descent whenever performing an update step of Eq. 9 or
Eq. 10, but this is too computationally expensive for practical
use. Here we introduce an efficient and end-to-end solution,
multi-agent adversarial learning (MAAL). The main ideas
of MAAL can be summarized in two steps: (1) approximate
the non-linear Q function by a locally linear function; (2)
replace the inner-loop minimization with a 1-step gradient
descent. Note the core idea of MAAL, locally linearizing the
Q function, is adapted from the recent adversarial training
technique originally developed for supervised learning. We
will discuss the connection between adversarial training and
MAAL in the end of this section.

For conciseness, we first consider Eq. 10 and rewrite it
into the following form with auxiliary variables ε:

y = ri + γ Qµ
µµ′

M,i(x
′, a′?1, . . . , a

′
i, . . . , a

′?
N ) (11)

a′k = µµµ′k(ok), ∀1 ≤ k ≤ N
a′?j = a′j + εj , ∀j 6= i

εj 6=i = arg min
εj 6=i

Qµ
µµ′

M,i(x
′, a′1 + ε1, . . . , a

′
i, . . . , a

′
N + εN ).

Eq. 11 can be interpreted as we are now seeking for
a set of perturbations ε such that the perturbed actions
a′? decrease Q value the most. By linearizing the Q func-
tion at QµµµM,i(x, a

′
1, . . . , a

′
N ), the desired perturbation εj

can be locally approximated by the gradient direction at
Qµ
µµ
M,i(x, a

′
1, . . . , a

′
N ) w.r.t. a′j . Then we use this local to de-

rive an approximation ε̂j to the worst case perturbation by
taking a small gradient step:

∀j 6= i, ε̂j = −α∇ajQ
µµµ′

M,i(x
′, a′1, . . . , aj , . . . , a

′
N ), (12)

where α is a tunable coefficient representing the perturbation
rate. It can be also interpreted as the step size of the gradient
descent step: when α is too small, the local approximation er-
ror will be small but due to the small perturbation, the learned
policy can be far from the optimal solution of the minimax
objective we proposed; when α is too large, the approxima-
tion error may incur too much trouble for the overall learning
process and the agents may fail to learn good policies.

We can apply this technique to Eq. 9 as well and eventually
derive the following formulation:

∇θiJ(θi) =

Ex,a∼D


∇θiµµµi(oi)∇aiQ

µµµ
M,i(x, a

?
1, . . . , ai, . . . a

?
N )
∣∣

ai = µµµi(oi)
a?j = aj + ε̂j , ∀j 6= i
ε̂j = −αj∇ajQ

µµµ
M,i(x, a1, . . . , aN )

 ,

(13)



Algorithm 1: Minimax Multi-Agent Deep Deterministic Policy Gradient (M3DDPG) for N agents
for episode = 1 to M do

Initialize a random process N for action exploration, and receive initial state information x
for t = 1 to max-episode-length do

for each agent i, select action ai = µµµθi(oi) +Nt w.r.t. the current policy and exploration
Execute actions a = (a1, . . . , aN ) and observe reward r and new state information x′

Store (x, a, r,x′) in replay buffer D, and set x← x′

for agent i = 1 to N do
Sample a random minibatch of S samples (xk, ak, rk,x′k) from D
Set yk = rki + γ Qµ

µµ′

M,i(x
′k, a′1, . . . , a

′
N )|a′i=µµµ′

i(o
k
i ),a

′
j 6=i=µµµ

′
j(o

k
j )+ε̂

′
j

with ε̂′j defined in Eq. 14

Update critic by minimizing the loss L(θi) = 1
S

∑
k

(
yk −QµµµM,i(xk, ak1 , . . . , akN )

)2
Update actor using the sampled policy gradient with ε̂j defined in Eq. 13:

∇θiJ ≈
1

S

∑
k

∇θiµµµi(oki )∇aiQ
µµµ
M,i(x

k, a?1, . . . , ai, . . . , a
?
N )
∣∣
ai=µµµi(oki ),a

?
j 6=i=a

k
j+ε̂j

end for
Update target network parameters for each agent i: θ′i ← τθi + (1− τ)θ′i

end for
end for

and

L(θi) = Ex,a,r,x′ [(Qµ
µµ
M,i(x, a1, . . . , aN )− y)2], (14)

y = ri + γ Qµ
µµ′

M,i(x
′, a′?1, . . . , a

′
i, . . . , a

′?
N )

a′k = µµµ′k(ok), ∀1 ≤ k ≤ N
a′?j = a′j + ε̂′j , ∀j 6= i

ε̂′j = −αj∇a′jQ
µµµ′

M,i(x, a
′
1, . . . , a

′
N ),

where α1, . . . , αN are additional parameters. MAAL only
requires one additional gradient computation, and can be
executed in a fully end-to-end fashion. Finally, combining
Eq. 13 and Eq. 14 completes MAAL. The overall algorithm,
M3DDPG, is summarized as Algo. 1.

Discussion
Connection to Adversarial Training Adversarial train-
ing is a robust training approach for deep neural networks on
supervised learning (Goodfellow et al. 2014). The core idea
is to force the classifier to predict correctly even when given
adversarial examples, which are obtained by adding a small
adversarial perturbation to the original input data such that the
classification loss can be decreased the most. Formally, sup-
pose the classification loss function is L(θ) = Ex,y [fθ(x; y)]
with input data x and label y. Adversarial training aims to
optimize the following adversarial loss instead

Ladv(θ) = Ex,y [fθ(x+ ε?; y)] (15)
ε? = arg max

‖ε‖≤α
fθ(x+ ε; y).

The core technique to efficiently optimizeLadv(θ) is to locally
linearize the loss function at fθ(x; y) and approximate ε? by
the scaled gradient.

Thanks to the centralized Q function, which takes the ac-
tions from all the agents as part of the input, we are able to

easily inject the minimax optimization (Eq. 11) and represent
it in a similar way to adversarial training (Eq. 15) so that
we can adopt the similar technique to effectively solve our
minimax optimization in a fully end-to-end fashion.

Connection to Single Agent Robust RL M3DDPG with
MAAL can be also viewed as the special case of robust
reinforcement learning (RRL) (Morimoto and Doya 2005)
in the single agent setting, which aims to bridge the gap
between training in simulation and testing in the real world
by adding adversarial perturbations to the transition dynamics
during training. Here, we consider the multi-agent setting and
add worst case perturbations to actions of opponent agents
during training. Note that in the perspective of a single agent,
perturbations on opponents’ actions can be also considered
as a special adversarial noise on the dynamics.

Choice of α In the extreme case of α = 0, M3DDPG de-
generates to the original MADDPG algorithm while as α
increases, the policy learning tends to be more robust but
the optimization becomes harder. In practice, using a fixed
α throughout training can lead to very unstable learning
behavior due to the changing scale of the gradients. The
original adversarial training paper (Goodfellow, Shlens, and
Szegedy 2014) suggests to compute ε with a fixed norm,
namely g = ∇xfθ(x; y), ε̂ = α g

‖g‖ , where x denotes the in-
put data to the classifier and y denotes the label. Accordingly,
in our M3DDPG algorithm, we can adaptively compute the
perturbation ε̂j by

g = ∇ajQ
µµµ
M,i(x, a1, . . . , aN ), ε̂j = −αj

g

‖g‖
. (16)

Eq. 16 generally works fine in practice but in some hard
multi-agent learning environments, unstable training behav-
ior can be still observed. We suspect that it is because the
changing norm of actions in these situations. Different from



the supervised learning setting where the norm of the input
data x is typically stable, in reinforcement learning the norm
of actions can drastically change even in a single episode.
Therefore, it is possible to see cases that even a perturbation
with a small fixed norm overwhelms the action aj , which
may potentially lead to computational stability issue. There-
fore, we also introduce the following alternative for adaptive
perturbation computation:

g = ∇ajQ
µµµ
M,i(x, a1, . . . , aN ), ε̂j = −αj‖aj‖

g

‖g‖
. (17)

Lastly, note that in a mixed cooperative and competitive
environment, ideally we only need to add adversarial pertur-
bations to competitors. But empirically we observe that also
adding (smaller) perturbations to collaborators can further
improve the quality of learned policies.

5. Experiments
We adopt the same particle-world environments as the MAD-
DPG paper (Lowe et al. 2017) as well as the training con-
figurations. α is selected from a grid search over 0.1, 0.01
and 0.001. For testing, we generate a fixed set of 2500 envi-
ronment configurations (i.e., landmarks and birthplaces) and
evaluate on this fixed set for a fair comparison.
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Figure 1: Illustrations of some environments we consider, in-
cluding Physical Deception (left) and Predator-Prey (right).

Environments
The particle world environment consists of N cooperative
agents, M adversarial agents and L landmarks in a two-
dimensional world with continuous space. We focus on the
four mixed cooperative and competitive scenarios to best
examine the effectiveness of our minimax formulation.

Covert communication This is an adversarial communi-
cation environment, where a speaker agent (‘Alice’) must
communicate a message to a listener agent (‘Bob’) (N = 2),
who must reconstruct the message at the other end. However,
an adversarial agent (‘Eve’) (M = 1) is also observing the
channel, and wants to reconstruct the message — Alice and
Bob are penalized based on Eve’s reconstruction, and thus
Alice must encode her message using a randomly generated
key, known only to Alice and Bob.

0

0.3

0.6

0.9

MA vs MA MA vs Minimax Minimax vs MA Minimax vs Minimax

N
or

m
al

ize
d 

Ag
en

t S
co

re

Comparison between MADDPG (MA) and M3DDPG (Minimax)

Covert communication Keep-away Physical deception Predator-prey

Figure 2: Comparison between M3DDPG (Minimax) and
classical MADDPG (MA) on the four mixed competitive
environments. Each bar cluster shows the 0-1 normalized
score for a set of competing policies in different roles (agent
vs adversary), where a higher score is better for the agent. In
all cases, M3DDPG outperforms MADDPG when directly
pitted against it.

Keep-away This scenario consists of L = 1 target land-
mark, N = 2 cooperative agents and M = 1 adversarial
agent. Cooperating agents need to reach the landmark and
keep the adversarial agent away from the landmark by push-
ing it while the adversarial agent must stay at the landmark
to occupy it.

Physical deception Here,N = 2 agents cooperate to reach
a single target landmark from a total of L = 2 landmarks.
They are rewarded based on the minimum distance of any
agent to the target (so only one agent needs to reach the target
landmark). However, a lone adversary (M = 1) also desires
to reach the target landmark; the catch is that the adversary
does not know which of the landmarks is the correct one.
Thus the cooperating agents, who are penalized based on the
adversary distance to the target, learn to spread out and cover
all landmarks so as to deceive the adversary.

Predator-prey In this variant of the classic predator-prey
game,N = 3 slower cooperating agents must chase the faster
adversary (M = 1) around a randomly generated environ-
ment with L = 2 large landmarks impeding the way. Each
time the cooperative agents collide with an adversary, the
agents are rewarded while the adversary is penalized.

Comparison to MADDPG
To evaluate the quality of learned policies trained by dif-
ferent algorithms in competitive scenarios, we measure the
performance of agents trained by our M3DDPG and agents
by classical MADDPG in the roles of both normal agent and
adversary in each environment.

The results are demonstrated in Figure 2, where we mea-
sure the rewards of the normal agents in different scenarios
and normalize them to 0-1. We notice that in all the envi-
ronments, the highest score is achieved when the M3DDPG
agents play as the normal agents against the MADDPG ad-
versary (Minimax vs MA); while the lowest score is when the
MADDPG agents act as normal agents against the M3DDPG
adversary (MA vs Minimax). This indicates that policies



Figure 3: Performances of M3DDPG (Minimax, red) and MADDPG (MA, blue) under the worst situation, i.e., against the
disruptive adversaries, on convert communication, keep-away, physical deception and predator-pray from left to right. The y-axis
denotes the reward of normal agents (fixed) and x-axis denotes the training episodes performed of the disruptive adversaries.
Higher reward implies a more robust policy. Agents trained by M3DDPG (Minimax) perform better on all the scenarios.

trained by M3DDPG have much higher quality than original
MADDPG.

Evaluation with Disruptive Adversaries

Instead of M3DDPG and MADDPG directly competing
against each other, now we consider their performances in the
worst possible situations through their individual competi-
tions against disruptive adversaries. We construct disruptive
adversaries by (1) fixing the trained normal agents (M3DDPG
or MADDPG); (2) setting the reward of the disruptive adver-
sary as the negative value of normal agents’ reward (so that
the problem becomes zero-sum); and then (3) using DDPG
to train the disruptive adversary from scratch under the zero-
sum reward setting.

In the particle world environment, the competitive scenar-
ios are generally not zero-sum, which implies that according
to the default reward function, the adversaries may have dif-
ferent purposes rather than directly disrupting the normal
agents. So, in order to evaluate the effectiveness our minimax
optimization in the worst situation, we convert every prob-
lems into a zero-sum form and compare the performances of
our M3DDPG agents as well as the MADDPG agents against
this artificially constructed adversaries. Moreover, since each
of our four environments has only 1 adversary, after fixing
the normal agents, the learning problem degenerates to the
single agent setting and classical DDPG is sufficient to stably
train a disruptive adversary.

The results are shown in Figure 3, where we plot the re-
ward of the fixed normal agents of different algorithms as
the training of the disruptive adversaries progresses until con-
vergence. Note that due to the different environment designs,
the difficulty for the disruptive agents to break the strategy of
normal agents varies: for example, in convert communication,
since the private key is not accessible to the adversary agent,
breaking the encrypted communication will be very hard;
while in physical deception, since we do not allow communi-
cation and fix the normal agents, a smart enough adversary
may easily infer the target landmark by observing the initial
behavior of the two cooperative agents. Nevertheless, despite
these intrinsic properties, the M3DDPG agents (Minimax)
achieves higher reward in all the scenarios, which implies
better robustness even in the worst situation.

6. Conclusion
In this paper, we propose a novel algorithm, minimax mulit-
agent deep deterministic policy gradient (M3DDPG), for
robust multi-agent reinforcement learning, which leverages
the minimax concept and introduces a minimax learning ob-
jective. To efficiently optimize the minimax objective, we pro-
pose MAAL, which approximates the inner-loop minimiza-
tion by a single gradient descent step. Empirically, M3DDPG
outperforms the benchmark methods on four mixed coopera-
tive and competitive scenarios.

Nevertheless, due to the single step gradient approximation
in MAAL, which is efficient in computation, an M3DDPG
agent can only explore locally worst situation during the
evolving process at training, which can still lead to unsatisfy-
ing behavior when testing opponents have drastically differ-
ent strategies. It will be an interesting direction to re-examine
the robustness-efficiency trade-off in MAAL and further im-
prove policy learning by placing more computations on the
minimax optimization. We leave this as our future work.
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