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Abstract

Safe state abstraction in reinforcement learning allows an
agent to ignore aspects of its current state that are irrele-
vant to its current decision, and therefore speeds up dynamic
programming and learning. This paper explores safe state
abstraction in hierarchical reinforcement learning, where
learned behaviors must conform to a given partial, hierarchi-
cal program. Unlike previous approaches to this problem, our
methods yield significant state abstraction while maintain-
ing hierarchical optimality, i.e., optimality among all poli-
cies consistent with the partial program. We show how to
achieve this for a partial programming language that is essen-
tially Lisp augmented with nondeterministic constructs. We
demonstrate our methods on two variants of Dietterich’s taxi
domain, showing how state abstraction and hierarchical op-
timality result in faster learning of better policies and enable
the transfer of learned skills from one problem to another.

Introduction
The ability to make decisions based on only relevant fea-
tures is a critical aspect of intelligence. For example, if one
is driving a taxi from A to B, decisions about which street to
take should not depend on the current price of tea in China;
when changing lanes, the traffic conditions matter but not the
name of the street; and so on. State abstraction is the process
of eliminating features to reduce the effective state space;
such reductions can speed up dynamic programming and re-
inforcement learning (RL) algorithms considerably. Without
state abstraction, every trip from A to B is a new trip; every
lane change is a new task to be learned from scratch.

An abstraction is called safe if optimal solutions in the
abstract space are also optimal in the original space. Safe
abstractions were introduced by Amarel (1968) for the Mis-
sionaries and Cannibals problem. In our example, the taxi
driver can safely omit the price of tea in China from the state
space for navigating from A to B. More formally, the value
of every state (or of every state-action pair) is independent
of the price of tea, so the price of tea is irrelevant in selecting
optimal actions. Boutilier et al. (1995) developed a general
method for deriving such irrelevance assertions from the for-
mal specification of a decision problem.
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It has been noted (Dietterich 2000) that a variable can be
irrelevant to the optimal decision in a state even if it affects
the value of that state. For example, suppose that the taxi is
driving from A to B to pick up a passenger whose destina-
tion is C. Now, C is part of the state, but is not relevant to
navigation decisions between A and B. This is because the
value (sum of future rewards or costs) of each state between
A and B can be decomposed into a part dealing with the cost
of getting to B and a part dealing with the cost from B to C.
The latter part is unaffected by the choice of A; the former
part is unaffected by the choice of C.

This idea—that a variable can be irrelevant to part of the
value of a state—is closely connected to the area of hier-
archical reinforcement learning, in which learned behaviors
must conform to a given partial, hierarchical program. The
connection arises because the partial program naturally di-
vides state sequences into parts. For example, the task de-
scribed above may be achieved by executing two subroutine
calls, one to drive from A to B and one to deliver the pas-
senger from B to C. The partial programmer may state (or a
Boutilier-style algorithm may derive) the fact that the nav-
igation choices in the first subroutine call are independent
of the passenger’s final destination. More generally, the no-
tion of modularity for behavioral subroutines is precisely the
requirement that decisions internal to the subroutine be in-
dependent of all external variables other than those passed
as arguments to the subroutine.

Several different partial programming languages have
been proposed, with varying degrees of expressive power.
Expressiveness is important for two reasons: first, an ex-
pressive language makes it possible to state complex partial
specifications concisely; second, it enables irrelevance as-
sertions to be made at a high level of abstraction rather than
repeated across many instances of what is conceptually the
same subroutine. The first contribution of this paper is an
agent programming language, ALisp, that is essentially Lisp
augmented with nondeterministic constructs; the language
subsumes MAXQ (Dietterich 2000), options (Precup & Sut-
ton 1998), and the PHAM language (Andre & Russell 2001).

Given a partial program, a hierarchical RL algorithm finds
a policy that is consistent with the program. The policy may
be hierarchically optimal—i.e., optimal among all policies
consistent with the program; or it may be recursively opti-
mal, i.e., the policy within each subroutine is optimized ig-
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(defun root () (if (not (have-pass)) (get)) (put))
(defun get () (choice get-choice

(action ’load)
(call navigate (pickup))))

(defun put () (choice put-choice
(action ’unload)
(call navigate (dest))))

(defun navigate(t)
(loop until (at t) do

(choice nav (action ’N)
(action ’E)
(action ’S)
(action ’W))))

Figure 1: The taxi world. It is a 5x5 world with 4 special cells (RGBY) where passengers are loaded and unloaded. There are 4 features,
x,y,pickup,dest. In each episode, the taxi starts in a randomly chosen square, and there is a passenger at a random special cell with
a random destination. The taxi must travel to, pick up, and deliver the passenger, using the commands N,S,E,W,load,unload. The taxi
receives a reward of -1 for every action, +20 for successfully delivering the passenger, -10 for attempting to load or unload the passenger at
incorrect locations. The discount factor is 1.0. The partial program shown is an ALisp program expressing the same constraints as Dietterich’s
taxi MAXQ program. It breaks the problem down into the tasks of getting and putting the passenger, and further isolates navigation.

noring the calling context. Recursively optimal policies may
be worse than hierarchically optimal policies if the context
is relevant. Dietterich 2000 shows how a two-part decom-
position of the value function allows state abstractions that
are safe with respect to recursive optimality, and argues that
“State abstractions [of this kind] cannot be employed with-
out losing hierarchical optimality.” The second, and more
important, contribution of our paper is a three-part decom-
position of the value function allowing state abstractions that
are safe with respect to hierarchical optimality.

The remainder of the paper begins with background ma-
terial on Markov decision processes and hierarchical RL,
and a brief description of the ALisp language. Then we
present the three-part value function decomposition and as-
sociated Bellman equations. We explain how ALisp pro-
grams are annotated with (ir)relevance assertions, and de-
scribe a model-free hierarchical RL algorithm for annotated
ALisp programs that is guaranteed to converge to hierarchi-
cally optimal solutions1. Finally, we describe experimental
results for this algorithm using two domains: Dietterich’s
original taxi domain and a variant of it that illustrates the
differences between hierarchical and recursive optimality.

Background
Our framework for MDPs is standard (Kaelbling, Littman,
& Moore 1996). An MDP is a 4-tuple, ���������	�
����
 , where� is a set of states, � a set of actions, � a probabilistic
transition function mapping ������������� ������� , and � a re-
ward function mapping ��������� to the reals. We focus on
infinite-horizon MDPs with a discount factor � . A solution
to an MDP is an optimal policy ��� mapping from � �!�
and achieves the maximum expected discounted reward. An
SMDP (semi-MDP) allows for actions that take more than
one time step. � is now a mapping from �"�$#%�&�"�$�'�(� ������� ,
where # is the natural numbers; i.e., it specifies a distribu-
tion over both outcome states and action durations. � then
maps from �)�*#+�,�-�*� to the reals. The expected dis-
counted reward for taking action . in state / and then fol-
lowing policy � is known as the 0 value, and is defined as

1Proofs of all theorems are omitted and can be found in an ac-
companying technical report (Andre & Russell 2002).
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Note that �-VW�X� iff Y I �T�3/Z
[VQ\^]�_a`�\>bdc"021e�3/4��.f
 .
In most languages for partial reinforcement learning pro-

grams, the programmer specifies a program containing
choice points. A choice point is a place in the program
where the learning algorithm must choose among a set of
provided options (which may be primitives or subroutines).
Formally, the program can be viewed as a finite state ma-
chine with state space g (consisting of the stack, heap,
and program pointer). Let us define a joint state space h
for a program i as the cross product of g and the states,j

, in an MDP k . Let us also define l as the set of
choice states, that is, l is the subset of h where the ma-
chine state is at a choice point. With most hierarchical lan-
guages for reinforcement learning, one can then construct
a joint SMDP inmok where ipm�k has state space l
and the actions at each state in l are the choices specified
by the partial program i . For several simple RL-specific
languages, it has been shown that policies optimal underiqm4k correspond to the best policies achievable in k given
the constraints expressed by i (Andre & Russell 2001;
Parr & Russell 1998).

The ALisp language
The ALisp programming language consists of the Lisp lan-
guage augmented with three special macros:
m (choice r label str form0 sur form1 suC�CBC ) takes 2

or more arguments, where r formN s is a Lisp S-
expression. The agent learns which form to execute.m (call r subroutine s(r arg0 s+r arg1 s ) calls a sub-
routine with its arguments and alerts the learning mech-
anism that a subroutine has been called.m (action r action-name s ) executes a “primitive” ac-
tion in the MDP.

An ALisp program consists of an arbitrary Lisp program that
is allowed to use these macros and obeys the constraint that
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Figure 2: Decomposing the value function for the shaded state,� . Each circle is a choice state of the SMDP visited by the agent,
where the vertical axis represents depth in the hierarchy. The tra-
jectory is broken into 3 parts: the reward “R” for executing the
macro action at � , the completion value “C”, for finishing the sub-
routine, and “E”, the external value.

all subroutines that include the choice macro (either directly,
or indirectly, through nested subroutine calls) are called with
the call macro. An example ALisp program is shown in
Figure 1 for Dietterich’s Taxi world (Dietterich 2000). It
can be shown that, under appropriate restrictions (such as
that the number of machine states h stays bounded in every
run of the environment), that optimal policies for the joint
SMDP i(m k for an ALisp program i are optimal for the
MDP k among those policies allowed by i (Andre & Rus-
sell 2002).

Value Function Decomposition
A value function decomposition splits the value of a
state/action pair into multiple additive components. Mod-
ularity in the hierarchical structure of a program allows us
to do this decomposition along subroutine boundaries. Con-
sider, for example, Figure 2. The three parts of the decom-
position correspond to executing the current action (which
might itself be a subroutine), completing the rest of the cur-
rent subroutine, and all actions outside the current subrou-
tine. More formally, we can write the Q-value for executing
action . in � Vql as follows:

����� ���
	���
 � ���� ������� ��� ���

�� �! #"%$'&� ����� � �(� � �*) � �+ -,.$'&����  #" �

��� � �/) � � �����  �, �
�(� � �


 � �0 � ���!	�� ) � �1 � ���
	�� ) � �2 � ���
	��
where Po= is the number of primitive steps to finish action. , P @ is the number of primitive steps to finish the current
subroutine, and the expectation is over trajectories starting
in � with action . and following � . P�= , P @ , and the re-
wards, :43 , are defined by the trajectory. 0/5 thus expresses
the expected discounted reward for doing the current action
(“R” from Figure 2), 076 for completing rest of the current
subroutine (“C”), and 078 for all the reward external to the
current subroutine (“E”).

It is important to see how this three-part decomposition
allows greater state abstraction. Consider the taxi domain,

x y pickup dest 0 0 5 0/6 0 8
3 3 R G 0.23 -7.5 -1.0 8.74
3 3 R B 1.13 -7.5 -1.0 9.63
3 2 R G 1.29 -6.45 -1.0 8.74

Table 1: Table of Q values and decomposed Q values for 3 states
and action 	9
 (nav pickup), where the machine state is equal
to : get-choice ; . The first four columns specify the environ-
ment state. Note that although none of the

�
values listed are iden-

tical,
� 1 is the same for all three cases, and

� 2
is the same for 2

out of 3, and
� 0

is the same for 2 out of 3.

where there are many opportunities for state abstraction (as
pointed out by Dietterich (2000) for his two-part decompo-
sition). While completing the get subroutine, the passen-
ger’s destination is not relevant to decisions about getting to
the passenger’s location. Similarly, when navigating, only
the current x/y location and the target location are important
– whether the taxi is carrying a passenger is not relevant.
Taking advantage of these intuitively appealing abstractions
requires a value function decomposition, as Table 1 shows.

Before presenting the Bellman equations for the decom-
posed value function, we must first define transition prob-
ability measures that take the program’s hierarchy into ac-
count. First, we have the SMDP transition probability< ��� N �	P>= � ��.f
 , which is the probability of an SMDP tran-
sition to � N taking P steps given that action . is taken in � .
Next, let

j
be a set of states, and let ?*1@ ��� N �	P>= � ��.f
 be the

probability that � N is the first element of
j

reached and that
this occurs in P primitive steps, given that . is taken in �
and � is followed thereafter. Two such distributions are use-
ful, ?21@4@BADC�E and ?*1FHG ADC�E , where

jTj ��� 
 are those states in the
same subroutine as � and 8*I �J� 
 are those states that are
exit points for the subroutine containing � . We can now
write the Bellman equations using our decomposed value
function, as shown in Equations 1, 2, and 3 in Figure 3,
where K5��� 
 returns the next choice state at the parent level of
the hierarchy, LScf��� 
 returns the first choice state at the child
level, given action . 2, and MON is the set of actions that are
not calls to subroutines. With some algebra, we can then
prove the following results.

Theorem 1 If 0 �5 , 0 �6 , and 0 �8 are solutions to Equations 1,
2, and 3 for �X� , then 0 � 6 0 �5 < 0 �6 < 0 �8 is a solution to
the standard Bellman equation.

Theorem 2 Decomposed value iteration and policy itera-
tion algorithms (Andre & Russell 2002) derived from Equa-
tions 1, 2, and 3 converge to 0 �5 , 0 �6 , 0 �8 , and ��� .
Extending policy iteration and value iteration to work
with these decomposed equations is straightforward, but
it does require that the full model is known – including? 1@P@PADC�E �J� N ��PQ= � ��.5
 and ? 1FHG ADC�E ��� N �	P>= � ��.f
 , which can be
found through dynamic programming. After explaining how

2We make a trivial assumption that calls to subroutines are sur-
rounded by choice points with no intervening primitive actions at
the calling level. RJS � ��� and T � ��� are thus simple deterministic
functions, determined from the program structure.
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Figure 3: Top: Bellman equations for the three-part decomposed value function. Bottom: Bellman equations for the abstracted case.

the decomposition enables state abstraction, we will present
an online learning method which avoids the problem of hav-
ing to specify or determine a complex model.

State Abstraction
One method for doing learning with ALisp programs would
be to flatten the subroutines out into the full joint state space
of the SMDP. This has the result of creating a copy of each
subroutine for every place where it is called with different
parameters. For example, in the Taxi problem, the flattened
program would have 8 copies (4 destinations, 2 calling con-
texts) of the navigate subroutine, each of which have to
be learned separately. Because of the three-part decompo-
sition discussed above, we can take advantage of state ab-
straction and avoid flattening the state space.

To do this, we require that the user specify which features
matter for each of the components of the value function. The
user must do this for each action at each choice point in the
program. We thus annotate the language with :depends-
on keywords. For example, in the navigate subroutine,
the (action ’N) choice is changed to

((action ’N)
:reward-depends-on nil
:completion-depends-on ’(x y t)
:external-depends-on ’(pickup dest))

Note that t is the parameter for the target location passed
into navigate. The 0/5 -value for this action is constant
– it doesn’t depend on any features at all (because all ac-
tions in the Taxi domain have fixed cost). The 0 6 value only
depends on where the taxi currently is and on the target loca-
tion. The 078 value only depends on the passenger’s location
(either in the Taxi or at R,G,B, or Y) and the passenger’s des-
tination. Thus, whereas a program with no state abstraction
would be required to store 800 values, here, we only must
store 117.

Safe state abstraction
Now that we have the programmatic machinery to define ab-
stractions, we’d like to know when a given set of abstraction

functions is safe for a given problem. To do this, we first
need a formal notation for defining abstractions. Let I N � J��	.4� ,IP5&� J���.4� , I 6 � J��	.4� , and IB8Z� J���.&� be abstraction functions spec-
ifying the set of relevant machine and environment features
for each choice point J and action . for the primitive reward,
non-primitive reward, completion cost, and external cost re-
spectively. In the example above, I 6 � K�.ML �	PQ� 6 �)N �2O��2P � .
Note that this function I groups states together into equiv-
alence classes (for example, all states that agree on assign-
ments to

N
, O , and P would be in an equivalence class). LetI?�J� �	.5
 be a mapping from a state-action pair to a canonical

member of the equivalence class to which it belongs under
the abstraction I . We must also discuss how policies inter-
act with abstractions. We will say that a policy � and an
abstraction I are consistent iff Y C K c �T��� 
,6 �T��I ��� �	.5
	
 andY c K Q I?�J� �	.5
 6RI ��� �TS�
 . We will denote the set of such poli-
cies as U.V .

Now, we can begin to examine when abstractions are safe.
To do this, we define several notions of equivalence.

Definition 1 (P-equivalence) I N is P-equivalent (Primitive
equivalent) iff Y C K c)W?X + , 0 5 ��� ��.f
T6 0 5 �#I N5�J� �	.5
 ��.f
 .
Definition 2 (R-equivalence) IB5 is R-equivalent iffY C K c?YW?X + K 1 W4Z\[#] , 0 5 �J� �	.5
T6 0 5 ��I 5 �J� 
 ��.f
 .
These two specify that states are abstracted together underI.N and I 5 only if their 0 5 values are equal. C-equivalence
can be defined similarly.

For the E component, we can be more aggressive. The
exact value of the external reward isn’t what’s important,
rather, it’s the behavior that it imposes on the subroutine.
For example, in the Taxi problem, the external value after
reaching the end of the navigate subroutine will be very
different when the passenger is in the taxi and when she’s
not – but the optimal behavior for navigate is the same in
both cases. Let ^ be a subroutine of a program i , and let l%_
be the set of choice states reachable while control remains in^ . Then, we can define E-equivalence as follows:

Definition 3 (E-equivalence) I 8 is E-equivalent iff

1. Y`_?W4a[Y C " K C , W?bdcMIB8Z� �T=���6eIB8Z� � @ � and



2. Y C \^]�_T`�\>b�c"0 �5 ��� �	.5
q< 0 �6 �J� �	.5
q<�0 �8 ��� ��.5
G6\^]�_T`�\>b�c"0 �5 ��� �	.5
�< 0 �6 ��� �	.5
A< 0 �8 ��IB8>��� ��.5
 �	.5
 .
The last condition says that states are abstracted together
only if they have the same set of optimal actions in the set
of optimal policies. It could also be described as “passing
in enough information to determine the policy”. This is the
critical constraint that allows us to maintain hierarchical op-
timality while still performing state abstraction.

We can show that if abstraction functions satisfy these
four properties, then the optimal policies when using these
abstractions are the same as the optimal policies without
them. To do this, we first express the abstracted Bellman
equations as shown in Equations 4 - 7 in Figure 3. Now,
if I N I 5 , I 6 , and IB8 are P-, R-,C-, and E-equivalent, respec-
tively, then we can show that we have a safe abstraction.

Theorem 3 If I N is P-equivalent, IB5 is R-equivalent, I 6 is
C-equivalent, and I 8 is E-equivalent, then, if 0 �5 , 0 �6 , and0 �8 are solutions to Equations 4 - 7, for MDP k and ALisp
program i , then � such that �T�J� 
�V)\^]�_T`�\>b c 0 �&��� ��.f
 is
an optimal policy for i m[k .

Theorem 4 Decomposed abstracted value iteration and
policy iteration algorithms (Andre & Russell 2002) derived
from Equations 4 - 7 converge to 0 �5 , 0 �6 , 0 �8 , and ��� .
Proving these various forms of equivalence might be diffi-
cult for a given problem. It would be easier to create ab-
stractions based on conditions about the model, rather than
conditions on the value function. Dietterich (2000) de-
fines four conditions for safe state abstraction under recur-
sive optimality. For each, we can define a similar condition
for hierarchical optimality and show how it implies abstrac-
tions that satisfy the equivalence conditions we’ve defined.
These conditions are leaf abstraction (essentially the same
as P-equivalence), subroutine irrelevance (features that are
totally irrelevant to a subroutine), result-distribution irrele-
vance (features are irrelevant to the ? @P@ distribution for all
policies), and termination (all actions from a state lead to an
exit state, so 076 is 0). We can encompass the last three con-
ditions into a strong form of equivalence, defined as follows.

Definition 4 (SSR-equivalence) An abstraction function I 6
is strongly subroutine (SSR) equivalent for an ALisp pro-
gram i iff the following conditions hold for all � and poli-
cies � that are consistent with I 6 .

1. Equivalent states under I 6 have equivalent transition
probabilities: Y C J�K c K c J K M? @4@ ��� N �	PQ= � �	.5
T6 ? @P@ ��I 6 ��� N �	. N 
 ��PQ= I 6 ��� ��.5
 �	.5
 3

2. Equivalent states have equivalent rewards: Y C J K c K c J K M:5��� N �	Pq� � �	.5
T6 :f�#IB6Z��� N �	. N 
��	PQ� IB6��J� �	.5
 ��.5

3. The variables in I 6 are enough to determine the opti-

mal policy: Y c �X�^�J� 
76 �X�4��IB6���� ��.f
	

The last condition is the same sort of condition as the last
condition of E-equivalence, and is what enables us to main-
tain hierarchical optimality. Note that SSR-equivalence im-
plies C-equivalence.

3We can actually use a weaker condition: Dietterich’s (2000)
factored condition for subtask irrelevance

The ALispQ learning algorithm
We present a simple model-free state abstracted learning al-
gorithm based on MAXQ (Dietterich 2000) for our three-
part value function decomposition. We assume that the user
provides the three abstraction functions I N , I 6 , and IB8 . We
store and update

�0 6 ��I 6 �J� �	.5
 ��.5
 and
�078>��IB8Z��� ��.5
 �	.5
 for all.�V M , and

�:���I N �J� �	.5
 ��.f
 for .
V M N . We calculate
�0��J� �	.5
T6 �0/5^��� ��.f
�< �0 6 ��I 6 ��� 
��	.5
�< �0/8>��IB8Z�J� �	.5
 ��.f
�C

Note that, as in Dietterich’s work,
�0*54��� ��.f
 is recursively

calculated as
�:��#I N���� �	.5
��	.5
 if .QV M N for the base case and

otherwise as
�0 5 ��� ��.f
T6 �0 5 �(L c ��� 
 ��. N 
A< �0/6���IB6O�JL c ��� 
	
 ��. N 
��

where . N 6 \^]�_T`�\>b Q �0o�(L c �J� 
 �TS�
 . This means that that the
user need not specify IB5 . We assume that the agent uses a
GLIE (Greedy in the Limit with Infinite Exploration) explo-
ration policy.

Imagine the situation where the agent transitions to � N
contained in subroutine ^ , where the most recently visited
choice state in ^ was � , where we took action . , and it tookP primitive steps to reach � N . Let � 6 be the last choice state
visited (it may or may not be equal to � , see Figure 2 for
an example), let . N 6 \^]�_T`�\>b Q �0��J� N �TS�
 , and let : I be the
discounted reward accumulated between � and � N . Then,
ALispQ learning performs the following updates:

m if .
V M N ,
�:���I N �J� �	.5
 ��.5
 � �������"
 �:���I N ��� ��.f
��	.5
f<��A: I

m �0 6 �#I 6 �J� 
 ��.f
 � �����	��
 �0 6 ��I 6 ��� 
 ��.5
A<
�X� M � �0 5 �#I 6O�J� N 
��	. N 
�< �076B�#I 6O�J� N 
��	. N 
 �
m �0 8 ��I 8 ��� ��.5
 �	.5
 ��S�
�	��
 �0/8>��IB8Z�J� �	.5
 ��.f
X<��X� M �0/8Z��IB8Z�J� N ��. N 
��	. N 

m if ��6 is an exit state and I 6B�J��6R
*6 � 6 (and let . be the

sole action there) then
�0/8Z��IB8>�J� 6 �	.5
 ��.5
 �

�S�
�	��
 �0/8>��IB8Z�J� 6 �	.5
 ��.5
A<�\&]	_a`�\^b Q �0���� N � SB
 4

Theorem 5 (Convergence of ALispQ-learning) If I 5 , I I ,
and I 8 are R-,SSP-, and E- Equivalent, respectively, then
the above learning algorithm will converge (with appropri-
ately decaying learning rates and exploration method) to a
hierarchically optimal policy.

Experiments
Figure 5 shows the performance of five different learning
methods on Dietterich’s taxi-world problem. The learning
rates and Boltzmann exploration constants were tuned for
each method. Note that standard Q-learning performs better
than “ALisp program w/o SA” – this is because the prob-
lem is episodic, and the ALisp program has joint states that

4Note that this only updates the
� 2

values when the exit state
is the distinguished state in the equivalence class. Two algorithmic
improvements are possible: using all exits states and thus basing� 2

on an average of the exit states, and modifying the distinguished
state so that it is one of the most likely to be visited.
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Figure 5: Learning curves for the taxi domain (left) and the extended taxi domain with time and arrival distribution (right), averaged over 50
training runs. Every 10000 primitive steps (x-axis), the greedy policy was evaluated for 10 trials, and the score (y-axis) was averaged. The
number of parameters for each method is shown in parentheses after its name.

(defun root () (progn (guess) (wait) (get) (put)))
(defun guess () (choice guess-choice

(nav R)
(nav G)
(nav B)
(nav Y)))

(defun wait () (loop while (not (pass-exists)) do
(action ’wait)))

Figure 4: New subroutines added for the extended taxi domain.

are only visited once per episode, whereas Q learning can
visit states multiple times per run. Performing better than Q
learning is the “Better ALisp program w/o SA”, which is an
ALisp program where extra constraints have been expressed,
namely that the load (unload) action should only be ap-
plied when the taxi is co-located with the passenger (desti-
nation). Second best is the “ALisp program w/ SA” method,
and best is the “Better ALisp program w/SA” method. We
also tried running our algorithm with recursive optimality
on this problem, and found that the performance was essen-
tially unchanged, although the hierarchically optimal meth-
ods used 745 parameters, while recursive optimality used
632. The similarity in performance on this problem is due
to the fact that every subroutine has a deterministic exit state
given the input state.

We also tested our methods on an extension of the taxi
problem where the taxi initially doesn’t know where the pas-
senger will show up. The taxi must guess which of the pri-
mary destinations to go to and wait for the passenger. We
also add the concept of time to the world: the passenger will
show up at one of the four distinguished destinations with a
distribution depending on what time of day it is (morning or
afternoon). We modify the root subroutine for the domain
and add two new subroutines, as shown in Figure 4.

The right side of Figure 5 shows the results of running our
algorithm with hierarchical versus recursive optimality. Be-
cause the arrival distribution of the passengers is not known
in advance, and the effects of this distribution on reward are
delayed until after the guess subroutine finishes, the recur-
sively optimal solution cannot take advantage of the differ-

ent distributions in the morning and afternoon to choose the
best place to wait for the arrival, and thus cannot achieve
the optimal score. None of the recursively optimal solutions
achieved a policy having value higher than 6.3, whereas ev-
ery run with hierarchical optimality found a solution with
value higher than 6.9.

The reader may wonder if, by rearranging the hierarchy of
a recursively optimal program to have “morning” and ‘after-
noon”guess functions, one could avoid the deficiencies of
recursive optimality. Although possible for the taxi domain,
in general, this method can result in adding an exponential
number of subroutines (essentially, one for each possible
subroutine policy). Even if enough copies of subroutines
are added, with recursive optimality, the programmer must
still precisely choose the values for the pseudo-rewards in
each subroutine. Hierarchical optimality frees the program-
mer from this burden.

Figure 5 also shows the results of transferring the
navigate subroutine from the simple version of the prob-
lem to the more complex version. By analyzing the do-
main, we were able to determine that an optimal policy for
navigate from the simple taxi domain would have the
correct local sub-policy in the new domain, and thus we
were able to guarantee that transferring it would be safe.

Discussion and Future Work
This paper has presented ALisp, shown how to achieve safe
state abstraction for ALisp programs while maintaining hi-
erarchical optimality, and demonstrated that doing so speeds
learning considerably. Although policies for (discrete, fi-
nite) fully observable worlds are expressible in principle as
lookup tables, we believe that the the expressiveness of a full
programming language enables abstraction and modulariza-
tion that would be difficult or impossible to create otherwise.

There are several directions in which this work can be ex-
tended.

� Partial observability is probably the most important out-
standing issue. The required modifications to the theory



are relatively straightforward and have already been in-
vestigated, for the case of MAXQ and recursive optimal-
ity, by Makar et al. (2001).

� Average-reward learning over an infinite horizon is
more appropriate than discounting for many applications.
Ghavamzadeh and Mahadevan (2002) have extended our
three-part decomposition approach to the average-reward
case and demonstrated excellent results on a real-world
manufacturing task.

� Shaping (Ng, Harada, & Russell 1999) is an effective
technique for adding “pseudorewards” to an RL problem
to improve the rate of learning without affecting the final
learned policy. There is a natural fit between shaping and
hierarchical RL, in that shaping rewards can be added to
each subroutine for the completion of subgoals; the struc-
ture of the ALisp program provides a natural scaffolding
for the insertion of such rewards.

� Function approximation is essential for scaling hierarchi-
cal RL to very large problems. In this context, function
approximation can be applied to any of the three value
function components. Although we have not yet demon-
strated this, we believe that there will be cases where com-
ponentwise approximation is much more natural and ac-
curate. We are currently trying this out on an extended
taxi world with continuous dynamics.

� Automatic derivation of safe state abstractions should be
feasible using the basic idea of backchaining from the util-
ity function through the transition model to identify rele-
vant variables (Boutilier et al. 2000). It is straightforward
to extend this method to handle the three-part value de-
composition.

In this paper, we demonstrated that transferring en-
tire subroutines to a new problem can yield a significant
speedup. However, several interesting questions remain.
Can subroutines be transferred only partially, as more of a
shaping suggestion than a full specification of the subrou-
tine? Can we automate the process of choosing what to
transfer and deciding how to integrate it into the partial spec-
ification for the new problem? We are presently exploring
various methods for partial transfer and investigating using
logical derivations based on weak domain knowledge to help
automate transfer and the creation of partial specifications.
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