
Derivative-free optimization adversarial
attacks for graph convolutional networks
Runze Yang and Teng Long

School of Information Engineering, China University of Geosciences, Beijing, China

ABSTRACT
In recent years, graph convolutional networks (GCNs) have emerged rapidly due to
their excellent performance in graph data processing. However, recent researches
show that GCNs are vulnerable to adversarial attacks. An attacker can maliciously
modify edges or nodes of the graph to mislead the model’s classification of the target
nodes, or even cause a degradation of the model’s overall classification performance.
In this paper, we first propose a black-box adversarial attack framework based on
derivative-free optimization (DFO) to generate graph adversarial examples without
using gradient and apply advanced DFO algorithms conveniently. Second, we
implement a direct attack algorithm (DFDA) using the Nevergrad library based on
the framework. Additionally, we overcome the problem of large search space by
redesigning the perturbation vector using constraint size. Finally, we conducted a
series of experiments on different datasets and parameters. The results show that
DFDA outperforms Nettack in most cases, and it can achieve an average attack
success rate of more than 95% on the Cora dataset when perturbing at most eight
edges. This demonstrates that our framework can fully exploit the potential of DFO
methods in node classification adversarial attacks.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Security and Privacy
Keywords Graph convolutional network, Adversarial attack, Derivative-free optimization,
Machine learning

INTRODUCTION
Graph convolutional networks (GCNs) (Kipf & Welling, 2017) are one of the most
popular graph neural networks (GNNs) (Scarselli et al., 2009). They are widely used in
recommendation systems (He et al., 2020), molecular chemistry (Ryu, Kwon & Kim,
2019) and knowledge graphs (Wang et al., 2019). Like traditional neural networks, GCNs
are also vulnerable to adversarial attacks. The adversary can modify structure and
node features to make the model misclassify the target nodes (Zügner, Akbarnejad &
Günnemann, 2018; Dai et al., 2018;Ma et al., 2019), or even cause the overall classification
performance to degrade (Zügner & Günnemann, 2019). Therefore, the study of
GCNs’ robustness has received increasingly widespread attention (Sun et al., 2018).

Gradient-based adversarial attacks in the continuous domain have had a series of
related works on both images (Goodfellow, Shlens & Szegedy, 2015; Papernot et al.,
2016) and audio (Carlini & Wagner, 2018). Unlike adversarial attacks in the continuous
domain, graph data are often discrete: the structural information (adjacency matrix) of the
graph is discontinuous and the features may also have discrete values. This makes it
difficult to use gradient information to attack (Zügner, Akbarnejad & Günnemann, 2018),

How to cite this article Yang R, Long T. 2021. Derivative-free optimization adversarial attacks for graph convolutional networks. PeerJ
Comput. Sci. 7:e693 DOI 10.7717/peerj-cs.693

Submitted 21 June 2021
Accepted 4 August 2021
Published 24 August 2021

Corresponding author
Teng Long, longteng@cugb.edu.cn

Academic editor
Sebastian Ventura

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.693

Copyright
2021 Yang and Long

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.693
mailto:longteng@�cugb.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.693
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

especially under a black-box condition where only classification output vector can be
obtained.

Derivative-free optimization (DFO) algorithms (Conn, Scheinberg & Vicente, 2009) are
a class of algorithms that do not compute the gradient but only use the value of the
objective function to optimize. These algorithms are often used in cases where the
derivative of the objective function is undefined, or where it is difficult to obtain a reliable
value of the derivative. It has been successfully applied to attack traditional deep neural
networks (Ughi, Abrol & Tanner, 2020). There is also some DFO attack work on
GNNs. For example, Dai et al. (2018) implemented a black-box GCN adversarial attack
algorithm based on a genetic algorithm by setting the population, fitness, selection,
crossover and mutation in detail. Chen et al. (2019) proposed a community detection
attack algorithm with a genetic algorithm and verified their algorithm has good
transferability. However, without a uniform framework, these works usually have to
implement custom versions of the algorithms for a certain problem. To the authors’ best
knowledge, there is no general framework that can quickly apply various DFO algorithms
in the field of graph adversarial attacks.

In this paper, we propose a black-box adversarial attack framework based on the idea of
DFO. It consists of three steps: Input Setting (design the loss function, perturbation vector,
constraints and so on), Iterative Query (generate perturbation vectors and query the
black-box GCN model iteratively) and Final Perturbation (modify graph data with
perturbation that minimize the loss function). In facing the difficulty of using gradient and
the inconvenience of applying and comparing DFO algorithms, the key idea insight of our
approach is (1) regarding graph adversarial attacks as a search problem in a discrete
solution space and using derivative-free optimizers (DFOers) to solve it; (2) abstracting the
specific task of graph adversarial attacks as an optimization problem about a certain form
perturbation vector in order to switch and compare various DFOers conveniently.

Moreover, we use the Nevergrad (Rapin & Teytaud, 2018) library to implement a
black-box direct adversarial attack algorithm (called DFDA) on GCN-based node
classification tasks. Following the framework above, we set attack loss function,
perturbation vector, perturbation constraint, mapping function and derivative-free
optimizer separately.

We conducted a series of experiments on Cora, Citeseer and Polblogs. Without loss
of generality, we attack node 0 of the Cora dataset with five different DFOers to compare
the classification margin and comprehensive performance. Then, we randomly select 50
nodes to attack separately to study the average attack success rate of DFDA with different
iteration numbers, perturbation constraints and perturbation types. Finally, we compare
DFDA with a classical algorithm Nettack (Zügner, Akbarnejad & Günnemann, 2018)—a
well-performing greedy algorithm—under different defense models. Nettack is a well-
performing adversarial attack algorithm based on greedy approach. The results show that
all the selected DFOers can search for effective perturbations, and DFDA is superior to
Nettack in most cases.

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 2/23

http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

The contributions of this paper are listed below:

� We have proposed a black-box adversarial attack framework in order to generate graph
adversarial samples without using the gradient. Specifically, we use DFO methods to
perform attacks effectively. Additionally, the uniform outputs of DFOers (perturbation
vectors) make it convenient to use and compare different DFO algorithms.

� We have implemented a direct adversarial attack algorithm on node classification tasks
for GCNs based on the framework above. Facing the potential problem of too large
search space, we set the perturbation vector dimension to the constraint size and set
the elements of the perturbation vector as the pointers indicating the perturbed position
of the original matrix. This approach reduces the search space from exponential level
to power level and enables the perturbation vector to pass the constraint check more
easily.

� We have conducted a series of experiments under various conditions. The results show
that we can achieve an average attack success rate of more than 95% on the Cora dataset
when perturbing at most eight edges. We compare our algorithm with the classical
algorithm Nettack under different defense models and find that DFDA outperforms
Nettack in most cases. During the experiments, instead of copying an original graph at
each perturbation iteration, we use inverse perturbation to restore the perturbed graph
to its original state. This can effectively reduce the computation cost under a large
number of iterations.

This paper is organized as follows “Preliminaries” gives the basic concepts of GCN-
based node classification and adversarial attacks. “Derivative-Free Adversarial Attack on
GCNs” describes our framework and algorithms, followed by the experimental results in
“Evaluation”. “Related Work” introduced the related work, followed by some concluding
remarks in “Conclusion”.

RELATED WORK
There has been some classical work on node classification adversarial attacks. The concept
of graph adversarial attacks was first introduced by Zügner, Akbarnejad & Günnemann
(2018). They proposed a gray-box attack algorithm Nettack based on the greedy approach.
In this algorithm, the attacker can obtain training labels to train the surrogate model.
The adversary can generate an adversarial sample by attacking the surrogate model
and migrate it to the target model for attacks. Subsequently, they proposed Mettack
(Zügner & Günnemann, 2019), an attack algorithm that can reduce the global classification
accuracy. This algorithm attacks based on the gradient information of the adjacency
matrix. Dai et al. (2018) proposed a black-box attack algorithm named RL-S2V based
on reinforcement learning. This method performs attacks by injecting nodes into the
graph.

Nettack is a global attack algorithm that attacks to decline the classification accuracy of
a whole graph instead of a target node. Black-box queries in RL-S2V setting only return
the prediction classes rather than class probability vectors. Therefore we do not compare

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 3/23

http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

with the above algorithms. We compare DFDA with Nettack because the attack settings
are more similar: both of them can perform direct perturbations of edges and features of a
target node. For the sake of reasonableness, we unify Nettack’s settings in terms of node
selection and constraints with DFDA.

DFO methods like genetic algorithms are used in some graph adversarial attack tasks.
For example, Dai et al. (2018) applied genetic algorithms to node classification adversarial
attacks and adapted it as a baseline algorithm for their main algorithm RL-S2V.
Experiments in their paper demonstrate that genetic algorithms are effective for
combinatorial optimization problems like graph adversarial attacks. Chen et al. (2019)
proposed a community detection attack algorithm based on genetic algorithms and
verified that the algorithm has good transferability. In this paper, we propose an
adversarial attack framework to make it convenient to apply and compare different DFO
algorithms.

Nevergrad (Rapin & Teytaud, 2018) is a Python3 based open-source framework
developed by Facebook, which provides a large number of implementations of DFO
algorithm optimizers, such as, differential evolution algorithms, fast genetic algorithms,
covariance matrix adaptive algorithms, particle swarm optimization algorithms, etc. When
DFO algorithms need to be applied, researchers usually need to implement custom
versions of algorithms for real problems, which consume a lot of time and do not facilitate
the comparisons among algorithms. The algorithm DFDA we proposed is based on
Nevergrad, using which the strengths and weaknesses of various DFO algorithms can be
easily compared. It can help researchers find suitable algorithms that deserve to be further
customized.

PRELIMINARIES
In this section, we introduce the notions about GCN-based node classification and the
general form of adversarial attack on graph.

Node classification with GCN
The classification task on graph data mainly consists of two cases, one is graph-level
classification, where the graph G is a whole with a label, and the other is node-level
classification, where each node in the graph G belongs to a class in the label set Y. In this
paper, we focus on node-level semi-supervised classification. Semi-supervised node
classification is a task in which the labels of unknown nodes are derived by training under
the condition that the training set labels are known.

In the following we give the mathematical definition of semi-supervised node
classification. For an undirected graph G, given the adjacency matrix A ∈ {0,1}N × N, the
node feature matrix X 2 RN�d (the feature of the node i is xi 2 Rd), the label of the i-th
node yi ∈ {1, 2, …, k}, a set of labeled nodes VL (training set, where |VL| = NL), and a
set of unlabeled nodes VU (test set, where |VU| = NU). The objective is to train a model fθ
(G) on the graph G with training parameter θ that predicts the label of each node in VU.

The general idea of semi-supervised learning model training is to minimize the loss
function of the model on the training set as much as possible, i.e.,

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 4/23

http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

minLtrain fhðGÞð Þ ¼
X
vi2VL

‘ fhðA;XÞi; yi
� �

(1)

where fθ(A, X)i denotes the class probilities of node vi and yi denotes the true label of node
vi. The loss function ‘(·,·) denotes the cross-entropy error.

We use the 2-layer GCN proposed by Kipf & Welling (2017) as the target model. The
2-layer GCN is one of the victimmodels commonly used in adversarial attack experiments.
It is defined as follows:

f ðA;XÞ ¼ Softmax ÂReLU ÂXWð1Þ
� �

Wð2Þ
� �

(2)

where Â ¼ eD� 1
2~AeD� 1

2, ~A ¼ Aþ I and eDii ¼
P

j
~Aij. Each row vector f (A, X)i ∈ [0,1]k of

the output matrix represents the class probability vector of node vi.

General forms of adversarial attack
Given a graph G = (A, X) and a set of attack target nodes Vt � V . Let yi denote the true
class of node vi. For node vi in the test set, since we do not know its true label, we can adopt
the method of self-learning (Zügner & Günnemann, 2019), that is, regarding the model
output on the clean graph as the true labels of unknown nodes. The attack objective is to
find a perturbed graph G′ = (A′, X′), which makes the attack target function Latk

minimum, i.e.,

minLatk fh G
0� �� � ¼ P

vi2Vt

‘atk fh� G
0� �
i; yi

� �

s:t:; h� ¼ argmin
h

Ltrain fh Ĝ
� �� � (3)

where ‘atk is the loss function of the attack. Ĝ can be chosen as either the original graph G
or the perturbed graph G′, corresponding to the poisoning attack scenario and the escape
attack scenario, respectively. Poisoning attack means that the GCN will be retrained
with the perturbed graph while evasion attack represents the cases that the GCNwill not be
retrained (Sun et al., 2018).

In particular, for an adversarial attack with a certain single node vi, the objective
function can be formulated as:

minLatk fh G
0� �� � ¼ ‘atk fh� G

0� �
i; yi

� �
: (4)

However, the perturbation of G′ is constrained and does not allow unrestricted
modification on the graph. A realistic assumption is that the attack needs to generate as
small and indistinguishable perturbations as possible, i.e., G ∈ ϕ(G), where ϕ(G) denotes
the constraint domain. If a perturbation upper bound Δ is given, a typical perturbation
constraint can be expressed as

A� A0k k0 þ X � X0k k0 � D: (5)

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 5/23

http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

DERIVATIVE-FREE ADVERSARIAL ATTACK ON GCNS
In this section, we introduce a black-box adversarial attack framework for GCNs based on
the idea of DFO. And then, we implement a direct attack algorithm on the GCN node
classification task using the Nevergrad algorithm library. Finally, we optimize the attack
algorithm to solve the problem of excessive dimensionality encountered during the
algorithm implementation.

Derivative-free black-box attack framework
The core idea of the framework is mainly twofold: (1) we treat graph adversarial attacks
as a search problem in a discrete solution space and use derivative-free optimizers
(DFOers) to solve it; (2) we abstract the specific task of graph adversarial attacks as an
optimization model about perturbation vectors. The former mainly copes with the
problem of difficult gradient utilization in black-box graph adversarial attacks. The
DFOers can optimize without computing the gradient. The latter reflects the generality of
the framework. The framework unifies the output of the DFOer into a certain form
perturbation vector, which provides a basis for the rapid switching and comparison of
various DFOers.

The main elements of the framework are described below. This framework contains
three main steps: Input Setting, Iterative Query and Final Perturbation. The schematic
diagram of the framework is shown in Fig. 1.

Input setting
In this step, we need to define the attack loss function Latk, perturbation vector η,
perturbation constraint ϕ(η), mapping function F and the DFOer Opt. In the black-box
scenario, we only know the adjacency matrix, the feature matrix and the black-box query
result in the form of class probability vectors. So the attack loss function is usually
constructed from the black-box query results. It is the target of our optimization. In
general, the smaller the function value, the better the attack effect. The perturbation vector

Figure 1 Derivative-free black-box attack framework. Full-size DOI: 10.7717/peerj-cs.693/fig-1

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 6/23

http://dx.doi.org/10.7717/peerj-cs.693/fig-1
http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

is the interface between the DFOer and the loss function. The uniform perturbation
vector ensures the feasibility of switching the DFOer for comparison experiments. The
perturbation constraint defines the restrictions on the perturbation vector generated by the
DFOer. The mapping function defines how the perturbation is imposed on the graph G.
The DFOer can return a perturbation vector that tends to make the loss function as small
as possible by learning the value of the loss function obtained from the query.

Iterative query
After defining the input, we will perform b 2 N iterations to generate the candidate
perturbation vectors. Within the number of iterations β (also called resource budget),
repeat: (a) generate a perturbation vector with the DFOer; (b) check whether the
perturbation vector violates the constraints and regenerate the vector that violates them;
(c) impose the perturbation to the original graph G to generate the perturbed graph G′;
(d) input the perturbation graph G′ into the GCNmodel and query the attack loss function
value; (e) return it to the optimizer. In this step, all perturbation vectors and the
corresponding loss values are recorded.

Final perturbation
At the end of the iterative query, the perturbation vector that minimizes the loss function
will be imposed to the graph G to generate Gfinal. At this point, the whole adversarial
sample generation process is finished. Subsequently, we put Gfinal in (3) as G′ for poisoning
attacks or evasion attacks.

Derivative-free direct attack (DFDA)
The Derivative-Free Direct Attack (DFDA) algorithm is a black-box adversarial attack
method on GCN node classification tasks. In this algorithm, the adversary can directly
modify the connections and features of the target node to mislead GCNs to misclassify the
node as a chosen class (called target class). DFDA can perform structural perturbation
(modifying the adjacency matrix) and feature perturbation (modifying the feature matrix).

First, we set up the five subsections of Input Setting of the framework.

Attack loss function
Considering the success rate of the attack, the second most probable class originally
predicted by the clean graph is selected as the target class. The loss function is designed as,

Latk ¼ f ðA;XÞvt ;c1 � f ðA;XÞvt ;c2 (6)

f(A, X)vt is the output of the black-box query of the target node vt as a class probability
vector. c1 and c2 denote the first and second largest probability classes of the black-box
query before the attack. When the loss function decreases, the target class probability
increases and the correct class probability decreases.

Perturbation vector
For structural perturbations, the perturbation vector needs to be set to {0, 1}N − 1 to
describe all possible perturbations that can be generated, since the target node may have

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 7/23

http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

edges with all other N − 1 nodes. The size of the search space for this problem is O(2N),
which is of exponential level. Since the number of edges that an attacker can modify
(usually set to Δ) is very small to ensure the invisibility of the perturbation in practical
situations, the perturbation constraint is usually very tight. The vast majority of
perturbations are not qualified. To reduce the search space and improve the probability of
passing the constraint check, we define the structural perturbation vector as

gA 2 fx 2 Njx < NgD. As is shown in Fig. 2, each element u ∈ ηA like a position pointer
represents that the connection between the target node and the node vu is changed. This
method reduces the search space significantly (down to O(NΔ)). Similarly, we set the
feature perturbation vector to gX 2 fx 2 Njx < dgD. Here, we only consider the case
where the feature matrix is of the form X = {0,1}N × d.

Perturbation constraint
Based on the design of the above perturbation vector, we define the constraints as: (a)
no duplicate elements in ηA and ηX; and (b) vt ∉ ηA. Constraint a guarantees that no
duplicate modifications will be made to a particular edge while b guarantees that the graph
structure will not generate self-loops.

Mapping function
The perturbation mapping function is defined as follows.

For each element i in ηA,

Avti :¼ 1� Avti: (7)

For each element j in ηF,

Xvtj :¼ 1� Xvtj: (8)

Derivative-free optimizer
We choose OnePlusOne, DiscreteOnePlusOne, DoubleFastGAOnePlusOne, DE and
RandomSearch in Nevergrad as DFOers to generate the perturbation vectors.

Figure 2 The setting of the perturbation vector. The upper vector is in the form of {0,1}N. 0 means that
the connection status remains unchanged, and 1 means that theedge is added or removed. We designed
the lower vector, which uses the position pointers as elements to decline the dimension.

Full-size DOI: 10.7717/peerj-cs.693/fig-2

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 8/23

http://dx.doi.org/10.7717/peerj-cs.693/fig-2
http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

After defining the output, we follow the framework for Iterative Query and Final
Perturbation. In the Iterative Query step, our approach is slightly different from the
framework. In each iteration, we let the DFOer generate three perturbation vectors
simultaneously, perform constraint checking and loss query separately, and finally select
the perturbation vector with the smallest attack loss as the output of this iteration. These
can make the optimization process more stable.

EVALUATION
We have implemented our algorithm on DeepRobust (Li et al., 2020), an adversarial attack
algorithm library developed on PyTorch. As DeepRobust integrates classical attack and
defense algorithms on the image and graph domains, it can support the comparison
between our algorithm and other algorithms.

We consider the following three research questions:

� RQ1: Which DFOer is the most suitable in the setting of DFDA?

� RQ2: To what extent does parameters like constraint size affect the attack results?

� RQ3: Compare with Nettack, how does our method perform under different defense
models and scenarios?

To answer these questions, we design three kinds of experiments in the next section.
To answer RQ1, we conducted a single-node experiment, attacking only one node, to

analyze the attack results. Without loss of generality, we compare the effect of different
DFOers on node 0 in Cora. In this experiment, we select the most appropriate optimizer
for subsequent experiments.

To answer RQ2, we conducted multi-node experiments in which all nodes in a target
node set were attacked separately. The percentage of “successful” and “misleading” nodes
were counted. In the multi-node experiments, we investigate the effects of resource budget
β, perturbation constraint Δ, and perturbation type on the success rate of the attack.

To answer RQ3, we conducted comprehensive attack experiments on different datasets
and different defense models. In these experiments, we investigate the attack effect of
DFDA under three defense models in evasion attack and poisoning attack scenarios.
We also compare the DFDA with the greedy algorithm Nettack in poisoning attack cases.

DATASET AND SETTINGS
Dataset
The commonly used datasets in the field of graph adversarial attacks are Cora, Citeseer and
Polblogs (Rossi & Ahmed, 2015). We present the statistics for each dataset in the following
Table 1. Among them, Cora and Citeseer are attribute graphs, i.e., each node in the
graph has a specific dimensional attribute; the Polblogs dataset is a directed weighted
graph with no node features. Cora and Citeseer are more sparse, while Polblogs is denser
and has only two categories. Due to their strong representation, we perform attacks based
on these three datasets.

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 9/23

http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

Algorithm 1 The derivative-free direct attack (DFDA) algorithm.

Input: Original clean graph G = (A, X), target node vt ∈ V t, resource budget β, perturbation constraint δ,
black-box target model M

Output: Perturbed adversarial sample G = (A′, X′)

1: pvt QueryðM; vtÞ
2: Get the most probable class c1 and the second most probable class c2 in pvt

3: t 0

4: while t < β do

5: repeat

6: Generate perturbation vector gðtÞA 2 fx 2 Njx < NgD; gðtÞX 2 fx 2 Njx < dgD with a chosen DFOer

7: until vt =2 gðtÞA gðtÞA ; gðtÞX does not contain duplicate elements

8: AðtÞ A;XðtÞ X

9: for each element i in vector gðtÞA do

10: AðtÞ vt½ �½i� 1� A vt½ �½i�
11: end for

12: for each element j in vector gðtÞX do

13: XðtÞ vt½ �½i� 1� X vt½ �½i�
14: end for

15: pvt QueryðM; vtÞ
16: lossðtÞ pðtÞvt c1½ � � pðtÞvt c2½ �
17: Inform the optimizer of loss

18: end while

19: A0 A;X0 X

20: Select gðmÞA ; gðmÞX that minimizes the loss

21: for each element i in vector gðmÞA do

22: A0ðtÞ vt½ �½i� 1� A vt½ �½i�
23: end for

24: for each element j in vector gðmÞX

25: X0ðtÞ vt½ �½i� 1� X vt½ �½i�
26: end for

27: return G
0 ¼ A0;X0ð Þ

Table 1 Dataset statistics.

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7

Citeseer 3,327 4,732 3,703 6

Polblogs 1,490 19,025 – 2

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 10/23

http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

Setting
We describe some of the parameters and their range of values during the experiment in
Table 2. The poisoning attack considered in this paper refers to the case where the model is
not retrained at query time and is retrained at test time after the attack. In this case,
our approach is equivalent to generating an adversarial sample with the training
parameters of the original model and then transferring this sample to the model with the
new parameters after retraining.

We define “original class” as the maximum probability class of the target node’s
black-box query before the attack. We define “successful attack” as the case that the
maximum probability class after the attack is different from the original class. We define
“misleading success” as the maximum probability class of the node after the attack is
the same as the selected target class. “Classification margins” here are defined as Zv, c −
maxc′ ≠ c Zv, c′ where c is the original class, Zv, c is the probability of the class c given to the
node v by the attacked model. The lower the classification margins, the better the attack
performance.

Besides DeepRobust, we also use packages include: Python 3.7; PyTorch 1.8.1;
Nevergrad 0.4.3 post2; H5py 3.2.1, etc. In terms of hardware, the processor used for the
experiment was a 2.6 GHz hexa-core Intel Core i7.

Single-node Experiments (RQ1)
In this part, we attack just one node with different DFOers. We conducted Experiment 1
in order to find an appropriate DFOer by comparing their attack loss curves and

Table 2 Description of experimental parameters.

Parameters Meaning Range

Dataset Dataset used to train the graph neural network Cora, Citeseer and Polblogs

Target model1 The graph neural network model that will be attacked 2-layer GCN, GCN-Jaccard and
GCN-SVD

Node ID Target nodes attacked in single-node experiments 0 ~ N − 1(only test set nodes are
taken)

Number of
target nodes

Number of target nodes for multi-node experiments 0 ~ NU − 1

Resource
budget β

The maximum number of iterations of the gradient-free optimizer. This parameter controls the
number of computational resources

Positive integers

Perturbation
type

Perturbation of structure or of features Structure, feature, both

Constraint size
Δ

The maximum number of edges or features that can be modified for each node manipulated by
the attacker; this parameter controls the strength of the perturbation.

For structural perturbations: 1~N

For feature perturbations: 1~ d

Scenario Control whether the final perturbation is injected before training(poisoning) or after training
(escape)

Poisoning or Evasion

DFOer Indicates which derivative-free optimizer in Nevergrad is selected OnePlusOne,
DiscreteOnePlusOne,
DoubleFastGA, etc.

Notes:
1 The same hyperparameters are chosen for the target model 2-layer GCN, GCN-Jaccard and GCN-SVD: hidden layer dimension is 16, dropout rate is 0.5, learning rate is
0.1, and weight decay is 5 × 10−4.

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 11/23

http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

classification margins. In this experiment, different DFOers are taken to attack node 0 of
Cora to let the model classify the node as class 6 instead of its original class 5.

EXPERIMENT 1: ATTACK BY 5 DIFFERENT DFOERS ON
NODE 0 OF CORA
Tables 3 and 4 show the parameter settings and results of Experiment 1 respectively.
Figures 3 to 7 show the loss curves and class probability results of the 5 different DFOers.
The figures with mark “A” show the attack loss curves of different DFOers. The horizontal
coordinate is the number of iterations while the vertical coordinate is the value of the
loss function. The smaller the loss function value, the greater the difference between the
target class probability value and the original class probability value, the better the attack
effect. The figures marked “B” and “C” show the class probabilities before and after the
attacks. The horizontal coordinate is class labels, and the vertical coordinate refers to
the probability that the node belongs to a certain class. The figures marked “B” shows the
classification probabilities on unperturbed graphs and the figures marked “c” shows the

Figure 3 OnePlusOne. Full-size DOI: 10.7717/peerj-cs.693/fig-3

Table 3 Parameter settings of Experiment 1.

Dataset Model1 Node ID β Type2 Δ Scenario

Cora 2-layer GCN 0 100 Structure 5 Poisoning

Notes:
1 Refers to “target model”.
2 Refers to “perturbation type”.

Table 4 Results of Experiment 1.

DFOer Origin class Target class New class Result Margin

OnePlusOne 5 6 6 MS1 −0.67

DiscreteOnePlusOne 5 6 6 MS −0.75

DoubleFastGA2 5 6 6 MS −0.70

DE 5 6 6 MS −0.65

RandomSearch 5 6 6 MS −0.67

Notes:
1 Means “misleading success”.
2 The full name is “DoubleFastGAOnePlusOne”.

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 12/23

http://dx.doi.org/10.7717/peerj-cs.693/fig-3
http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

probabilities on perturbed graphs. In this experiment, the greater the probability of class 6
and the smaller the probability of class 5, the better the experiment result is.

From the experimental result figures, we can see that various DFOers can all successfully
mislead the model in our algorithm. As shown in Figs. 3A, 6A and 7A, OnePlusPne,
DE, and RandomSearch can all obtain minimum values of −0.4 ~ −0.6, which can achieve
less than −0.65 of the classification margin. However, judging from the oscillation degree
of the attack loss curves, they do not have the potential of continuous optimization and

Figure 6 DE. Full-size DOI: 10.7717/peerj-cs.693/fig-6

Figure 4 DiscreteOnePlusOne. Full-size DOI: 10.7717/peerj-cs.693/fig-4

Figure 5 DoubleFastGA. Full-size DOI: 10.7717/peerj-cs.693/fig-5

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 13/23

http://dx.doi.org/10.7717/peerj-cs.693/fig-6
http://dx.doi.org/10.7717/peerj-cs.693/fig-4
http://dx.doi.org/10.7717/peerj-cs.693/fig-5
http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

cannot continuously reduce the value of the loss function with the increase of iteration
number.

From Figs. 4A and 5A, it can be seen that DiscreteOnePlusOne and DoubleFastGA can
quickly find the appropriate optimization direction and optimize the loss function stably,
and can reach a minimum value of about −0.8, corresponding to less than −0.7 of the
attack power. However, during the running stage, DiscreteOnePlusOne often generates
perturbations that violate the constraints, which is very inefficient. DoubleFastGA can
combine speed and accuracy, so this optimizer is selected for the later experiments.

Multi-node Experiments (RQ2)
In this part, we choose a set of target nodes from the test set and attack them separately.
Every time we attack a node, we will test and record whether the attack was successful.
We define the success rate (SR) as the ratio of the “successful attack” number to the total
attacks number, Misleading Rate (MR) as the ratio of the “misleading success” number
to the number of the total attacks. In Experiment 2 & 3, we try to find the effect of different
parameter settings on SR and MR.

EXPERIMENT 2: THE EFFECT OF DIFFERENT RESOURCE
BUDGET b

The parameter settings and results of Experiment 2 are shown in Tables 6 and 5. The SR
directly reflects the attack effectiveness of the algorithm: the higher the SR, the better the
effectiveness. The MR reflects the directional misleading ability of the attack: the higher the
ratio of MR to SR, the more directional the attack is.

The SR gradually increases with the increase of resource budget (i.e., the number of
iterations), but the time consumption is proportional to the number of iterations. The ratio

Figure 7 RandomSearch. Full-size DOI: 10.7717/peerj-cs.693/fig-7

Table 5 Parameter settings of Experiment 2.

Dataset Number1 Type Δ Model Scenario DFOer

Cora 50 Structure 5 2-layer GCN Poisoning DoubleFastGA

Note:
1 Number of the target nodes.

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 14/23

http://dx.doi.org/10.7717/peerj-cs.693/fig-7
http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

of MR to SR increases with the resource budget, which indicates that the DoubleFastGA is
capable to find the appropriate optimization direction to make it more probable to classify
nodes to the target class. When β = 100, the attack reaches the balance of efficiency
and performance. It can be seen that even with the smallest resource budget (β = 10), 68%
of the nodes are attacked successfully and 54% are misled successfully. When β ≥ 25, the SR
can exceed 80%.

During the experiment, we found that each iteration needs to perturb at the original
image, which requires many deep copy operations on the original image which consumes a
lot of computational time. We use “inverse perturbation” to solve this problem. During
each iteration, we directly perturb the original graph data, and then “inversely perturb”
the graph after each query to restore it to the original data. This approach greatly reduces
the computational time of deep copies for a large number of iterations. As shown in the last
two columns of Table 5, the time consumption after improvement is about 50% of that
before.

EXPERIMENT 3: INFLUENCE OF CONSTRAINT D AND
PERTURBATION TYPE ON ATTACK EFFECT
Table 7 shows the parameter settings of Experiment 3. It can be seen from Table 8 that the
structure perturbation effect is better than the feature perturbation. The combination of
structure perturbation and feature perturbation can achieve a stronger attack effect but
requires a more tolerant constraint (the sum of structural constraint and feature
constraint). Only structure perturbations were used in subsequent experiments.

As the perturbation constraint size increases, the optimizer can search in a larger space.
Obviously, a larger constraint size leads to a better attack effect.

Comprehensive Experiments (RQ3)
In this part we conduct Experiment 4 & 5 to find how DFDA performs under 3 different
models: base model 2-layer GCNmentioned in Eq. (2), GCN-Jaccard (Wu et al., 2019) and

Table 7 Parameter settings of Experiment 3.

Dataset Number Δ Model Scenario DFOer

Cora 50 5 2-layer GCN Poisoning DoubleFastGA

Table 6 Results of Experiment 2.

β SR (MR) MR/SR Running time Running time (improved)

10 0.68 (0.54) 79.41% 5 m 3 s 3 m 39 s

25 0.82 (0.72) 87.80% 9 m 15 s 5 m 28 s

50 0.80 (0.72) 90.00% 18 m 33 s 10 m 30 s

100 0.94 (0.86) 91.49% 37 m 11 s 18 m 37 s

200 0.94 (0.86) 91.49% 1 h 14 m 37 s 33 m 35 s

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 15/23

http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

GCN-SVD (Entezari et al., 2020). Experiment 4 is conducted in an evasion scenario where
the model doesn’t retrain, while Experiment 5 is in a poisoning scenario that needs
retraining before attacks. Moreover, we compare DFDA with classic method Nettack in
Experiment 5. We randomly attack 30 test set nodes with DFDA (using the DoubleFastGA
optimizer) and Nettack respectively. We repeated the process five times and calculated the
mean and standard deviation of the SRs to make the comparison more plausible. Both
Experiment 4 & 5 are conducted on Cora, Citeseer and Polblogs.

EXPERIMENT 4: EFFECTIVENESS OF DFDA UNDER
DIFFERENT DEFENSIVE MODELS IN EVASION ATTACK
SCENARIO
Parameter settings of Experiment 4 are shown in Table 9. As we can see from Table 10,
DFDA can achieve good results in the evasion scenario. In this scenario, both of the
defense models cannot effectively defend against adversarial samples. This may be due to
the fact that the defense mechanisms (e.g., graph purification mechanism of GCN-Jaccard
and low-rank approximation processing of GCN-SVD) are essentially pre-processing of
the input data. As the model does not retrain, the defense mechanisms are bypassed in our
evasion setup. This why the success rate on the defense models is abnormally high.

Table 8 Results of Experiment 3.

Δ Feature Structure Both1

2 0.10 (0.08)2 0.60 (0.56) 0.70 (0.68)

4 0.14 (0.14) 0.88 (0.84) 0.92 (0.88)

6 0.22 (0.20) 0.96 (0.86) 0.94 (0.94)

8 0.24 (0.24) 0.92 (0.80) 0.98 (0.80)

10 0.30 (0.30) 0.98 (0.92) 0.98 (0.94)

Notes:
1 When structure perturbations and feature perturbations are carried out simultaneously, each type of perturbations has
a constraint of Δ.

2 Represents “SR(MR)”.

Table 9 Parameter settings of Experiment 4.

Dataset Number Type β Scenario DFOer

Cora 50 Structure 100 Evasion DoubleFastGA

Table 10 Results of Experiment 4.

Δ 2-layer GCN GCN-Jaccard GCN-SVD

2 0.46 (0.46) 0.63 (0.53) 0.63 (0.60)

4 0.86 (0.80) 0.83 (0.76) 0.80 (0.73)

6 0.86 (0.83) 0.93 (0.83) 0.90 (0.76)

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 16/23

http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

EXPERIMENT 5: COMPARISON OF DFDA AND NETTACK IN
DIFFERENT DEFENSE MODELS UNDER POISONING
ATTACK SCENARIOS
Table 11 shows the parameter settings of Experiment 5. The results are shown in Table 12
and are visualized in nine line graphs from Fig. 8 to 16. With β = 100 and Δ = 8, DFDA

Table 11 Parameter settings of Experiment 5.

Number Type β Scenario DFOer

30 Structure 100 Poisoning DoubleFastGA

Table 12 Results of Experiment 5.

Dataset β 2-layer GCN GCN-Jaccard GCN-SVD

DFDA Nettack DFDA Nettack DFDA Nettack

Cora 2 62.7 ± 9.2 69.3 ± 3.7 39.3 ± 7.2 42.7 ± 14.0 20.0 ± 7.8 10.0 ± 6.7

4 85.3 ± 6.9 78.7 ± 10.2 58.0 ± 9.3 61.3 ± 11.5 48.6 ± 11.9 22.7 ± 6.4

6 95.3 ± 6.9 88.0 ± 3.8 73.3 ± 9.4 72.0 ± 12.2 68.0 ± 5.6 42.7 ± 9.5

8 95.3 ± 3.8 85.3 ± 3.8 80.0 ± 8.5 79.3 ± 6.4 67.3 ± 5.5 56.0 ± 15.3

Citeseer 2 70.0 ± 14.5 53.3 ± 9.7 54.7 ± 9.6 39.3 ± 8.6 41.3 ± 7.7 32.0 ± 8.7

4 83.3 ± 7.5 73.3 ± 6.2 72.0 ± 7.7 61.3 ± 5.1 65.3 ± 10.2 54.7 ± 9.0

6 88.7 ± 8.0 68.0 ± 6.1 81.3 ± 6.5 70.0 ± 4.1 73.3 ± 5.3 68.7 ± 5.1

8 98.0 ± 1.8 74.0 ± 6.4 88.0 ± 8.0 77.3 ± 9.8 78.7 ± 6.5 72.0 ± 6.9

Polblogs 2 51.3 ± 5.1 28.0 ± 9.6 41.3 ± 21.0 31.3 ± 10.2 7.3 ± 4.3 1.3 ± 1.8

4 56.7 ± 10.3 54.0 ± 2.8 44.7 ± 17.7 30.0 ± 4.7 13.3 ± 6.7 6.7 ± 5.3

6 69.3 ± 2.8 58.0 ± 3.8 41.3 ± 21.9 32.0 ± 3.8 23.3 ± 10.3 14.0 ± 6.0

8 70.0 ± 7.8 64.7 ± 9.6 39.3 ± 21.1 35.3 ± 8.7 34.6 ± 6.9 31.3 ± 17.2

Note:
*The data represent the means and standard deviations of SRs. The bold indicates the average SR of the algorithm that
performs better under the same conditions.

Figure 8 Average SR on 2-layer GCN & Cora. Full-size DOI: 10.7717/peerj-cs.693/fig-8

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 17/23

http://dx.doi.org/10.7717/peerj-cs.693/fig-8
http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

Figure 10 Average SR on 2-layer GCN & Polblogs. Full-size DOI: 10.7717/peerj-cs.693/fig-10

Figure 11 Average SR on GCN-Jaccard & Cora. Full-size DOI: 10.7717/peerj-cs.693/fig-11

Figure 9 Average SR on 2-layer GCN & Citeseer. Full-size DOI: 10.7717/peerj-cs.693/fig-9

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 18/23

http://dx.doi.org/10.7717/peerj-cs.693/fig-10
http://dx.doi.org/10.7717/peerj-cs.693/fig-11
http://dx.doi.org/10.7717/peerj-cs.693/fig-9
http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

Figure 13 Average SR on GCN-Jaccard & Polblogs. Full-size DOI: 10.7717/peerj-cs.693/fig-13

Figure 14 Average SR on GCN-SVD & Cora. Full-size DOI: 10.7717/peerj-cs.693/fig-14

Figure 12 Average SR on GCN-Jaccard & Citeseer. Full-size DOI: 10.7717/peerj-cs.693/fig-12

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 19/23

http://dx.doi.org/10.7717/peerj-cs.693/fig-13
http://dx.doi.org/10.7717/peerj-cs.693/fig-14
http://dx.doi.org/10.7717/peerj-cs.693/fig-12
http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

achieves a maximum average SR of 95.3%, 98.0% and 70.0% on Cora, Citeseer and
Polblogs, respectively. DFDA performs more excellent on Cora and Citeseer than on
Polblogs. This is because there are only two class labels in Polblogs and the edges are
denser than Cora and Citeseer, which would make Polblogs more difficult to attack.

The performance of DFDA on three models: 2-layer GCN > GCN-Jaccard > GCN-SVD.
The GCN-Jaccard is less defensive against DFDA. This may be because the adversarial
perturbations generated by the DFDA algorithm do not easily reduce the Jaccard similarity
between nodes. So it is not easy to be defended by GCN-Jaccard. GCN-SVD is more
defensive against DFDA because the variation of high-rank singular components in the
adversarial sample spectrum generated by DFDA is large. Therefore, the perturbations
generated by DFDA will be easily filtered by the matrix approximation algorithm.

DFDA generally outperforms Nettack on three datasets and three target models.
Nettack uses training labels to train the surrogate model and generates adversarial samples
by attacking it. This algorithm uses greedy ideas in optimization and attacks much faster,

Figure 16 Average SR on GCN-SVD & Polblogs. Full-size DOI: 10.7717/peerj-cs.693/fig-16

Figure 15 Average SR on GCN-SVD & Citeseer. Full-size DOI: 10.7717/peerj-cs.693/fig-15

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 20/23

http://dx.doi.org/10.7717/peerj-cs.693/fig-16
http://dx.doi.org/10.7717/peerj-cs.693/fig-15
http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

but it cannot optimize iteratively. DFDA can increase the number of iterations to raise the SR
by spending more time. The time complexity of Nettack is related to the constraint size
(O(Δ)), while the time complexity of DFDA is related to the number of iterations (O(β)).

Of the parameters involved in the above experiments, the three parameters—scenario,
perturbation type and target model—are used to distinguish between different types of
adversarial attacks, in decreasing order of importance. The scenario distinguishes between
poisoning attacks and evasion attacks, the perturbation type distinguishes between
structure and feature perturbations, and the target model distinguishes between attacks
under different defense models.

There are three numerical type parameters that influence the effectiveness of the attack.
In descending order of importance, they are constraint size, resource budget and number
of target nodes. Constraint size determines the number of the edges or features that can
be manipulated and directly controls the ease of the attack task. The resource budget
determines the number of iterations. A large resource budget can increase the success rate
of the attack to some extent. The number of target nodes determines the stability of the
success rate of the attack. The larger the nodes number, the less the fluctuation in success
rate.

CONCLUSION
In this paper, we focus on the use of derivative-free optimization (DFO) ideas in graph
adversarial attacks. We first introduce a DFO-based black-box adversarial attack
framework against GCNs. Then we implement a direct attack algorithm (DFDA) using
Nevergrad library, using which we can easily compare the performance of various
derivative-free optimizers on node classification attack tasks. Moreover, we solve the
problem of large search space by declining the perturbation vector dimension. Finally, we
conducted three kinds of experiments on Cora, Citeseer and Polblogs. The results show
that DFDA outperforms Nettack in most cases. It can achieve an average success rate of
more than 95% on Cora when perturbing at most eight edges, which demonstrates that
our method can fully exploit the potential of DFO methods in node classification
adversarial attacks. In the future, we will focus on the application of DFO ideas to indirect
attacks and global attacks.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Natural Science Foundation of China (No.
62002332). The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 62002332.

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 21/23

http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Runze Yang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.
� Teng Long conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

All the source code files, datasets and a readme file are available in the
Supplementary Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.693#supplemental-information.

REFERENCES
Carlini N, Wagner D. 2018. Audio adversarial examples: targeted attacks on speech-to-text. In:

2018 IEEE Security and Privacy Workshops. Piscataway: IEEE, 1–7.

Chen J, Chen L, Chen Y, Zhao M, Yu S, Xuan Q, Yang X. 2019. GA-based Q-attack on
community detection. IEEE Transactions on Computational Social Systems 6(3):491–503
DOI 10.1109/TCSS.2019.2912801.

Conn AR, Scheinberg K, Vicente LN. 2009. Introduction to derivative-free optimization. Lodhi Rd:
SIAM.

Dai H, Li H, Tian T, Xin H, Wang L, Jun Z, Le S. 2018. Adversarial attack on graph structured
data. In: 35th International Conference on Machine Learning, ICML 2018, Volume 3 of
Proceedings of Machine Learning Research, PMLR. 1799–1808.

Entezari N, Al-Sayouri SA, Darvishzadeh A, Papalexakis EE. 2020. All you need is Low (rank):
defending against adversarial attacks on graphs. In: WSDM, 2020—Proceedings of the 13th
International Conference on Web Search and Data Mining. New York: ACM, 169–177.

Goodfellow IJ, Shlens J, Szegedy C. 2015. Explaining and harnessing adversarial examples. In: 3rd
International Conference on Learning Representations, ICLR 2015—Conference Track
Proceedings.

He X, Deng K,Wang X, Li Y, Zhang Y, WangM. 2020. Lightgcn: simplifying and powering graph
convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR’20. New York, NY,
USA: Association for Computing Machinery, 639–648.

Kipf TN, Welling M. 2017. Semi-supervised classification with graph convolutional networks. In:
5th International Conference on Learning Representations, ICLR, 2017—Conference Track
Proceedings. OpenReview.net.

Li Y, Jin W, Xu H, Tang J. 2020. DeepRobust: a PyTorch library for adversarial attacks and
defenses. arXiv preprint. Available at https://arxiv.org/abs/2005.06149.

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 22/23

http://dx.doi.org/10.7717/peerj-cs.693#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.693#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.693#supplemental-information
http://dx.doi.org/10.1109/TCSS.2019.2912801
https://arxiv.org/abs/2005.06149
http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

Ma Y, Wang S, Derr T, Wu L, Tang J. 2019. Attacking graph convolutional networks via rewiring.
CoRR. Available at https://arxiv.org/abs/1906.03750.

Papernot N, Mcdaniel P, Jha S, Fredrikson M, Celik ZB, Swami A. 2016. The limitations of deep
learning in adversarial settings. In: Proceedings—2016 IEEE European Symposium on Security
and Privacy, EURO S and P 2016. Piscataway: IEEE, 372–387.

Rapin J, Teytaud O. 2018. Nevergrad—a gradient-free optimization platform. Available at
https://GitHub.com/FacebookResearch/Nevergrad.

Rossi RA, Ahmed NK. 2015. The network data repository with interactive graph analytics and
visualization. In: Proceedings of the National Conference on Artificial Intelligence. Vol. 6.
Cambridge: AAAI Press, 4292–4293.

Ryu S, Kwon Y, KimWY. 2019. A Bayesian graph convolutional network for reliable prediction of
molecular properties with uncertainty quantification. Chemical Science 10(36):8438–8446
DOI 10.1039/C9SC01992H.

Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. 2009. The graph neural network
model. IEEE Transactions on Neural Networks 20(1):61–80 DOI 10.1109/TNN.2008.2005605.

Sun L, Dou Y, Yang C, Wang J, Yu PS, He L, Li B. 2018. Adversarial attack and defense on graph
data: a survey. arXiv preprint. Available at http://arxiv.org/abs/1812.10528.

Ughi G, Abrol V, Tanner J. 2020. An empirical study of derivative-free-optimization algorithms
for targeted black-box attacks in deep neural networks. arXiv. Available at http://arxiv.org/abs/
2012.01901.

Wang H, Zhao M, Xie X, Li W, Guo M. 2019. Knowledge graph convolutional networks for
recommender systems. In: The World Wide Web Conference, WWW’19. New York, NY, USA:
Association for Computing Machinery, 3307–3313.

Wu H, Wang C, Tyshetskiy Y, Docherty A, Lu K, Zhu L. 2019. Adversarial examples for graph
data: deep insights into attack and defense. In: IJCAI International Joint Conference on Artificial
Intelligence. Vol. 2019. 4816–4823.

Zügner D, Akbarnejad A, Günnemann S. 2018. Adversarial attacks on neural networks for graph
dataProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. New York: ACM, 2847–2856.

Zügner D, Günnemann S. 2019. Adversarial attacks on graph neural networks via meta learning.
arXiv preprint arXiv:1902.08412.

Yang and Long (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.693 23/23

https://arxiv.org/abs/1906.03750
https://GitHub.com/FacebookResearch/Nevergrad
http://dx.doi.org/10.1039/C9SC01992H
http://dx.doi.org/10.1109/TNN.2008.2005605
http://arxiv.org/abs/1812.10528
http://arxiv.org/abs/2012.01901
http://arxiv.org/abs/2012.01901
http://dx.doi.org/10.7717/peerj-cs.693
https://peerj.com/computer-science/

	Derivative-free optimization adversarial attacks for graph convolutional networks
	Introduction
	Related work
	Preliminaries
	Derivative-free adversarial attack on gcns
	Evaluation
	Dataset and Settings
	Experiment 1: attack by 5 different dfoers on node 0 of cora
	Experiment 2: the effect of different resource budget bgr
	Experiment 3: influence of constraint g; ...
Experiment 3: influence of constraint Δ and perturbation type on attack effect=~s and perturbation type on attack effect ...
	Experiment 4: effectiveness of dfda under different defensive models in evasion attack scenario
	Experiment 5: comparison of dfda and nettack in different defense models under poisoning attack scenarios
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

